因子分析模型的建立

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因子分析模型的建立标准化管理部编码-[99968T-6889628-J68568-1689N]

基于因子分析模型的居民消费价格指数影响因素分

摘要:由于目前对居民消费价格变动原因的分析指标很多,且指标体系中各指标之间存在着多重共线性,从而影响了分析模型的稳定性,使所得模型中出现了不符合经济学原理的现象。本文采用多元统计分析方法,以2010年居民消费物价水平为例,建立了关于居民消费价格分类指数变动的因子分析模型,研究发现影响居民消费价格指数的主要因素为食品、衣着和家用设备等生活必需品的价格水平,其次为健身等娱乐设施价格和房价水平。关键词:消费价格指数;影响因素;因子分析

一、研究背景

随着社会主义市场经济体制的确立和逐步完善,我国经济总量和综合实力迅速上升,居民的生活水平显着提高,经济和社会都有了较大的发展。相对于过去而言,居民食品方面的消费支出比重在逐渐下降,而在文化娱乐等方面的消费支出比重越来越大。国家发改委在全国物价局长会议上指出,明年要围绕促进经济平稳较快发展这一主线,积极稳妥地推进价格改革,切实改进价格监管,保持价格总水平基本稳定。同时由于影响价格变动的因素日益复杂,价格异常波动的可能性增加。分析影响居民消费价格指数的主要影响因素,改进价格监管,保持价格总水平基本稳定有着重要意义;同时也为产业政策的制定和宏观经济的调控提供了参考。

居民消费价格指数(CPI)是反映与居民生活有关的产品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标,在一定程度上也反映出我国居民消费结构的变化。本文通过对2010年全国居民消费价格指数的变化进行因子分析,从而确定出影响全国居民消费物价水平和消费结构变化的主导因素。

二、因子分析模型的建立

因子分析最初是由英国心理学家C.Spearman提出的,是多元统计分析的一个重要分支,其主要目的是浓缩数据。通过对诸多变量的相关性研究,来表示原来变量的主要信息。假设有n个样本,对于多指标问题X=(X1,

X2,...Xk),形成的背景原因是多种多样的,其中共同原因称为公共因子,假设用Fj表示,它们之间是两两正交的;每一个分量Xi又有其特定的原因,称为特殊因子,假设用ei表示,其两两之间互不相关,且只对相应的Xi起作用。同时,F与e相互独立。于是因子分析的数学模型可表示为:Fi叫做公共因子(也称主因子),它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。

矩阵A称为因子载荷矩阵。因子的负载矩阵A中第j列元素的平方和,即表示为公共因子F对X的贡献。表示同一公共因子Fj对各个变量所提供的方差贡献率的总和,它是衡量公共因子相对重要性的指标。

有时由于初始因子的负载矩阵综合性太强,各因子的典型变量代表性也不很突出,因而使因子意义含糊不清,不便于对因子进行解释。因此需要通过旋转负载矩阵,使负载尽可能向±1、0的方向靠近。从而降低因子的综合性,凸显其实际意义。

三、居民消费价格指数的因子分析模型求解

根据我国常用的消费资料支出分类方法,选取具有代表性的八个指标,即食品、烟酒、衣着、家庭设备用品、医疗保健和个人用品、交通和通讯、娱乐教育文化用品及服务以及居住,它们在人均生活消费总支出中所占的百分比分别记为X1、X2、X3、X4、X5、X6、X7、X8。表1为我国2010年居民消费价格分类指数的变化,具体数据如表1所示。

表12010年全国居民消费价格分类指数

1、相关系数基本分析

由表1中的数据,利用统计分析软件SPSS,将表1中的数据标准化,然后计算变量间的相关系数,如表2所示,可见,变量间的相关系数处于-1到-0.5和0.5至1之间的数值33个,所以变量之间存在共同因子的可能性很大,可以建立因子分析模型进行相关分析。

表2变量相关系数表

2特征根求解及方差分解

对消费者物价的8个分类指标建立因子分析模型,求得样本相关矩阵R的特征根和贡献率,表3总方差分解表所示,由表3绘制公共因子与特征根的碎石图,如图1所示(横坐标为公因子数,纵坐标为公共因子的特征值)。

