二次张拉低回缩钢绞线竖向预应力锚固系统(1)参考word

二次张拉低回缩钢绞线竖向预应力锚固系统(1)参考word
二次张拉低回缩钢绞线竖向预应力锚固系统(1)参考word

二次张拉低回缩钢绞线竖向预应力锚固系统

施工、验收要点

二次张拉钢绞线技术应用于

箱梁腹板竖向预应力的标准化研究课题组

二○○九年八月二日

图1-02

固定端安装进浆聚乙烯半硬管

图1-03

二次张拉竖向预应力安装示意图

中心线与盒体四周对称

二次张拉低回缩钢绞线竖向预应力锚固系统

施工、验收要点

二次张拉低回缩钢绞线竖向预应力锚固系统是一种新型的预应力筋锚固体系,它不同于传统的精轧螺纹钢筋YGM锚固体系,也不同于夹片式钢绞线锚固体系,具有其自身的特点,在施工、验收中应掌握如下要点,才能确保发挥这一新型锚固体系的优势,从而确保竖向预应力(含中短预应力束)永存应力稳定可靠,孔道压浆密实饱满,提升桥梁的安全性能。

一、预应力筋制作、安装

1、正确安装P锚挤压套和弹簧在钢绞线上的位置,确保弹簧总长度的90%以上在挤压套内。

2、P锚挤压安装油压应大于或等于25Mpa(当使用YJ40挤压机时,应大于或等于30Mpa)。

3、每500套P锚应抽样3套在现场按施工同一工艺挤压,用标定合格千斤顶做拉断试验,钢绞线拉断,钢绞线与挤压套应无滑动、滑脱现象。

4、每一根钢绞线挤压安装P锚时,都应有原始记录。

5、安装固定端应注意安装压板。(如图1-01)

6、安装进浆钢管与塑料管连接部位应用铁丝或管

卡固定(如图1-01)

7.固定端波纹管口应用水泥砂浆(或环氧砂浆或

海棉)堵严实,防止进浆。

8、张拉端槽口穴模与垫板应用螺栓联接,穴模底

板与垫板之间应无间隙。(如图1-03)

图1-01 固定端安装示意图

图1-03

二次张拉竖向预应力安装示意图

图2-01

第一次张拉示意图

9、检查张拉端槽口穴模固定螺栓孔是否对称(图1-04),如发现不对称情况应坚决返工。

10、安装张拉端槽口穴模时,穴模底板应与桥面基本平行。

11、进浆塑料管宜采用聚乙烯钢丝管或聚乙烯半硬管(图1-01;图1-02)。

12、浇筑混凝土后,混凝土终凝2~5小时内拆除张控端槽口穴模。 13.张拉端槽口拆模后,应及时采取防护措施,防止混凝土以及杂物进入槽口内。 二、施加预应力

1、第一次张拉施工按常规钢绞线夹片锚固施工方法施工,每束3根(含3根)以下的钢绞线束可单根张拉。

2、第二次张拉应在第一次张拉放张后2~16小时内进行,张拉时应采用专用千斤顶和张拉连接装置,将整束张拉至设计要求应力值。

3、张拉施工工序

(1)第一次张拉施工宜为

0→0.1σcon →0.2σcon →1.03σcon 锚

(2)第二次张拉施工宜为

0→0.5σcon →1.03σcon 拧紧支承螺母→放张

(3)检验测量第二次张拉放张后伸长值是否符合要求。

(4)采用双控,以张拉力为主的方法,用 伸长值进行校验,(a)第一次张拉实测伸长值与理论伸长值之差应控制在±6%以内,(b)第二次张拉实测伸长值与理论伸长值之差应控制在±10%以内,c 第二次张拉放张后实测伸长值与理论伸长值应控制在

图2-02

第一次张拉放张后示意图

持荷2min 持荷2min

±10%以内。

4、张拉放张回缩值应控制在

a、第一次张拉锚固回缩量≤6 mm。

b、第二次张拉锚固回缩量≤1 mm。

5、张拉施工

①第一次张拉施工

a、第一次张拉时支承螺母应不受力,支承螺母与垫板之间有较小间隙(图2-02)

b、施工工序:

0→0.1σcon→0.2σcon→1.03σcon锚固。

c、应测量0.1σcon与1.03σcon工具夹片外露差值。

d、计算实测伸长值时应减去工具夹片外露差值。

e、安装锚具前,应清理干净槽口内杂物。

②第二次张拉施工

a、第二次张拉时间应符合设计规定要求,当设计无规定时,宜在第一次张拉完成后2~16小时内进行。

b、第二次张拉前准备

(a) 清除干净张拉槽口内杂物。

(b) 安装张拉连接套(图2-03)

(c) 安装张拉杆(图2-04)

(d) 安装张拉支架(图2-05)

图2-03

安装张拉连接套后

图2-04

安装张拉连接杆后

图2-05

安装张拉支架后持荷2min

(e) 安装千斤顶及张拉杆连接螺母(图2-06)

(f) 消除支承螺母与垫板之间间隙(图2-07)

c、进行第二次张拉

(a) 第二次张拉施工工序0→0.5σcon→1.03σcon拧紧支承螺母→锚固

(b) 第二次张拉至1.03σcon时,支承螺母应离开垫板6~12mm间隙(图2-08)

(c) 拧紧支承螺母后,支承螺母与垫板应贴紧,无间隙(图2-09)

(d) 放张后支承螺母与垫板之间应无间隙(图2-10)

d、第二次张拉放张后拆除张拉杆系统及千斤顶

图2-06

安装千斤顶和拉杆连接螺母后

图2-07

开始第二次张拉初始状态

已消除支承螺母和垫板之间的间隙

图2-08

第二次张拉终,支承螺母离

开垫板产生6-12mm的间隙

图2-09

二次张拉旋紧支承螺母锚固后

图2-10

二次张拉放张、回油后

图2-11

二次张拉拆除拉杆连接螺母后

持荷2min

(a) 拆除连接杆连接螺母(图2-11) (b) 拆除千斤顶(图2-12) x

(c) 拆除张拉支架(图2-13) (d) 拆除张拉杆(图2-14)

