【数学建模与MATLAB】第12讲 计算机模拟

合集下载

数学建模练习:计算机模拟公共汽车的运行情况

数学建模练习:计算机模拟公共汽车的运行情况

计算机模拟公共汽车的运行情况某公共汽车站每隔30分钟到达一辆汽车,但可能有[0,3]分钟误差,此误差大小与前一辆汽车的运行无关。

汽车最多容纳50名旅客,到达该汽车站时车内旅客人数服从[20,50]的均匀分布,到站下车的旅客人数服从[3,7]的均匀分布,每名旅客下车的时间服从[1,7]秒的均匀分布。

旅客按照每30分钟到达12个人的泊松分布到达汽车站,单队排列等车,先到先上,如果某位旅客未能上车,他不再等候。

旅客上车时间服从[4,12]秒的均匀分布。

上下车的规则是:先下后上,逐个上车,逐个下车。

假设每天共发车25辆,现在要求模拟30天汽车的运行情况,了解平均一天中在站内等候汽车的总人数、能上车及不能上车的人数、旅客排队时间分布情况、不能上车人数的分布情况。

参考解答思路:摘要计算机模拟式一般是一种能用来帮助企业经理在不确定条件下进行决策的方法。

对于复杂的随机事件系统,无法用数学计算直接进行求解,为此我们可以在计算机上进行模拟仿真,一般以时间作为变量,其他作为因变量。

本题是属于离散型的模拟,该模拟中的时间表示为整数序列,只考虑系统在这些时刻上的状态变化。

该问题是关于排队等汽车的问题,属于排队服务问题,可以采用下次事件法(也就是下次时间作为时间的起始时刻),使用计算机进行模拟。

为了使模型简单,我们假设所有等车的旅客都是同一时刻到达车站等车,则等车总时间为旅客到达时刻与上一辆汽车离开时刻的时间差,再加上旅客上车和下车的总时间。

在模型的建立过程中,先用MATLAB软件创建数据。

这里由于题目中的数据都给了,所以对于均匀分布和泊松分布,我们可以直接调用MATLAB软件中的unifrnd函数和poissrnd函数进行模拟。

在模型的求解部分,先用建立的模型模拟一天中等车总人数、能上车人数、未上车人数、平均等待时间的情况,然后用类似的方法对三十天的数据进行模拟求解,得出结论。

关键词:下次法、离散、MATLAB问题重述(略)问题分析该问题是关于排队等汽车的问题,属于排队服务问题,可以采用下次事件法,使用计算机进行模拟。

MATLAB数学建模和仿真指南

MATLAB数学建模和仿真指南

MATLAB数学建模和仿真指南第一章:介绍MATLAB数学建模和仿真MATLAB(Matrix Laboratory),是一种强大的数学软件工具,它提供了丰富的数学建模和仿真功能。

在本章中,我们将介绍MATLAB数学建模和仿真的概念、优势以及应用领域。

第二章:MATLAB基础知识在使用MATLAB进行数学建模和仿真之前,有必要掌握一些MATLAB的基础知识。

本章将介绍MATLAB的界面、基本命令、变量定义和操作,以及数学函数的使用。

第三章:数学建模数学建模是将实际问题抽象为数学模型,并利用数学方法对问题进行分析、计算和预测的过程。

在本章中,我们将详细介绍MATLAB在数学建模中的应用,包括线性规划、非线性规划、差分方程、微分方程等方面的建模方法和求解技巧。

第四章:仿真技术仿真是通过构建虚拟模型来模拟实际系统的行为和性能的过程。

MATLAB提供了丰富的仿真工具和技术。

本章将介绍MATLAB仿真技术的基本原理和方法,包括系统仿真、离散事件仿真、连续仿真等,并通过实例演示如何使用MATLAB进行仿真分析。

第五章:数据可视化与分析数据可视化和分析是MATLAB的重要功能之一。

在本章中,我们将介绍MATLAB中的数据导入、清洗和处理技巧,以及各种数据可视化方法,如二维图像、三维图像、热力图、散点图等。

此外,还将介绍如何使用MATLAB进行统计分析和数据挖掘。

第六章:优化算法与求解器优化算法是MATLAB中的重要工具,可以用于求解各种最优化问题。

本章将介绍MATLAB中常用的优化算法和求解器,如线性规划、非线性规划、整数规划、遗传算法等,并提供相应的应用示例。

第七章:控制系统设计与仿真控制系统是实现对动态系统行为的控制和调节的关键。

在本章中,我们将介绍MATLAB在控制系统设计和仿真中的应用,包括传统控制方法、现代控制方法、PID控制器设计等,并演示如何通过MATLAB进行控制系统性能分析和仿真。

第八章:神经网络建模与仿真神经网络是一种模拟人脑神经元之间信息交流的模型,广泛应用于模式识别、数据挖掘、预测等领域。

《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述

《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述

n
p( x1 , 1 , k ) p( x2 , 1 , , k ) p( xn , 1 , k )
p( xi ,1 , k )
i 1
使L(1,,k ) 达到最大,从而得到参i数 的估计ˆi 值 .此估计值叫极大似然估计值.函数
L(1,,k ) 称为似然函数.
求极大似然估计值的问题,就是求似然函数L(1,,k ) 的最大值的问题,则
统计的基本概念 参数估计 假设检验
3
一、统计量
1、表示位置的统计量—平均值和中位数
平均值(或均值,数学期望) :X1 n
ni1
Xi
中位数:将数据由小到大排序后位于中间位置的那个数值.
2、表示变异程度的统计量—标准差、方差和极差
标准差:s[n11i n1(Xi
1
X)2]2
它是各个数据与均值偏离程度的度量.
数学建模与数学实验
数据的统计描述和分析
2021/7/31
后勤工程学院数学教研室
1
实验目的
1、直观了解统计基本内容。 2、掌握用数学软件包求解统计问题。
实验内容
1、统计的基本理论。 2、用数学软件包求解统计问题。 3、Matlab数据统计 4、实验作业。
数 据 的 统 计 描 述 和 分 析
2021/7/31
若 X ~N ( 0, 1) , Y ~ 2( n) , 且 相 互
独 立 , 则 随 机 变 量
TX Y
n
服 从 自 由 度 为 n的 t分 布 , 记 为 T ~t( n) . t分 布 t( 20) 的 密 度 函 数 曲 线 和 N ( 0, 1) 的
曲 线 形 状 相 似 .理 论 上 n 时 , T ~t( n) N ( 0, 1) .