表3总方差分解表

由表3可见,其余五个特征值均很小,前三个公共因子对样本方差的贡献和为93.322%,即取3个公共因子包含的信息量占总体信息量的百分比为

93.322%。由图1也可以看出,前三个公共因子变化最大,说明这三个公共因子提供了原始数据8个指标所能表达的足够的信息。所以选择公公因子的个数为3。

图1公共因子与特征根的碎石图

3、因子旋转及因子得分

同时,为防止初始因子负载矩阵不足“简单结构原则”,难以找到因子的实际意义,因此本文采用对负载矩阵进行旋转的方法,以达到使结构简化的目的。方差最大法正交旋转后的因子负载矩阵如表4所示。

表4旋转后的因子负荷系数

三个公共因子对变量的共同度都在80%以上,说明公共因子较好的解释了变量变动的原因。

表5因子得分系数矩阵

(1)因子1:因子1对食品、烟酒、衣着、家庭设备以及医疗保健这五个方面有较大影响,其中影响最大的是食品和烟酒,其次是衣着和家庭设备,其负载值均大于零。直观的说明了随着人们收入的提高,人们扩大对基本生活必需品的消费需求。食品、烟酒、衣着、家庭设备以及医疗保健在消费支出中加大了相应的比重。而且主因子1对8个变量的的方差贡献已达55%之多,说明基本生活必需品价格的上涨是居民消费物价指数上升的最主要原因,要控制通货膨胀,需从因子1代表的基本生活必需品物价水平重点采取措施。

(2)因子2:因子2主要反映医疗保健和个人用品以及文教娱乐服务两方面的变动。反映出居民生活水平的提高,人们的健康意识提升,特别是增加了健身、娱乐等高档消费需求,而身体素质的提升使得对医疗保健的需求相应下降,从而对医疗保健的负载值小于零,这反映了整个国民身体健康状况的提升。

(3)因子3:因子3主要是对居住和交通通讯有较大的影响,反映的是人们对住房需求及交通通讯便利要求的提高,同时房价的居高不下也是居民物价消费指数增加的重要原因。

四、结论

本文主要采用因子分析法进行研究,总的来看,因子分析是一种常用的处理高维数据的多元统计分析方法,是一种探索不易观测或不能观测的潜在因素之间相关关系的技术。因子分析属于描述性分析,它能够保证在数据信息损失最小的前提下,从大规模的原始数据群中迅速的将重要的信息提取出来,把原来具有一定程度相关关系的变量转换为数量较少的由原始变量组合而成的新变量—因子,用它们来代替原始变量,使人们对所研究的问题达到尽可能充分和全面的认识。它的主要作用体现在以下几个方面:

首先,它能够对反映问题不同侧面的众多指标变量进行综合,在保留尽可能多的信息的原则下,对原始数据进行压缩,将高维的数据集合进行降级处理,使数据更加的准确直观,便于我们对问题进行合理的分析。

其次,通过计算因子得分并对因子载荷矩阵进行正交旋转,可以利用公因子对全体指标变量进行分类,探索问题的潜在因素,思考问题的成因,并对问题做出合理的总结。

本文选取2010年全国居民消费价格指数,研究消费价格指数变化的影响因素。考虑到数据的可取性,并综合研究年份的具体情况,选择具有代表性的食品、烟酒、衣着、家庭设备用品、医疗保健和个人用品、交通和通讯、娱乐教育文化用品及服务以及居住这八个指标来构建居民消费价格水平的指标体系,避免了单指标的片面性。通过对居民消费价格指数的因子分析,在八个指标中提取出3个公因子,根据公因子及其相应的方差贡献率计算各因子得分,最终得出随着人民收入的提高,生活水平与质量普遍上升,食品、衣着和家用设备等生活必需品的价格水平仍为主导因素的情况下,健身娱乐等高档消费品价格及房价水平成为影响消费者物价指数的重要因素。

相关文档
最新文档