(e) 拆除张拉连接套(图2-15) e 、校验第二次张拉放张后实测伸长值与理论伸长值误差

(a ) 测量锚杯与支承螺母相对位

置差△L H (图2-16)

(b ) 测量锚杯,支承螺母高度 (c ) 按下式计算第二次张拉放张

后实测伸长值:

△ L 放H =△L H -(H 1-H 2)+1 式中:H 1—锚杯高度(mm )

H 2—支承螺母高度(mm ) △ L 放II —第二次张拉放张后实际伸长值(mm ) △ L H —第二次张拉放张后锚杯与支承螺母相对位置差值(mm )

(d ) 将△L 放II 与第二次张拉理论伸

图2-12

二次张拉拆除千斤顶后 图2-13

二次张拉拆除张拉支架后 图2-14

二次张拉拆除张拉杆后

图2-15 完成二次张拉全过程后

长值△

L II进行比较,误差应在±10%

之内。

三、孔道压浆

①孔道压浆应从孔道下方压入,孔道上方排出(图3-01)

②进浆塑料管与压浆机出浆管宜采用专用接头、管卡、阀门、活接头连接(图3-02;图3-06)

③出浆口应设置阀门(图3-03)

④进浆口阀门,出浆口阀门可选用闸阀或球阀(图3-04;图3-05)

⑤进浆塑料管与压浆机出浆管连接应牢靠,能确保在受压

0.3-0.7Mpa内不滑脱(图3-06)。

⑥压浆完毕,应先关闭进浆口阀门后,才拆卸压浆机出浆管。

⑦孔道内水泥浆体初凝之后,方可拆除进浆口阀门。同时,也应及时拆除阀门进行清洗重复使用。

四、验收

1、“二次张拉低回缩钢绞线竖向预应力锚固系统”施工验收应在桥梁工程验收前适当时期进行。

图3-01

二次张拉孔道压浆进、

出浆口连接状态示意图

图3-02

进浆管连接部件示意图

图3-03

出浆口连接部件示意图

图3-04

进浆管闸阀连接示意图

图3-05

进浆管球阀连接示意图

图3-06

聚乙烯钢丝进浆管连接示意图

进浆

2、验收由监理主持,施工单位相关人员参与并编制相关的验收文件。

3、验收分为工序验收和竖向预应力分项工程验收。

4、工序施工验收

工序施工验收按每个施工节段为一单元,验收如下项目,并按规定填写验收记录。

① P锚钢绞线连接安装施工验收

a、查验P锚、钢绞线进场复验报告。

b、查验P锚是否符合要求。

c、查验现场工艺安装力筋拉断试验记录和挤压压力参数记录,并核实其记录与实际试验状况的一致性,判断是否符合规定要求。

d、抽查弹簧外露长度是否符合规定,否则,应查明原因或责令返工。

e、填写施工验收记录。

②钢绞线力筋,锚具、管道,压浆管安装施工验收

a、查验锚具进场复验报告。

b、检查力筋、锚具、波纹管和塑料进浆管安装符合要求的程度。特别要查验塑料进浆管是否存在压扁、急转弯折堵内孔现象,否则,应责令返工后重新验收。

c、填写验收记录。

③力筋张拉施工验收

a、查验张拉机具设备校验报告,核对校验报告是否在规定有效期限内。

b、查验第一次张拉记录、第二次张拉记录,核实其记录与实际施工状况的一致性。

c、随机抽查张拉端锚具在第二次张拉放张锚固后锚杯与支承螺母的相对位置△L H ,按图2-16方法测量,并填写记录。

d、按前述二次张拉放后实测伸长值计算公式,计算第二次张拉放张后实际伸长值△L放II ,并与第二次张拉理论伸长值△L II比较,误差应在±10%之内,如发现异常,则应对此节段所有力筋进行检查,发现不符合要求的,应责令返工重新进行第二次张拉。

返工后的预应力束应重新进行随机抽查,合格后方可通过验收。

e、有必要时,随机抽查一束或多束,按第二次张拉施工工艺进行整束张拉(如图2-09),旋紧支承螺母,测量△L放Ⅱ,校验与理论伸长值误差是否在±10%之内。

f、填写验收记录

④孔道压浆施工验收

a、查验压浆试件试验记录。

b、随机抽查张拉端垫板排气(出浆)口处在水泥浆凝固后的密实和饱满情况以及无气孔等缺陷。

c、填写验收记录。

5、分项工程验收

在对“低回缩竖向锚固系统”分项工程进行验收时,应提供下列文件和记录;

a、文件

①设计变更文件;

②钢绞线出厂质量合格证件、出厂质量报告和进场复验报告;

③锚具出厂质量合格证件,出厂质量报告和进场复验报告;

④管道出厂质量合格证件,出厂质量报告;

⑤其他文件。

b、记录

① P锚、钢绞线连接安装施工验收记录;

②钢绞线力筋、锚具、管道、压浆管安装施工验收记录;

③力筋张拉施工验收记录;

④孔道压浆施工验收记录;

⑤力筋第一次张拉记录;

⑥力筋第二次张拉记录;

⑦孔道压浆记录;

⑧封锚记录;

⑨其他记录。

“低回缩竖向锚固系统”分项工程的施工验收,除查验有关文件、记录是否符合规范要求外,尚应对有疑点的工序施工验收进行复查,对封锚后的外观进行抽查。

当提供的文件、记录及抽查结果均符合要求和相关国标要求时,即可通过分项工程的施工验收。

2009年8月2日(注:可编辑下载,若有不当之处,请指正,谢谢!)