matlab讲义

matlab讲义

matlab讲义随机过程实验讲义刘继成华中科技大学数学与统计学院前言 (1)第一章Matlab 简介 (2)第二章简单分布的模拟 (6)第三章基本随机过程 (9)第四章Markov过程 (12)第五章模拟的应用和例子 (16)附录各章的原程序 (51)参考文献 (75)若想检验数学模型是否反映客观现实,最自然的方法是比较由模型计算的理论概率和由客观试验得到的经验频率。

不幸的是,这两件事都往往是费时的、昂贵的、困难的,甚至是不可能的。

此时,计算机模拟在这两方面都可以派上用场:提供理论概率的数值估计与接近现实试验的模拟。

模拟的第一步自然是在计算机程序的算法中如何产生随机性。

程序语言,甚至计算器,都提供了“随机”生成[0,1]区间内连续数的方法。

因为每次运行程序常常生成相同的“随机数”,因此这些数被称为伪随机数。

尽管如此,对于多数的具体问题这样的随机数已经够用。

我们将假定计算机已经能够生成[0,1]上的均匀随机数。

也假定这些数是独立同分布的,尽管它们常常是周期的、相关的、……。

……本讲义的安排如下,第一章是Matlab简介,从实践动手角度了解并熟悉Matlab环境、命令、帮助等,这将方便于Matlab的初学者。

第二章是简单随机变量的模拟,只给出了常用的Matlab 模拟语句,没有堆砌同一种变量的多种模拟方法。

对于没有列举的随机变量的模拟,以及有特殊需求的读者应该由这些方法得到启发,或者参考更详细的其他文献资料。

第三章是基本随机过程的模拟。

主要是简单独立增量过程的模拟,多维的推广是直接的。

第四章是Markov过程的模拟。

包括服务系统,生灭过程、简单分支过程等。

第五章是这些模拟的应用。

例如,计算概率、估计积分、模拟现实、误差估计,以及减小方差技术,特别给读者提供了一些经典问题的模拟,通过这些问题的模拟将会更加牢固地掌握实际模拟的步骤。

平稳过程的模拟、以及利用平稳过程来预测的内容并没有包含在本讲义之内,但这丝毫不影响该内容的重要性,这也是将会增补进来的主要内容之一。

如何利用Matlab进行模拟和仿真实验

如何利用Matlab进行模拟和仿真实验

如何利用Matlab进行模拟和仿真实验Matlab是一种功能强大的数学计算和数据可视化软件。

它不仅可以进行数学模拟和仿真实验,还可以处理数据、绘制图表和实施算法。

在工程、物理学、生物学等领域,Matlab被广泛用于解决各种实际问题。

本文将介绍如何利用Matlab进行模拟和仿真实验,并探讨其在实验设计和结果分析中的应用。

一. Matlab的基本功能Matlab具有很多基本功能,如矩阵操作、数值计算、符号计算等。

这些功能使得Matlab成为进行模拟和仿真实验的理想选择。

在Matlab中,可以定义和操作矩阵,进行线性代数运算,如求解方程组、矩阵求逆等。

此外,Matlab还提供了许多内置函数,可以进行数值计算和符号计算,如求解微分方程、积分、数值优化等。

二. 模拟实验的设计在进行模拟实验之前,首先需要设计实验方案。

实验设计包括选择合适的模型和参数设置,确定实验变量和观测指标等。

在Matlab中,可以使用函数或脚本来定义模型和参数,通过修改参数值来观察实验结果的变化。

比如,可以使用Matlab的模型库来选择合适的模型,然后使用函数传入参数值进行求解。

此外,Matlab还提供了绘图功能,可以绘制实验结果的图表,以便更直观地分析数据。

三. 仿真实验的实施在设计好实验方案后,就可以开始进行仿真实验了。

在Matlab中,可以使用已定义的模型和参数进行仿真计算。

可以通过Matlab的编程功能来实现计算过程的自动化。

比如,可以使用循环语句来迭代计算,以观察参数变化对结果的影响。

此外,Matlab还提供了随机数生成和统计分析函数,可以用于生成随机变量和分析实验数据。

四. 实验结果的分析在完成仿真实验后,需要对实验结果进行分析。

Matlab提供了丰富的数据处理和分析工具,可以对实验数据进行统计分析、绘图和可视化展示。

可以使用Matlab的数据处理函数来计算均值、标准差、相关系数等统计指标。

此外,Matlab还可以通过绘图函数来绘制直方图、散点图、线图等图形,以便更好地理解和展示数据。

计算机仿真详细讲解

计算机仿真详细讲解

计算机仿真详细讲解1. 引言计算机仿真是通过模拟计算机程序来模拟和分析现实世界的过程。

它可以用来模拟各种复杂系统,并帮助我们理解和预测实际系统的行为。

本文将详细讲解计算机仿真的定义、原理、应用领域和使用的工具。

2. 定义计算机仿真是使用计算机程序模拟实际系统的过程。

它通过模拟系统的输入、输出和内部运行机制,来研究系统的性能和行为。

计算机仿真可以用来研究物理系统、社会系统、生物系统等各种复杂系统。

3. 原理计算机仿真的原理基于数学和物理原理。

它可以分为以下几个步骤:3.1. 建立模型首先,需要建立一个模型来描述实际系统的行为。

模型可以是数学方程、物理实验数据、流程图等形式。

模型应该能够准确地描述系统的输入、输出和内部运行机制。

3.2. 编写仿真程序根据建立的模型,需要编写计算机程序来模拟系统的行为。

仿真程序通常使用编程语言来实现,如Python、C++等。

程序中包含了模型的数学运算、数据处理和结果输出等功能。

3.3. 运行仿真将编写好的仿真程序运行起来,输入系统的初始条件和参数,通过计算机的计算能力来模拟系统的运行过程。

仿真程序会根据模型和输入参数计算出系统的输出结果。