二次张拉低回缩钢绞线竖向预应力锚固系统

二次张拉低回缩钢绞线竖向预应力锚固系统 施工、验收要点

二次张拉钢绞线技术应用于 箱梁腹板竖向预应力的标准化研究课题组 二○○九年八月二日

图1-02 固定端安装进浆聚乙烯半硬管 图1-03 二次张拉竖向预应力安装示意图 图1-03 二次张拉竖向预应力安装示意图 中心线与盒体四周对称 二次张拉低回缩钢绞线竖向预应力锚固系统 施工、验收要点 二次张拉低回缩钢绞线竖向预应力锚固系统是一种新型的预应力筋锚固体系,它不同于传统的精轧螺纹钢筋YGM锚固体系,也不同于夹片式钢绞线锚固体系,具有其自身的特点,在施工、验收中应掌握如下要点,才能确保发挥这一新型锚固体系的优势,从而确保竖向预应力(含中短预应力束)永存应力稳定可靠,孔道压浆密实饱满,提升桥梁的安全性能。 一、预应力筋制作、安装 1、正确安装P锚挤压套和弹簧在钢绞线上的位置,确保弹簧总长度的90%以上在挤压套内。 2、P锚挤压安装油压应大于或等于25Mpa(当使用YJ40挤压机时,应大于或等于30Mpa)。 3、每500套P锚应抽样3套在现场按施工同一工艺挤压,用标定合格千斤顶做拉断试验,钢绞线拉断,钢绞线与挤压套应无滑动、滑脱现象。 4、每一根钢绞线挤压安装P锚时,都应有原始记录。 5、安装固定端应注意安装压板。(如图1-01) 6、安装进浆钢管与塑料管连接部位应用铁丝或管 卡固定(如图1-01) 7.固定端波纹管口应用水泥砂浆(或环氧砂浆或 海棉)堵严实,防止进浆。 8、张拉端槽口穴模与垫板应用螺栓联接,穴模底 板与垫板之间应无间隙。(如图1-03) 图1-01 固定端安装示意图

图2-01 第一次张拉示意图 9、检查张拉端槽口穴模固定螺栓孔是否对称(图1-04),如发现不对称情况应坚决返工。 10、安装张拉端槽口穴模时,穴模底板应与桥面基本平行。 11、进浆塑料管宜采用聚乙烯钢丝管或聚乙烯半硬管(图1-01;图1-02)。 12、浇筑混凝土后,混凝土终凝2~5小时内拆除张控端槽口穴模。 13.张拉端槽口拆模后,应及时采取防护措施,防止混凝土以及杂物进入槽口内。 二、施加预应力 1、第一次张拉施工按常规钢绞线夹片锚固施工方法施工,每束3根(含3根)以下的钢绞线束可单根张拉。 2、第二次张拉应在第一次张拉放张后2~16小时内进行,张拉时应采用专用千斤顶和张拉连接装置,将整束张拉至设计要求应力值。 3、张拉施工工序 (1)第一次张拉施工宜为 0→0.1σcon →0.2σcon →1.03σcon 锚 固 (2)第二次张拉施工宜为 0→0.5σcon →1.03σcon 拧紧支承螺母→放张 (3)检验测量第二次张拉放张后伸长值是否符合要求。 (4)采用双控,以张拉力为主的方法,用 伸长值进行校验,(a)第一次张拉实测伸长值与理论伸长值之差应控制在±6%以内,(b)第二次张拉实测伸长值与理论伸长值之差应控制在±10%以内,c 第二次张拉放张后实测伸长值与理论伸长值应控制在±10%以内。 图2-02 第一次张拉放张后示意图 持荷2min 持荷2min

预应力张拉伸长量计算

后张法预应力张拉伸长 量计算与测定分析 一、理论伸长量计算 1、理论公式: (1)根据《公路桥涵施工技术规范》 (JTJ041—2000),钢绞线理论伸长量计算公式如下: P P P E A L P L =? ① ()()μθ μθ+-=+-kx e P P kx P 1 ② 式中:P P ——预应力筋的平均张拉力 (N ),直线筋取张拉端 的拉力,曲线筋计算方 法见②式; L ——预应力筋的长度; A P ——预应力筋的截面面积 (mm 2 ); E P ——预应力筋的弹性模量 (N/mm 2 ); P ——预应力筋张拉端的张拉 力(N ); x ——从张拉端至计算截面的孔 道长度(m); θ——从张拉端至计算截面的孔 道部分切线的夹角之和(rad); k ——孔道每米局部偏差对摩擦的影响系数; μ——预应力筋与孔道壁的摩擦 系数。 (2)计算理论伸长值,要先确定预应 力筋的工作长度和线型段落的划分。 后张法钢绞线型既有直线又有曲线, 由于不同线型区间的平均应力会有很 大差异,因此需要分段计算伸长值, 然后累加。于是上式中: i L L L L ?+?+?=?Λ21 P P i p i E A L P L i =? P p 值不是定值,而是克服了从张拉端至 第i —1段的摩阻力后的剩余有效拉 力值,所以表示成“Pp i ”更为合适; (3)计算时也可采取应力计算方法, 各点应力公式如下:

()()()() 111--+--?=i i kx i i e μθσσ 各点平均应力公式为: ()()i i kx i pi kx e i i μθσσμθ+-= +-1 各点伸长值计算公式为: p i p i E x L i σ=? 2、根据规范中理论伸长值的公式,举例说明计算方法: 某后张预应力连续箱梁,其中4*25米联内既有单端张拉,也有两端 张拉。箱梁中预应力钢束采用高强度低松弛钢绞线(Φ),极限抗拉强度f p =1860Mpa ,锚下控制应力б0==1395Mpa 。K 取m ,μ=。 (1)单端张拉预应力筋理论伸长值计算: 预应力筋分布图(1) 伸长值计算如下表:

预应力钢绞线伸长量计算

预应力钢绞线实际伸长量计算方法 1、以钢绞线在预应力管道内的长度计算理论伸长量ΔL理为基准时: (1)当采用“行程法”测量伸长量: L实=[(L100%-L10%)+(L20%-L10%)] –ΔL工作长度-ΔL工具锚–ΔL工作锚⑺ L实——钢绞线实际伸长量; L20%——张拉应力为20%б0时,梁段两端千斤顶活塞行程之和;L100%——张拉应力为100%б0时,梁段两端千斤顶活塞行程之和; L10%——张拉应力为10%б0时(即初张应力,规范推荐可取10%-25%),梁段两端千斤顶活塞行程之和;ΔL工作长度——梁段两端千斤顶内钢绞线的无阻伸长量;取理论计算值; ΔL工作锚——梁段两端锚具压缩及钢绞线回缩量;取工艺试验实测值; ΔL工具锚——梁段两端锚具压缩及钢绞线回缩量;取实测值;(2)当采用“直接法”测量伸长量: L实=[(L100%-L10%)+(L20%-L10%)] –ΔL工作长度–ΔL 工作锚 控制应力*钢绞线截面积*钢绞线的根数=张拉力 根据千斤顶和油表的检测报告中的校正方程计算出油表读数即可。 注意:有的需要超张拉来抵消预应力损失,在控制应力中乘以系