3.4. 分析和验证结果仿真程序运行完成后,需要对结果进行分析和验证。

可以将仿真结果与实际系统的观测数据进行比较,以评估仿真模型的准确性和可靠性。

如果仿真结果与实际观测相符,则说明模型和仿真程序是有效的。

4. 应用领域计算机仿真在各个领域都有广泛的应用。

以下是一些常见的应用领域:4.1. 物理科学计算机仿真在物理科学领域中有着重要的作用。

它可以模拟和研究各种物理现象,如流体力学、电磁学、量子力学等。

通过仿真可以更好地理解和解释物理现象,并为科学研究提供支持。

4.2. 工程和制造业在工程和制造业领域,计算机仿真可以用来模拟和优化工程设计和制造过程。

它可以分析和预测产品的性能、可靠性和生命周期成本,从而提高工程和制造效率。

4.3. 交通运输在交通运输领域,计算机仿真可以用来模拟和优化交通流量、车辆行驶和路网规划等问题。

利用Matlab进行数值模拟的方法

利用Matlab进行数值模拟的方法

利用Matlab进行数值模拟的方法引言数值模拟是现代科学领域中不可或缺的一种工具,它通过数学模型和计算机算法,模拟和预测实际系统的行为。

随着科学技术的不断发展,数值模拟方法逐渐成为各个学科的重要组成部分。

Matlab作为一种强大的科学计算工具,为数值模拟提供了丰富的函数库和易于使用的编程环境。

本文将介绍一些利用Matlab进行数值模拟的方法,以及其在不同领域的应用。

一、常微分方程的数值解法常微分方程在物理、工程、生物等领域中广泛存在。

利用Matlab进行常微分方程的数值解法,可以有效地求得方程的近似解。

Matlab中的ode45函数是常用的数值解法之一,它基于龙格-库塔算法,可以处理非刚性和刚性问题。

通过设定初始条件和方程形式,利用ode45函数可以得到系统的数值解,并绘制出相应的曲线图。

例如,考虑一个一阶常微分方程dy/dx = -2xy,初始条件为y(0) = 1。

可以通过以下代码进行数值模拟:```Matlabfun = @(x, y) -2*x*y;[x, y] = ode45(fun, [0, 10], 1);plot(x, y)xlabel('x')ylabel('y')title('Solution of dy/dx = -2xy')```运行以上代码后,可以得到方程解的图像,从而对其行为有更直观的理解。

二、偏微分方程的数值解法偏微分方程在物理、流体力学、电磁学等领域中具有重要应用。

常用的偏微分方程的数值解法有有限差分法(Finite Difference Method)和有限元法(Finite Element Method)等。

在Matlab中,可以利用pdepe函数进行偏微分方程的数值模拟,其中包含了一维和二维问题的求解算法。

以热传导方程为例,假设一个长为L的均匀杆子,其温度分布满足偏微分方程∂u/∂t = α*∂²u/∂x²,其中u(x, t)表示温度分布。

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。

在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。

本文将介绍MATLAB 数学建模中的常用模型及编程方法。

二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。

1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。

矩阵的转置运算符是单撇号(’)。

2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。

3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。

matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。

4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。

5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。

其中,|a|表示矩阵a 的行列式,I 是单位矩阵。

在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。

三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。

数学建模和计算机仿真技术的研究

数学建模和计算机仿真技术的研究

数学建模和计算机仿真技术的研究数学建模和计算机仿真技术是当今社会中非常重要的两个研究领域,广泛应用于各个领域,如工业制造、金融经济、医学、科学研究等等。

数学建模是指将实际问题转化为数学问题,并利用数学方法求解实际问题的过程。

而计算机仿真技术则是指利用计算机对实际问题进行模拟和分析,进而得到实际问题的解决方案的过程。

本文将从理论和应用的角度,分别讨论数学建模和计算机仿真技术的研究。

数学建模的研究数学建模的研究主要涉及到以下三个方面。

第一,数学建模的方法。

数学建模的方法主要包括问题建模、模型选择、模型求解和模型评价等。

问题建模是指了解实际问题的背景、意义、数据等信息,并将问题抽象成数学形式;模型选择是指从候选模型中选择合适的模型,并进行合适的约束和简化;模型求解是指利用现有的数学方法对模型进行求解;模型评价是指对求解结果进行判断和评价。