数即可。 预应力钢绞线伸长量计算方法 预应力钢绞线张拉理论伸长量计算公式 ΔL=(PpL)/(ApEp) 式中:Pp――预应力筋的平均张拉力(N) L――预应力筋的长度(mm) Ap――预应力筋的截面面积(mm2) Ep――预应力筋的弹性模量(N/mm2) Pp=P(1-e-(kx+μθ))/(kx+μθ) 式中:Pp――预应力筋平均张拉力(N) P――预应力筋张拉端的张拉力(N) x――从张拉端至计算截面的孔道长度(m) θ――从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k――孔道每米局部偏差对摩擦的影响系数 μ――预应力筋与孔道壁的摩擦系数 1、预应力钢绞线张拉实际伸长量ΔL,应建立在初应力后开台量测,测得伸长值还应加上初应力的推算值。 ΔL=ΔL1+ΔL2 式中ΔL1从初应力到最大张拉力间的最大伸长值 ΔL2初应力以下的推算值 关于初应力的取值一般可取张拉控制应力的10—25%。初应力钢筋的实际伸长值应以实际伸长值与实测应力关系线为依据,

钢绞线理论伸长值怎样计算

钢绞线理论伸长值计算时遇到问题 钢绞线理论伸长值计算时是用设计的锚下控制应力还是用实际的张拉控制应力,也就是计算理论伸长值时考不考虑锚口损失应力。经验者请指教,谢谢。 Fle_Flo 2008-8-31 20:57:40 预应力锚索实测伸长量探讨李永宝 隧道网https://www.360docs.net/doc/cf1488781.html,(2006-11-1) 来源:岩土工程界 摘要:通过对预应力锚索张拉工艺的阐述和分析,总结引起预应力锚索实测伸长量偏差的主要因素。 关键词:预应力锚索伸长量 预廊力铺索加固技术已广泛应用于建筑结构物加固边坡治理、大型地下洞室及深基坑支护等工程。由于受施工没备、场地环境以及人员操作等因豢的影响,作为预应力锚索评价指标之一的张拉实测伸长量,往往与理论伸长量有较大偏差。 1 预应力锚索张拉工艺 (1)张拉设备装配方法:张拉设备装配如图1。 (2)张拉操作程序:张拉时,油泵开启,张拉缸进油,千斤顶活塞推动工具锚板,工具锚板同时带动工具夹片,工具夹片在工具锚板上锥型锚孔的作用下收缩并一苦紧钢绞线,此时工具锚板、工具夹片、钢绞线跟于斤顶活塞同时位移。在此过程中,工作夹片受摩擦力的作用跟钢绞线同时移动,但其受限位饭的限制位移很小。当需要倒顶或达到终应力时,油泵回油,钢绞线在自身弹性作用下带动工作夹片回缩,工作夹片与工作锚板上锥型锚孔相互作用将钢绞线锚定。完成一个循环预应力的施加。预应力锚索张拉要分级进行,逐级加载,每级荷载之问稳定时间小少于2min。一般按下列加载顺序进行操作:式中m—超张拉系数。 2 理论伸长量的计算方法 锚索理论弹性伸长量按下列公式汁算:伸长量△L=NL[1 - e - (kl+θμ)]/EA(KL+0) 式中:Ⅳ—施加荷载(kN);£—自由段长(m):θ—自由段孔道曲线部分切线夹角之和(rad);K—孔道偏差影响系数;肛—钢绞线对孔道的摩擦系数;E—钢绞线弹性模量(kPa);A—钢绞线截面积/mm2。 3 工程实例实测伸长量偏差分析 某高速公路路堑防护工程,设汁锚索孔径ф130mm,预应力锚索采用7束ф15.24nlHl的钢绞线编制,锚长32.0~37.0m,锚固段9.0m,设计锚固力为1000kN,采用OVM锚具。张拉采用YCW250A型千斤顶。千斤顶主要技术参数见表1。 1.jpg 施工采用油压表控制应力读数,张拉前将油压表和千斤顶进行配套标定,并根据油压表一千斤顶配套标定曲线,将油压表读数换算成张拉应力,从而消除了千斤顶内摩阻的影响。张拉按6级进行,超张拉系数为1.1。现以Ms~10号锚索(长37.0m)为例探讨,张拉成果见表2。 在预应力施工时,实测伸长量一般是用钢直尺量得的千斤顶活塞行程。由表2和图2可以清楚地看出,千斤顶活塞行程与理论伸长量之间最终偏差为34mm,如果将千斤顶活塞行程直接作为实测伸长量,显然不符合相关规范规定,应进行修正。根据张拉成果记录表绘制锚索张拉Q—S曲线图(图2)。 2.jpg

二次张拉操作规则(试行)

二次张拉低回缩钢绞线竖向预应力锚固系统施工、验收操作规则 ********项目部 2011年3月

目录 1、术语和符号 (2) 1.1 术语 (2) 1.2 符号 (3) 1.3 术语简称 (5) 2、材料及锚具系统 (6) 2.1 混凝土及钢筋 (6) 2.2 锚具系统 (6) 2.3 管道 (7) 3、施工 (8) 3.1 一般规定 (9) 3.2 预应力钢筋材料、锚具、管道进场验收 (9) 3.3 预应力钢筋的制作、安装 (9) 3.4 混凝土的浇筑 (10) 3.5 施加预应力 (11) 3.6 孔道压浆 (15) 3.7 封锚 (15) 4、验收 (16) 4.1 一般规定 (16) 4.2 工序施工验收 (16) 4.3 分项工程施工验收 (17) 附录A 二次张拉低回缩钢绞线竖向预应力锚固系统的锚具构造尺寸 (19) 附录B 张拉端锚具槽口及穴模参考尺寸 (20) 附录C 张拉端锚具槽口护罩和固定塞的构造尺寸 (21) 附录D 二次张拉专用千斤顶、张拉连接装置构造及参考尺寸 (22) 附录E 竖向预应力工程施工验收记录表 (23) 附录F 竖向预应力筋张拉记录表 (25) 附录G 钢绞线与固定端P锚安装记录表 (27)

1 术语、符号 1.1术语 1.1.1二次张拉低回缩钢绞线竖向预应力锚固系统 是一种由固定端“P型锚具系统”、钢绞线力筋、管道系统和张拉端“低回缩二次张拉锚具”等几个部分组合,沿垂直方向布置于预应力混凝土箱梁桥腹板内,并经二次张拉施工实现其力筋低回缩锚固的预应力锚固体系。 1.1.2二次张拉 对同一根钢绞线预应力束完成第一次张拉→放张→夹片锚固后,第二次将锚杯整体张拉→旋紧支承螺母→放张锚固力筋,以弥补第一次放张锚固回缩损失的预应力施工工艺。 1.1.3竖向预应力锚固系统 是一种由固定端锚具、预应力钢筋、张拉端锚具等部件组合,沿垂直方向布置于预应力混凝土内,经张拉施工实现其力筋锚固的预应力锚固体系。 1.1.4预应力筋 在预应力结构中用于建立预加应力的单根或成束的预应力钢丝、钢绞线或钢筋。 1.1.5锚具 在后张法预应力混凝土结构或构件中,为保持预应力筋的拉力并将其传递到混凝土上所用的永久性锚固装置。 1.1.6低回缩二次张拉锚具 是一种第一次张拉钢绞线放张锚固后,再实施第二次张拉使锚杯离开垫板,然后旋扭支承螺母来补偿锚杯下端面与垫板之间间隙,达到弥补第一次张拉放张回缩损失的新型锚具。 1.1.7锚杯 它是低回缩二次张拉锚具的关键零件。锚杯圆柱(或圆台)的内侧设置夹片座套,外周设置螺纹,并与支承螺母内螺纹旋接。 1.1.8 支承螺母 它是低回缩二次张拉锚具的另一个关键零件。其外周设有若干槽口便于转动螺母,其内螺纹与锚杯外螺纹旋接。 1.1.9 预应力筋-锚具组装件 单根或成束状态的预应力筋与安装在其端部的锚具组合装配而成的受力单元。

二次张拉_secret

xx特大桥竖向预应力二次张拉质量控制 一、工程概况 xx市轨道交通三号线xx特大桥总长352m,桥型方案为(96+160+96)m的三跨两向预应力砼连续刚构,采用单箱单室断面。箱顶板宽9.1m,底板宽5.6m,箱梁跨中及边跨现浇段梁高3.7m,0号块梁段高9.2m,其间按二次抛物线变化。全桥各梁段竖向预应力钢筋采用Фs15.2-3钢绞线,设计张拉吨位583KN 。针对国内桥梁短束预应力筋施工普遍存在应力损失大(应力损失可达20%~30%),钢材利用率低的现象,本桥采用已于2004年3月4号申请国家专利的YHM15-3G 型二次张拉预应力锚具(国家专利号:200420035230.3)。为加快新材料、新工艺的掌握,总结相关施工工法,本次QC活动主要以竖向预应力二次张拉质量控制为主。 二、QC小组情况 经项目领导研究讨论,项目部成立了以项目总工为组长,项目副总工为副组长以及由技术人员、管理人员、施工员组成的三级配置科技攻关型小组。QC小组由10人组成,平均年龄33岁。小组成员概况详见表-1。 QC小组概况一览表表1 QC小组成立后针对该项专利技术结合我部现场实际积极展开如下活动: 1、聘请材料供应商湘潭欧之姆预应力锚具有限公司技术专家现场讲解锚具结构、锚具安装及张拉施工技术要点。 2、组织QC小组成员学习YHM-3G型锚具设计图及二次预应力张拉施工图。参阅交通部、铁道部、xx轨道公司下发相关施工及验收规范,结合行业内发表的参考论文、文献制定我部竖向预应力二次张拉质量验收标准并报监理、业主审批。(由于采用二次张拉新型锚具,国内目前尚无

统一的质量验收标准) 3、结合业主审批的二次预应力张拉质量验收标准,QC小组编制了具体的《xx特大桥箱梁竖向预应力二次张拉作业指导书》等指导性文件。 4、组织QC小组成员进行全面质量管理教育,针对编制的作业指导书和质量验收标准进行工前专业技术培训和工中结合实践的全面管理培训,并通过书面考核检查学习情况。 5、为确保工程的质量及施工安全我们成立了科研小组,对施工 中关键技术进行研究;同时加强了现场调查和数据收集,并及时进行数据分析,定期召开QC小组成员会议,进行现状分析。 6、明确组内分工,建立规章制度,加强QC小组成员的管理。 三、选题理由 1、中短束竖向预应力二次张拉是近年来国家建设部重点推广的项目,目前国内外介绍该工法的相关文献较少。该工艺结合了预应力张拉施工中精轧螺纹钢筋安全和钢绞线经济的特点,有效解决了中短束预应力张拉损失过大的难题,在国内外预应力张拉施工中处于领先水平。 2、xx特大桥是xx市轨道交通三号线的控制性节点工程,创造了三个世界第一(跨越xx、轻轨二号线、牛滴路、北滨路,施工地形复杂;轨道梁桥主跨达160m;曲线半径仅311m)。梁部竖向预应力二次张拉作为该桥的控制性关键工序又是重中之重。保质保量完成施工任务填补了公司在预应力二次张拉技术领域的空白,同时也响应了公司“立足轻轨、占领xx、面向全国”的战略思路。 3、如果说利润和质量是企业的血脉和生命,那安全就是二者延续的保证,以上三者是具有统一性和矛盾性的一个有机结合体。预应力二次张拉通过新材料、新工艺将三者有机的结合起来,在提高质量和安全的基础上降低造价充分发挥了其统一性的一面。 4、通过本次QC活动,培养了一批技术骨干,为相关工法的总结提供了宝贵的第一手资料,同时也为公司在以后的同类施工任务中积累了施工实践经验。 综合以上因素,经过小组全体组员讨论确定以“xx特大桥竖向预应力二次张拉质量控制”为本次活动的研究课题,开展QC攻关活动。 四、活动目标及可行性分析 1、活动目标 ①、结合铁道部、交通部颁布相关验收标准和业主、监理下发质量要求,经QC小组成员集体讨论,每百束不合格点及其偏差值控制计划见表2 每百束不合格点控制表表2 ②、保证无施工安全事故发生;