第二,数学建模的应用。

数学建模广泛应用于各个领域,如物理、化学、经济、医学、环境等。

具体应用包括利用数学建模预测自然灾害、优化物流系统、研究生态环境等。

第三,数学建模的研究前沿。

数学建模的研究前沿主要包括非线性数学建模、混合整数线性规划、时间序列分析等。

这些前沿问题都需要新的理论和方法来求解。

计算机仿真技术的研究计算机仿真技术的研究也包括以下几个方面。

第一,仿真软件的开发。

仿真软件是计算机仿真技术的核心,它能够模拟实际问题,并通过仿真结果来辅助决策和优化。

目前广泛应用的仿真软件包括Matlab, Simulink, Comsol等。

第二,计算机图形学的研究。

计算机图形学主要研究计算机如何呈现和处理现实世界中的图形和动画。

它与计算机仿真技术密切相关,常用于可视化仿真结果。

第三,仿真算法的研究。

仿真算法主要研究如何利用数学方法和计算机算法来模拟实际问题。

目前最常用的仿真算法包括Monte Carlo仿真、离散事件仿真等。

数学建模与计算机仿真技术的联合应用数学建模和计算机仿真技术通常相互配合应用,以实现对实际问题的深入研究和解决。

MATLAB数学建模与数学实验

MATLAB数学建模与数学实验
分析: 这是一个概率问题,可以通过理论计算得到相应的 分析 概率和期望值.但这样只能给出作战行动的最终静态结果,而 显示不出作战行动的动态过程. 为了能显示我方20次射击的过程,现采用模拟的方式。
1. 问题分析
需要模拟出以下两件事: [1] 观察所对目标的指示正确与否 模拟试验有两种结果,每一种结果出现的概率都是1/2. 因此,可用投掷一枚硬币的方式予以确定 可用投掷一枚硬币的方式予以确定,当硬币出现正面时为 可用投掷一枚硬币的方式予以确定 指示正确,反之为不正确. [2] 当指示正确时,我方火力单位的射击结果情况 当指示正确时, 模拟试验有三种结果:毁伤一门火炮的可能性为1/3(即2/6), 毁伤两门的可能性为1/6,没能毁伤敌火炮的可能性为1/2(即3/6). 这时可用投掷骰子的方法来确定 可用投掷骰子的方法来确定: 可用投掷骰子的方法来确定 如果出现的是1、2、3三个点:则认为没能击中敌人; 如果出现的是4、5点:则认为毁伤敌人一门火炮; 若出现的是6点:则认为毁伤敌人两门火炮.

(2)该商店在单位时间内到达的顾客数服从参数为0.1的帕松分布 (2)该商店在单位时间内到达的顾客数服从参数为0.1的帕松分布 该商店在单位时间内到达的顾客数服从参数为0.1 (1)指两个顾客到达商店的平均间隔时间是10个单位时间. (1)指两个顾客到达商店的平均间隔时间是10个单位时间.即平均 指两个顾客到达商店的平均间隔时间是10个单位时间 10个单位时间到达 个顾客. 个单位时间到达1 10个单位时间到达1个顾客. (2)指一个单位时间内平均到达0.1个顾客 (2)指一个单位时间内平均到达0.1个顾客 指一个单位时间内平均到达0.1
4.产生 m × n 阶期望值为 µ 的指数分布的随机数矩阵:exprnd ( µ ,m, n ) exprnd

计算机仿真和模拟的方法和工具

计算机仿真和模拟的方法和工具

计算机仿真和模拟的方法和工具计算机仿真和模拟是指利用计算机软件和硬件来模拟和重现现实世界的某种情境或系统的过程。

它是一种强有力的工具,广泛应用于各个领域,如工程、科学、医药、经济等。

本文将介绍计算机仿真和模拟的方法和工具。

一、数学建模数学建模是计算机仿真和模拟的基础,通过对现实问题进行抽象和理论化,将其转化为数学方程和模型。

数学建模能够对现实问题进行描述和分析,并为计算机仿真提供了数学基础。

1. 线性模型线性模型是一种简单而常用的数学模型,它基于线性关系进行建模。

线性模型可以用于描述各种线性系统,如电路系统、运输系统等。

在计算机仿真中,线性模型可以通过编写线性方程组来实现。

2. 非线性模型非线性模型是指不能用一个简单的线性关系来表示的模型。

非线性模型在实际问题中更为常见,如生态系统、气候系统等。

计算机仿真中,非线性模型需要使用数值计算方法(如迭代法)来求解。

3. 统计模型统计模型是通过对数据的统计分析建立的模型,用于预测和分析未知的现象。

统计模型常用于金融市场预测、医学研究等领域。

计算机仿真中,可以通过随机数生成和概率分布函数模拟统计模型。

二、仿真软件计算机仿真和模拟需要借助各种专业的仿真软件来实现。

下面介绍几种常用的仿真软件。

1. MatlabMatlab是一种数学计算和仿真软件,被广泛用于科学计算和工程仿真。

它具有强大的数学建模能力和丰富的函数库,可以用于线性和非线性模型的建模与仿真。

2. SimulinkSimulink是Matlab的一个附加模块,用于建立和仿真动态系统模型。

Simulink使用图形化界面来进行建模和仿真,使得模型的构建更加直观和方便。

3. ANSYSANSYS是一种通用的有限元分析软件,可以用于工程结构和流体等领域的仿真。

它提供了强大的建模和分析功能,可以模拟各种复杂的物理现象。

4. COMSOL MultiphysicsCOMSOL Multiphysics是一种多物理场有限元分析软件,广泛应用于科学和工程领域。

matlab模拟试题及答案

matlab模拟试题及答案

matlab模拟试题及答案MATLAB模拟试题及答案1. 编写一个MATLAB函数,计算并返回一个向量中所有元素的和。

```matlabfunction sumVector = sumVectorElements(vector)sumVector = sum(vector);end```2. 给定一个矩阵A,编写一个MATLAB脚本,找出矩阵中的最大元素及其位置。

```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9];[maxValue, maxIndex] = max(A(:));[maxRow, maxCol] = ind2sub(size(A), maxIndex);disp(['最大元素为: ', num2str(maxValue), ',位于第',num2str(maxRow), '行,第', num2str(maxCol), '列。

']);```3. 编写一个MATLAB函数,实现一个向量元素的排序。

```matlabfunction sortedVector = sortVector(vector)sortedVector = sort(vector);end4. 给定两个向量X和Y,编写一个MATLAB脚本,计算这两个向量的点积。