预应力钢绞线规范

预应力钢绞线规范 预应力钢绞线规范 预应力砼连续梁结构整体性好、大跨度,减少桥面伸缩缝个数,在高速公路和城市快速路工程中得到广泛应用。本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。 一、预应力钢绞线安装 预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,张拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规范和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。沈阳市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人

工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),张拉过程中经常听到内部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规范推荐值。设计单位对结构进行重新验算,最后确定在保证张拉力的情况下,伸长值误差保证在12%以内,无疑降低了结构安全系数。 二、预应力钢绞线张拉 1、张拉控制应力与伸长值 张拉控制应力能否达到设计规定值直接影响预应力效果,因此张拉控制应力是张拉中质量控制的重点,张拉控制应力必须达到设计规定值,但是不能超过设计规定的最大张拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法张拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规范》(JTJ041-2000)中理论伸长值的计算有个正确理解:①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况下,孔道局部偏差和预应力筋与孔道壁间的摩擦系数对理论伸长值大小的影响不大,均可按照规范取中值。②钢绞线的弹性模量Ep取

预应力钢绞线参数及计算公式汇总

预应力钢绞线参数及计算公式汇总 参数:钢绞线抗拉强度标准值fpk=1860Mpa,弹性模量:Ep=1.95*105Mpa,松弛率为2.5%,公称直径¢s=15.2mm,钢绞线面积A=140mm2,管道采用预埋金属波纹管成孔且壁厚不小于0.3mm。预应力筋平均张拉力按下式计算: p p=(p(1-e-(kx+μ?)))/kx+μ? 式中:p p---预应力筋平均张力(N)。 p-----预应力筋张拉端的张拉力(N)。 X-----从张拉端至计算截面的孔道长度(m)。 ?-----从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。 K-----孔道每米局部偏差对摩擦的影响系数,参见附表G-8。 μ-----预应力筋与孔道比壁的摩擦系数,参见附表G-8。 注:e=2.71828,当预应力筋为直线时p p= p。 预应力筋的理论伸长值△L(mm)可按下式计算; △L =(p p *L)/A p*Ep 式中:p p-----预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见上式。 L-------预应力筋的长度(mm)。

A p-----预应力筋的截面面积(mm2)。 Ep------预应力筋的弹性模量(N/ mm2)。 附表G-8 系数K及μ值表 注意事项: 预应力筋张拉时,应先调整到初应力σ0该初应力宜为张拉控制应力σcom的10%~15%。伸长值应从初应力时开始量测。力筋的实际伸长值除量测的伸长值外,必须加上初应力以下的推算伸长值。对后张法构件,在张拉过程中产生的弹性压缩值一般可省略。 预应力张拉实际伸长值△L(mm)=△L1+△L2 式中:△L1-从预应力至最大张拉应力间的实测伸长值(mm)△L2-初应力以下的推算伸长值(MM),可采用相邻级的伸长值。

VLM型竖向二次张拉锚具使用说明书(威尔姆)

VLM 型竖向二次张拉锚具
使用说明书
柳州市威尔姆预应力有限公司 二○○八年三月

二次张拉低回缩钢绞线竖向预应力锚固系统 施工操作说明书
二次张拉低回缩钢绞线竖向预应力锚固系统是一种新型的预应力筋锚固体系, 它不同于 传统的精轧螺纹钢筋 YGM 锚固体系,也不同于夹片式钢绞线锚固体系,具有其自身的特点, 在施工、验收中应掌握如下要点,才能确保发挥这一新型锚固体系的优势,从而确保竖向预 应力(含中短预应力束)永存应力稳定可靠,孔道压浆密实饱满,提升桥梁的安全性能。 一、二次张拉低回缩钢绞线竖向预应力锚固系统的锚具尺寸(如图 1):
图 1 二次竖向张拉锚具安装时意图 1。工作夹片 2。工作锚板 3。工作螺母 5。波纹管 6。预应力筋 7。约束圈 9。固定螺钉 10。固定垫板 11。挤压套 二次张拉竖向低回缩锚具张拉端技术参数表 波纹管内 工作锚板 工作螺母 锚垫板 预应力 经(mm) 型号 筋根数 MA B D E F φC φI VLM.SX15-1 VLM.SX15-2 VLM.SX15-3 VLM.SX15-4 VLM.SX15-5 1 2 3 4 5 M48X2 M83X3 M85X3 M95X3 M110X2 56 56 60 60 60 φ64 φ98 φ110 φ120 φ132 26 26 32 32 32 100 115 140 140 150 14 80 110 100 120 35 45 50 55 55
4。锚垫板 8。螺旋筋 12。压板 单位:mm 螺旋筋 φJ φ80 φ120 φ130 φ140 φ160 φG φ8 φ8 φ8 φ8 φ8 K 40 40 50 50 50 圈数 4 4 4 4 4
二次张拉竖向低回缩锚具固定端技术参数表 固定垫板 预应力 固定垫板到 型号 筋根数 φN H 约束圈距离 VLM.SX15-1 VLM.SX15-2 1 2 φ80 φ100 14 20 / 160
单位:mm 张拉端槽口及模版参考尺寸 A 140 180 B 140 140 C / 100 φD φ20 φ60 H 100 110

预应力张拉计算书(范本)

专新建南宁至广州铁路站前工程 NGZQ-7标段 *****桥梁预应力 钢绞线张拉控制计算书 编制: 复核: 审核: 中铁二十三局集团有限公司 南广铁路NGZQ-7项目部 二零一零年五月