```matlabX = [1, 2, 3];Y = [4, 5, 6];dotProduct = dot(X, Y);disp(['X和Y的点积为: ', num2str(dotProduct)]);```5. 编写一个MATLAB函数,计算一个矩阵的行列式。

```matlabfunction determinant = calculateDeterminant(matrix)determinant = det(matrix);end```6. 给定一个向量,编写一个MATLAB脚本,找出向量中的最大值和最小值。

使用MATLAB进行数值计算与仿真

使用MATLAB进行数值计算与仿真

使用MATLAB进行数值计算与仿真第一章:MATLAB的基本介绍1.1 MATLAB的概述MATLAB是一种数学软件工具,它可以用于解决各种数学问题,包括数值计算、模拟、数据分析和图形化处理等。

它提供了一个交互式环境,使得用户可以更加方便地进行数值计算和仿真。

1.2 MATLAB的功能特点MATLAB具有丰富的功能特点,包括强大的数值计算能力、灵活的编程语言、丰富的可视化工具和大量的应用工具箱等。

这些功能特点使得MATLAB成为了科研工作者、工程师和学生们进行数值计算和仿真的首选工具。

第二章:数值计算2.1 数值计算的基本原理数值计算是一种通过数值方法来解决数学问题的方法。

它通过进行近似计算来得到问题的解,而不是通过解析方法来得到准确解。

MATLAB提供了一系列的数值计算函数,可以帮助用户进行数值计算。

2.2 数值积分数值积分是数值计算的重要组成部分之一。

它可以通过近似方法来计算曲线或者曲面的面积。

在MATLAB中,可以使用quad 函数来进行数值积分的计算,用户只需要提供被积函数的表达式和积分上下限即可。

2.3 数值微分数值微分是另一种数值计算的重要内容。

它可以通过有限差分法来计算函数的导数值。

在MATLAB中,可以使用diff函数来计算函数的导数值。

用户只需要提供函数的表达式和自变量的取值即可。

第三章:仿真模拟3.1 仿真的基本概念仿真是指通过模拟实际情况来进行计算或者评估的过程。

它可以用于研究系统的行为、优化系统设计以及预测系统性能等。

MATLAB提供了一系列的仿真函数和工具箱,可以帮助用户进行系统的仿真和模拟。

3.2 连续系统仿真连续系统是一种以时间为连续变量的系统,比如控制系统和信号处理系统等。

在MATLAB中,可以使用sim函数来进行连续系统的仿真。

用户需要提供系统的数学模型和仿真的时间范围。

3.3 离散系统仿真离散系统是一种以时间为离散变量的系统,比如数字信号处理系统和离散事件系统等。

Matlab模拟与仿真技术解析

Matlab模拟与仿真技术解析

Matlab模拟与仿真技术解析引言在科学与工程领域中,模拟与仿真技术的发展对于研究、设计和优化项目的成功实施起着至关重要的作用。

而Matlab作为一种功能强大且广泛应用的数值分析软件,提供了丰富的模拟与仿真工具,使得工程师和科学家能够更加高效地开展研究工作。

本文将从Matlab模拟与仿真技术的原理、应用和发展趋势等方面进行解析,旨在为读者提供深入了解该技术的视角。

一、Matlab模拟与仿真技术的原理1.1 Matlab的基本原理Matlab是一种基于矩阵运算的高级计算机语言,其设计初衷是为了简化科学与工程领域的数值计算。

Matlab利用矩阵和数组的数据结构,实现了对复杂计算问题的简洁表达。

通过Matlab的编程接口和函数库,用户可以直接使用预定义的算法和工具箱,完成各种数值计算和仿真任务。

1.2 数学建模与仿真原理Matlab的模拟与仿真技术主要基于数学建模原理。

数学建模是将实际问题抽象为数学模型的过程,而仿真则是通过在计算机中运行这些模型,模拟实际系统的行为和性能。

Matlab通过提供丰富的工具和函数,使得用户能够构建各种数学模型,并基于这些模型进行仿真和分析。

二、Matlab模拟与仿真技术的应用2.1 电气与电子工程在电气与电子工程中,Matlab的模拟与仿真技术被广泛应用于电力系统、通信系统和电子电路等领域。

例如,在电力系统中,Matlab可以模拟电网的动态行为,评估系统的稳定性和可靠性。

在电子电路设计中,Matlab可以对电路进行仿真,验证其性能和参数。

2.2 机械工程在机械工程中,Matlab的模拟与仿真技术可以帮助工程师分析机械系统的运动和力学行为。

例如,通过建立模型和仿真,可以评估机械系统的动态性能和结构受力情况。

此外,Matlab还可以进行数值优化,帮助工程师提升设计效果。

2.3 环境工程在环境工程领域,Matlab的模拟与仿真技术可以用于模拟和分析环境系统的行为和影响。

例如,通过建立气象模型和大气污染模型,可以预测污染物的扩散规律和效应。

如何利用Matlab技术进行模拟实验

如何利用Matlab技术进行模拟实验

如何利用Matlab技术进行模拟实验引言:模拟实验是一种基于计算机仿真的方法,通过对系统的数学建模及仿真模拟,来了解和研究实际问题。

MATLAB作为一种功能强大的数学软件,提供了丰富的工具和函数,可以用于各种领域的模拟实验。

本文将介绍如何利用MATLAB技术进行模拟实验,并分析其优势和应用案例。

一、使用MATLAB进行数学建模数学建模是模拟实验的基础,通过数学模型的建立,可以将实际问题转化为数学表达式,进而进行仿真模拟分析。

在MATLAB中,有一些常用的数学建模工具和函数可以帮助我们完成这个过程。

1.符号计算工具包(Symbolic Math Toolbox):该工具包提供了符号化数学计算的功能,可以进行符号运算、求解方程、求导、积分等操作。

通过符号计算,可以将数学问题抽象为符号表达式,方便后续的建模和仿真。

2.方程求解器(Solver):MATLAB中内置了多种求解方程的算法和函数,可以快速准确地求解各种数学模型中的方程。

例如,可以使用fsolve函数来求解非线性方程组,使用ode45函数来求解常微分方程等。

3.优化工具箱(Optimization Toolbox):该工具箱提供了多种优化算法和函数,可以用于求解最优化问题。

例如,使用fmincon函数可以进行约束最优化,使用linprog函数可以进行线性规划等。

二、MATLAB的仿真建模功能MATLAB不仅可以进行数学建模,还提供了强大的仿真建模功能,可以根据建立的数学模型进行仿真实验,并得到模拟结果。

1.图形化建模界面(Simulink):MATLAB中的Simulink是一个图形化建模和仿真环境,可以用于构建动态系统的模型。

用户可以通过将各种功能块组合在一起,建立整个系统的模型。

Simulink支持各种类型的信号和系统,包括连续时间、离散时间、混合时间等。

通过Simulink可以直观地展示系统的动态行为,并进行仿真和分析。

2.系统动态仿真:MATLAB提供了一系列用于系统动态仿真的函数和工具箱。

Matlab中的数学建模与模拟方法

Matlab中的数学建模与模拟方法

Matlab中的数学建模与模拟方法Matlab(Matrix Laboratory)是一种广泛使用的数值计算与科学分析软件,它在数学建模与模拟方面具有独特的优势和功能。

本文将从数学建模与模拟的角度,探讨在Matlab中应用的方法与技巧。

一、数学建模的基本原理数学建模是将实际问题抽象为数学模型,并利用数学方法对其进行分析与求解的过程。

在Matlab中进行数学建模,首先需要明确问题的表达方式。

常见的数学建模方式包括:1. 方程模型:通过描述问题中的关系式、条件和约束,将问题转化为一组数学方程。

在Matlab中,可以利用符号计算工具箱来构建方程模型,并求解方程组,得到问题的解析解。

2. 统计模型:通过收集和分析实际数据,建立统计模型来描述数据背后的规律和关联。

在Matlab中,可以利用统计工具箱来进行数据分析和建模,包括回归分析、方差分析等。

3. 优化模型:通过设定目标函数和约束条件,寻找使目标函数取得最大(或最小)值的变量取值。

在Matlab中,可以利用优化工具箱来构建和求解优化模型,包括线性规划、非线性规划等。

二、数学建模的实例为了更好地理解Matlab中数学建模的方法,我们来看一个实际的案例:某公司生产一种产品,其成本与产量的关系为C=200+30x,售价与产量的关系为P=50-x,其中C表示成本,P表示售价,x表示产量。

现在公司希望确定一个最佳产量,使得利润最大化。

首先,我们可以建立一个利润模型,利润等于售价减去成本,即Profit=P-C。

在Matlab中,可以使用符号计算工具箱,通过定义符号变量和构建符号表达式,来实现利润模型的建立。

下一步,我们需要确定目标函数和约束条件。

在本例中,目标函数是利润的最大化,约束条件是产量不能为负数。

在Matlab中,可以使用优化工具箱的线性规划函数linprog来求解该最优化问题。

通过定义目标函数系数、约束条件和取值范围,利用linprog函数可以得到最佳产量和最大利润。

计算机仿真建模方法

计算机仿真建模方法
• 一般科学方法研究问题通常可分为四个步骤:
下一页 返回
6 .1计算机仿真及优缺点
• (1)对所研究的系统进行观测; • (2)在一些假设下拟定一个数学模型用来对观测结果加以解释; • (3)通过数学演算或逻辑推理.按所建立的数学模型预测实际系统的
运动状态.即求数学模型的解; • (4)通过试验来检验所建立数学模型的正确性. • 而计算机模拟与一般科学方法研究问题相比较.具有下列优势: • (1)当要观测的实际系统费用太大或观测完全不可能进行时.采用计
若不等式r≤ p不成立·则判定事件A不发生. • 按上述方法构造的模型显然是合理的.这是因为P(B)=P(R≤p)=p=
P(A)即事件A与事件B等概率.因此.在计算机上的一次模拟试验中.若 不等式r≤p成立.也即事件B发生.便可认为事件A在一次真实试验中也 发生. • 6. 4. 2离散型随机变量的模拟 • 设离散型随机变量'7具有分布列P(η= xi) =pi (i=1 .2...).所谓对离散型 随机变量η的模拟·其实质就是通过计算机上的模拟试验来获得η在真 实试验下的样本值U(由分布列知.U只能取(x1.x2…中的某一个).
• 1.逆变换法 • 此法是求分布函数的反函数而产生随机数的方法.由于分布函数F(x)
为定义在区间[ 0,1]上的单调递增函数.设R为区间[0,1]上的均匀随机 变量.令F(x)= R.只要求出反函数x= F’(R).则ζ= F’(R)为具有概率分布 函数F(x)的随机变量. • 2.变换法 • 变换法不需要求解分布函数的反函数.而是直接通过对[0,1]均匀分 布随机变量R的变换。
算机模拟是有效的处理方法.如航天器模拟.核反应模拟等; • (2)对实际系统来说.如果考虑各种实际因索.则很难用一组数学方程

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程在当今的学术和工程领域,数学建模竞赛越来越受到重视,而MATLAB 作为一款强大的数学计算和编程软件,在其中发挥着至关重要的作用。

如果你正在为数学建模竞赛做准备,那么掌握 MATLAB 的编程技巧将为你在竞赛中取得优异成绩提供有力的支持。

接下来,让我们一起开启 MATLAB 编程的实用教程之旅。

一、MATLAB 基础首先,我们来了解一下 MATLAB 的基本操作界面。

当你打开MATLAB 时,会看到一个命令窗口,这是我们输入命令和查看结果的地方。

变量是编程中的重要概念,在 MATLAB 中,变量无需事先声明类型,直接赋值即可使用。

例如,我们可以输入`x = 5` ,此时`x` 就被赋值为 5 。

MATLAB 支持多种数据类型,如数值型(包括整数和浮点数)、字符型、逻辑型等。

二、矩阵操作矩阵在数学建模中经常用到,MATLAB 对矩阵的操作非常方便。

可以通过直接输入元素来创建矩阵,比如`A = 1 2 3; 4 5 6` 就创建了一个 2 行 3 列的矩阵`A` 。

矩阵的运算也十分简单,加法、减法、乘法等都有相应的运算符。

例如,两个矩阵相加可以直接使用`A + B` 。