预应力钢绞线张拉控制计算书 第一章 工程概述 本合同段预应力钢绞线采用国标φs 15.24(GB/T5224-2003),标准强度a 1860MP R b y , 低松驰。跨径30mT 梁和25m 箱梁均采用Φ s 15.24mm 钢绞线。 设计文件说明预应力筋张拉采用千斤顶油压标示张拉力和伸长 值双控施工。预应力钢绞线的张拉在预梁 预应力损失参数: 纵向预应力钢绞线波纹管摩阻系数u=0.26,孔道偏差系数K=0.003,钢束松弛预应力损失根据张拉预应力为1302MPa 取为△=0.025,锚具变形与钢束回缩值(一端)为6mm ;横向预应力钢绞线波纹管摩阻系数u=0.26,孔道偏差系数K=0.003,钢束松弛预应力损失为△=0.025,锚具变形与钢束回缩值(一端)为6mm ;竖向预应力钢绞线波纹管摩阻系数u=0.35,孔道偏差系数K=0.003,钢束松弛预应力损失为△=0.05,锚具变形与钢束回缩值(一端)为1mm 。 梁体预应力材料: 纵横向预应力束:公称直径为Φ=15.24(7Φ5),抗拉标准强度f=1860MPa 的高强度低松弛钢绞线。 柔性吊杆:27根Φ15.2环氧喷涂钢绞线组成,fpk=1860MPa 。 竖向预应力采用Φ25高强精扎螺纹粗钢筋。 锚具:纵向预应力采用OVM15-9型锚具锚固,横向预应力束采用OVMBM15-3(BM15-3P )、OVMBM15-4(BM15-4P )型锚具,竖向预应力采用JLM-25型锚具锚固;吊杆采用GJ15-27型锚具。 第二章 设计伸长量复核

预应力张拉应力计算

一、控制张拉力 预应力钢绞线张拉控制力表 说明: 1.例如5φ指该钢绞线束由5根公称直径为的单根钢绞线组成;若使用OVM型锚具则通常表示为OVM15-5; 2.单根钢绞线的公称截面积一般为140mm2; 3.1t相当于10KN,张拉千斤顶的吨位可由控制张拉力换算出; 4.千斤顶驱动油泵的油表读数换算:钢绞线束的控制张拉力(N)/千斤顶油缸活塞面积(mm2); 二、张拉伸长值计算

1.预应力筋采用应力控制方法张拉时,应以伸长值进行校核,实际伸长值与理论伸长值的差值应控制在6%以内,即︱(△L实-△L理)/△L理︱<6% 2.理论伸长值的计算公式: 单端理论伸长值△L=(Pp×L)/(Ap×Ep) ①Pp——预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋的平均张拉力计算如下: Pp= P(1-e-(κχ+μθ))/(κχ+μθ)式中:Pp ——预应力筋的平均张拉力(N); P——预应力筋张拉端的张拉力(N),在没有超张拉的情况下一般计算为:钢绞线--1395MPa×140mm2=195300N;若有超张拉则乘以其系数; x——从张拉端至计算截面的孔道长度(m),一般为单端长度;θ——从张拉端至计算截面曲线孔道部分切线的夹角之和(rad); k——孔道每米局部偏差对摩擦的影响系数,见下表;μ——预应力筋与孔道壁的摩擦系数,见下表;系数k及μ值表孔道成型方式 k μ钢丝束、钢绞线、光面钢筋带肋钢筋精轧螺纹钢筋预埋铁皮管道 --- 抽芯成型孔道 --- 预埋金属螺旋管道 ~ --- ②L——预应力筋的单端长度(mm),即总长的一半; ③Ap——预应力筋的截面面积(mm2),钢绞线为140 mm2; ④Ep——预应力筋的弹性模量(N/mm2),钢绞线为195×103N/mm2; 以上计算所得△L为单端理论伸长值,整束钢绞线的理论伸长值为:△L理=2△L 3.实测伸长值的计算: △L实=△L总-(△L初实-△L初理)-△L锚塞回缩 式中:△L总——张拉达到控制应力时测得的总伸长量; △L初实——张拉达到初应力(控制应力的10%~15%)时测得的实际伸长量; △L初理——初应力以下的推算理论伸长量(一般为△L理×10%);

钢绞线张拉应力应变计算

丹江特大桥K162+957;K163+405箱梁,设计采用标准强度fpk=1860Mpa的高强低松弛钢绞线,公称直径Ф15.2mm,公称面积Ag=139mm2;弹性模量Eg=1.95×105Mpa。为保证施工符合设计要求,施工中采用油压表读数和钢绞线拉伸量测定值双控。理论伸长量计算采用《公路桥涵施工技术规范》JTJ041-2002附表G-8预应力钢绞线理论伸长值及平均张拉力计算公式。 一、计算公式及参数: 1、预应力平均张拉力计算公式及参数: 式中: P p—预应力筋平均张拉力(N) P—预应力筋张拉端的张拉力(N) X—从张拉端至计算截面的孔道长度(m) θ—从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad) k—孔道每米局部偏差对摩檫的影响系数,取0.0015 μ—预应力筋与孔道壁的摩檫系数,取0.25 2、预应力筋的理论伸长值计算公式及参数: 式中: P p—预应力筋平均张拉力(N) L—预应力筋的长度(mm) A p—预应力筋的截面面积(mm2),取139 mm2 E p—预应力筋的弹性模量(N/ mm2),取1.95×105 N/ mm2 二、伸长量计算: 1、N1束一端的伸长量: 单根钢绞线张拉的张拉力 P=0.75×1860×139=193905N X直=11.322m;X曲=1.018m θ=4×π/180=0.0698rad k X曲+μθ=0.0015×1.018+0.25×0.0698=0.019 P p=193905×(1-e-0.019)/0.019=192074N ΔL曲= P p L/(A p E p)=192074×1.018/(139×1.95×105)=7.2mm ΔL直= PL/(A p E p)=193905×11.322/(139×1.95×105)=81mm