三、函数的使用MATLAB 拥有丰富的内置函数,大大提高了编程效率。

比如求矩阵的行列式可以使用`det()`函数,求矩阵的逆可以使用`inv()`函数。

我们还可以自己定义函数,语法如下:```matlabfunction output_args = function_name(input_args)%函数体end```四、绘图功能在分析数据和展示结果时,绘图是必不可少的。

MATLAB 能够绘制各种类型的图形,如折线图、柱状图、饼图等。

以绘制简单的折线图为例,使用`plot()`函数,如`plot(x,y)`,其中`x` 和`y` 是数据向量。

五、数值计算在数学建模中,常常需要进行数值计算,如求解方程、求积分等。

如何使用Matlab进行模拟与仿真

如何使用Matlab进行模拟与仿真

如何使用Matlab进行模拟与仿真使用Matlab进行模拟与仿真引言:现今,计算机软件在工程领域的应用越来越广泛。

特别是在模拟与仿真方面,计算机软件成为了工程师们不可或缺的工具。

在诸多的计算机软件中,Matlab无疑是一个备受赞誉的工具,它凭借其强大的数学计算和数据处理功能,成为了工程师们首选的软件之一。

在本文中,我们将探讨如何使用Matlab进行模拟与仿真。

一、Matlab的基础知识Matlab是一款专业的科学计算软件,它可以进行数值计算、矩阵运算、绘图和数据分析等多种功能。

在使用Matlab进行模拟与仿真之前,我们需要掌握一些基础知识。

首先,我们需要了解Matlab的环境。

Matlab的环境分为三个主要窗口:命令窗口、编辑器窗口和工作空间窗口。

命令窗口是用户与Matlab交互的地方,可以输入命令进行计算和操作;编辑器窗口用于编辑和保存Matlab脚本文件;工作空间窗口显示了当前的变量和数据。

其次,我们需要了解Matlab的基本语法。

Matlab的语法与其他编程语言有些不同,它使用矩阵和向量的形式进行计算。

我们可以使用Matlab提供的函数进行数学计算,也可以自定义函数来实现特定的功能。

最后,我们需要熟悉Matlab的常用函数和工具箱。

Matlab提供了丰富的函数和工具箱,用于各种不同类型的模拟和仿真任务。

例如,Simulink工具箱是用于系统仿真和控制设计的工具箱,Signal Processing工具箱是用于信号处理和滤波的工具箱。

二、使用Matlab进行模拟Matlab提供了强大的数值计算能力,可以用于各种数字系统的模拟。

在进行模拟之前,我们需要定义我们要模拟的系统方程或模型,并设置合适的参数。

在模拟之前,我们可以使用Matlab的绘图功能来可视化我们的系统或模型。

Matlab提供了各种绘图函数,可以绘制出系统的输入输出关系图、频率响应图等。

通过可视化,我们可以更好地理解系统的特性和行为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.数学模拟 在一定的假设条件下,运用数学运算模拟系统的运 行,称为数学模拟.现代的数学模拟都是在计算机上进 行的,称为计算机模拟.
计算机模拟可以反复进行,改变系统的结构和系数 都比较容易.
在实际问题中,面对一些带随机因素的复杂系统, 用分析方法建模常常需要作许多简化假设,与面临的实 际问题可能相差甚远,以致解答根本无法应用.这时, 计算机模拟几乎成为唯一的选择.
2. 符号假设
i:要模拟的打击次数; k1:没击中敌人火炮的射击总数; k2:击中敌人一门火炮的射击总数;k3:击中敌人两门火炮的射击总数. E:有效射击比率; E1:20次射击平均每次毁伤敌人的火炮数.
3. 模拟框图
初始化:i=0, k1=0, k2=0, k3=0
i=i+1 Y 硬币正面? N
1 1 1 0 0.25 2 2 2
P(A1) = P(j=0)P(A1∣j=0) + P(j=1)P(A1∣j=1)
1 1 1 1 = 0 2 2 3 6
P(A2) = P(j=0)P(A2∣j=0) + P(j=1)P(A2∣j=1)
1 1 1 1 = 0 2 2 6 12 1 1 0.33 E1 = 1 2 6 12
5.产生 m n 阶参数为 的泊松分布的随机数矩阵:
poissrnd ( ,m, n)
•设离散型随机变量X的所有可能取值为0,1,2,…,且取各个值 k 的概率为P( X k ) e , k 0,1, 2,, 其中 >0为常数,则称X服从参数为 的泊松分布. •泊松分布的期望值为
实验目的
学习计算机模拟的基本过程与方法.
实验内容
1.模拟的概念. 2.产生随机数的计算机命令. 3.计算机模拟实例.
4.实验作业.
计算机模拟实例
离散系统模拟实例: 排队问题
连续系统模拟实例: 追逐问题 用蒙特卡罗法解非线性规划问题
返回
模拟的概念
模拟就是利用物理的、数学的模型来类比、模仿现实 系统及其演变过程,以寻求过程规律的一种方法.
k!
•泊松分布在排队系统、产品检验、天文、物理等领域有 广泛应用.
指数分布与泊松分布的关系: •如相继两个事件出现的间隔时间服从参数为 的指数分布, 则在单位时间间隔内事件出现的次数服从参数为 的泊松分 布.即单位时间内该事件出现k次的概率为:
P( X k )
k e
k!
, k 0,1, 2, ,
6. 结果比较
理论计算和模拟结果的比较
分类 项目 模 理 拟 论 无效射击 0.65 0.75 有效射击 0.35 0.25 平均值 0.5 0.33
虽然模拟结果与理论计算不完全一致,但它却能更加真实地表 达实际战斗动态过程.
用蒙特卡罗方法进行计算机模拟的步骤:
[1] 设计一个逻辑框图,即模拟模型.这个框图要正确反映系统各部 分运行时的逻辑关系. [2] 模拟随机现象.可通过具有各种概率分布的模拟随机数来模拟随 机现象.
xi 1 xi cos d
yi 1 yi sin d
d ( xi 1 xi ) 2 ( y i 1 y i ) 2
ห้องสมุดไป่ตู้
3. 取足够小的 , d 时结束算法. 4. 对每一个点,连接它在各时刻的位置,即得所求运动轨迹.
To MATLAB(chase) 返回
返回
产生模拟随机数的计算机命令
在MATLAB软件中,可以直接产生满足各种分布的随机 数,命令如下:
1.产生m×n阶[a,b]上均匀分布U(a,b)的随机数矩阵: unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 当只知道一个随机变量取值在(a,b)内,但不知道 (也没理由假设)它在何处取值的概率大,在何处取值的 概率小,就只好用U(a,b)来模拟它. 2.产生m×n阶[0,1]均匀分布的随机数矩阵: rand (m, n)
分析:这是一个概率问题,可以通过理论计算得到相应的概 率和期望值.但这样只能给出作战行动的最终静态结果,而显 示不出作战行动的动态过程.
为了能显示我方20次射击的过程,现采用模拟的方式.
1. 问题分析
需要模拟出以下两件事: [1] 观察所对目标的指示正确与否
模拟试验有两种结果,每种结果出现的概率都是1/2.
模拟的基本思想是建立一个试验的模型,这个模型包 含所研究系统的主要特点.通过对这个实验模型的运行, 获得所要研究系统的必要信息.
模拟的方法
1.物理模拟:
对实际系统及其过程用功能相似的实物系统去模仿.
例如,军事演习、船艇实验、沙盘作业等.
物理模拟通常花费较大、周期较长,且在物理模 型上改变系统结构和系数都较困难.而且,许多系统 无法进行物理模拟,如社会经济系统、生态系统等.
因此,可用投掷1枚硬币的方式予以确定,当硬币出现正面时为 指示正确,反之为不正确. [2] 当指示正确时,我方火力单位的射击结果情况 模拟试验有三种结果:毁伤1门火炮的可能性为1/3(即2/6),毁 伤两门的可能性为1/6,没能毁伤敌火炮的可能性为1/2(即3/6). 这时可用投掷骰子的方法来确定: 如果出现的是1、2、3点:则认为没能击中敌人; 如果出现的是4、5点:则认为毁伤敌人一门火炮; 若出现的是6点:则认为毁伤敌人两门火炮.
产生一个[0,1]均匀分布的随机数:rand
例 1的计算机模拟
3.产生 m n 阶均值为 ,方差为 的正态分布的随机数矩阵: normrnd ( , ,m, n) 产生一个均值为 ,方差为 的正态分布的随机数: normrnd ( , )
•当研究对象视为大量相互独立的随机变量之和,且其中每 一种变量对总和的影响都很小时,可以认为该对象服从正态 分布. •机械加工得到的零件尺寸的偏差、射击命中点与目标的偏差、 各种测量误差、人的身高、体重等,都可近似看成服从正态 分布.
To MATLAB(chase)
返回
离散系统模拟实例: 排队问题
排队论主要研究随机服务系统的工作过程. 在排队系统中,服务对象的到达时间和服务时间都是随机的.排队 论通过对每个个别的随机服务现象的统计研究,找出反映这些随机现象 平均特性的规律,从而为设计新的服务系统和改进现有服务系统的工作 提供依据.
对于排队服务系统, 顾客常常注意排队的人是否太多, 等候的时间是否 长, 而服务员则关心他空闲的时间是否太短. 于是人们常用排队的长度、等 待的时间及服务利用率等指标来衡量系统的性能.
单服务员的排队模型:在某商店有一个售货员,顾客陆续来到,
计算程序:
v=1; dt=0.05; x=[0 0 10 10]; y=[0 10 10 0]; for i=1:4 plot(x(i),y(i),'.'),hold on end d=20; while(d>0.1) x(5)=x(1);y(5)=y(1); for i=1:4 d=sqrt((x(i+1)-x(i))^2+(y(i+1)-y(i))^2); x(i)=x(i)+v*dt*(x(i+1)-x(i))/d; y(i)=y(i)+v*dt*(y(i+1)-y(i))/d; plot(x(i),y(i),'.'),hold on end end
蒙特卡罗(Monte Carlo)方法是一种应用随机数来 进行计算机模拟的方法.此方法对研究的系统进行随机 观察抽样,通过对样本值的观察统计,求得所研究系统 的某些参数.
例1 在我方某前沿防守地域,敌人以一个炮排(含两 门火炮)为单位对我方进行干扰和破坏.为躲避我方 打击,敌方对其阵地进行了伪装并经常变换射击地 点. 经过长期观察发现,我方指挥所对敌方目标的指 示有50%是准确的,而我方火力单位,在指示正确 时,有1/3的射击效果能毁伤敌人一门火炮,有1/6 的射击效果能全部消灭敌人. 现在希望能用某种方式把我方将要对敌人实施 的20次打击结果显现出来,确定有效射击的比率及 毁伤敌方火炮的平均值.
To MATLAB(rnd)
4.产生 m n 阶期望值为 的指数分布的随机数矩阵:exprnd ( ,m, n )
e t x 0 •若连续型随机变量X的概率密度函数为 f ( x) x0 0 其中 >0为常数,则称X服从参数为 的指数分布.
•指数分布的期望值为
E=7/20=0.35
E1 0
13 4 3 =0.5 1 2 20 20 20
5. 理论计算
0 设: j 1 观察所对目标指示不正确 观察所对目标指示正确
A0:射中敌方火炮的事件;A1:射中敌方 1 门火炮的事件; A2:射中敌方两门火炮的事件. 则由全概率公式: E = P(A0) = P(j=0)P(A0∣j=0) + P(j=1)P(A0∣j=1) =
1,2,3
骰子点数?
4,5 6
k1=k1+1
k2=k2+1
k3=k3+1 Y
k1=k1+1
i<20? N
(k2 k3 ) E= 20
k2 k3 k1 E1= 0× +1 × +2 × 20 20 20
停止
4. 模拟结果
试验 序号 1 2 3 4 5 6 7 8 9 10 投硬币 结 果 正 正 反 正 正 反 正 正 反 反 ∨ ∨ ∨ ∨ ∨ ∨ ∨ 3 6 ∨ ∨ 指示 正确 ∨ ∨ ∨ 1 2 指 示 不正确 掷骰子 结 果 4 4 ∨ ∨ ∨ ∨ ∨ ∨ 消灭敌人火炮数 0 1 ∨ ∨ 2
A
O
B
D
C
求解过程:
1. 建立平面直角坐标系: A(x1,y1), B(x2,y2), C(x3,y3), D(x4,y4). 2. 取时间间隔为Δ t,计算每一点在各个时刻的坐标.
相关文档
最新文档