钢绞线理论伸长量计算表

钢绞线理论伸长量计算实例(2008-07-08 17:20:04)精确计算 钢绞线弹性模量:Ep=193.8889Gpa 截面积:Ap=141.71mm2∕根(资料3) 预应力钢绞线张拉理论伸长量计算公式(资料1第129页) ΔL=(PpL)/(ApEp) 式中:Pp――预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋按资料1附录G-8(第339页)计算 L――预应力筋的长度(mm) Ap――预应力筋的截面面积(mm2) Ep――预应力筋的弹性模量(N/mm2) Pp=P(1-e-(kx+μθ))/(kx+μθ) 式中:Pp――预应力筋平均张拉力(N) P――预应力筋张拉端的张拉力(N) x――从张拉端至计算截面的孔道长度(m) θ――从张拉端至计算截面曲线孔道部分切线的夹角之和(rad) k――孔道每米局部偏差对摩擦的影响系数 μ――预应力筋与孔道壁的摩擦系数 注:当预应力筋为直线时Pp=P

钢绞线伸长量计算 钢绞线张拉伸长量计算 一、6股钢绞线 1、中线外N1,2钢绞线长L=15.57m 钢绞线所夹水平角θ水平=0 钢绞线所夹垂直角θ垂直=0.078539816rad θ=θ水平+θ垂直=0.078539816rad 取:K=0.0015 μ=0.23 E=1.95×105Mpa 钢绞线面积:A=831.66mm2 钢绞线控制张拉力P=944.92KN kχ+μθ=0.0015×15.57+0.23×0.078539816=0.041419157 平均张拉力:P=P(1-e-(kx+μθ))/(kx+μθ) =944.92×(1-e-0.041419157)/ 0.041419157=925.619KN 初伸长量(10%σc on伸长量) ΔL1=(944.92×103×10%×15.57×103)/(831.66×1.95×105)=9.07mm 理论伸长量(103%σcon伸长量) ΔL2=(925.619×103×15.57×103)/(831.66×1.95×105)=88.87 mm 2、中线外N3钢绞线长L=15.7m 钢绞线所夹水平角θ水平=0 钢绞线所夹垂直角θ垂直=0.078539816rad θ=θ水平+θ垂直=0.078539816rad 取:K=0.0015 μ=0.23 E=1.95×105Mpa 钢绞线面积:A=831.66mm2 钢绞线控制张拉力P=944.92KN kχ+μθ=0.0015×15.7+0.23×0.078539816=0.041614157 平均张拉力:P=P(1-e-(kx+μθ))/(kx+μθ) =944.92×(1-e-0.041614157)/ 0.041614157=925.529KN 初伸长量(10%σcon伸长量) ΔL1=(944.92×103×10%×15.7×103)/(831.66×1.95×105)=9.15mm 理论伸长量(103%σco n伸长量) ΔL2=(925.529×103×15.7×103)/(831.66×1.95×105)=89.6 mm

预应力钢绞线张拉计算

预应力钢绞线张拉计算 发表时间:2009-07-03T13:32:27.170Z 来源:《赤子》2009年第8期供稿作者:任娜[导读] 我公司中标承建的胜银路艾依河桥3-13m预应力空心板桥。 (宁夏中通公路养护工程股份有限公司,宁夏中卫 755000) 摘要:我公司中标承建的胜银路艾依河桥3-13m预应力空心板桥。采用先张法,进行张拉计算,对应力和伸长量进行控制。关键词:预应力;钢绞线;张拉;计算 1 材料、机具及设备 所用预应力钢材采用1×7-15.24-1860-Ⅱ级钢绞线,其力学性能为:强度>1860MPa,延伸率>3.5%,弹性模量(实测值)为:E=197GPa。Ⅱ级松弛,符合GB/T5224-2003和ASTMA416-98 标准要求,所采用的张拉设备如下:张拉机具油泵型号为:ZB500型。千斤顶型号为:YC300A-400、YC300A、YC25。仪表型号为:Y-150。所用千斤顶、压力表均已委托宁夏公路工程质量检测中心标定。 2 施加预应力的准备工作 2.1施工现场应具备经批准的张拉程序和现场施工说明书。 2.2现场已有具备预应力施工知识和正确操作的施工人员。 2.3施工现场已具备确保全体操作人员和设备安全的必要的预防措施。 2.4监理工程师对张拉作业的批复。 2.5实施张拉时,应使千斤顶的张拉力作用线与预应力筋的轴线重合一致。 3 张拉程序 3.1预应力筋采用应力控制方法张拉时,以伸长值进行校核,实际伸长值与理论伸长值的差值符合设计要求,设计无规定时,实际伸长值与理论伸长值的差值应控制在6%以内,否则应暂停张拉,待查明原因并采取措施予以调整后,方可继续张拉。 3.2预应力筋的理论伸长值ΔL(mm)可按下式计算: =195300×68400/140/194000=492mm 式中:PP—预应力筋的平均张拉力(N),直线筋取张拉端的拉力; L—预应力筋的计算长度(mm); AP—预应力筋的截面面积(mm2); EP—预应力筋的弹性模量(N/mm2)。 3.3预应力筋张拉时,从固定端先调整到初应力σ0,该初应力为张拉控制应力σcon的10%,伸长值从初应力时开始量测。将预应力钢绞线拉直,锚固端和连接器处拉紧,在预应力钢绞线上选定适当的位置刻画标记,作为测量延伸量的基点,再从张拉端张拉控制应力到σcon的20%并量测伸长值ΔL2,最后张拉到σcon,量测伸长值ΔL1,预应力筋张拉的实际伸长值ΔL(mm),可按下式计算: ΔL=ΔLl+ΔL2 式中:ΔLl—从初应力至最大张拉应力间的实测伸长值(mm); ΔL2—初应力以下的推算伸长值(mm),采用相邻级的伸长值,即10%σcon~20%σcon的实测伸长值(mm);一端固定,一端多根张拉。千斤顶必须同步顶进,保持横梁平行移动,预应力钢束均匀受力,分级加载拉至设计张拉应力。 3.4持荷,按预应力钢绞线的类型选定持荷时间2~5min,使预应力钢绞线完成部分徐舒,完成量约为全部量的20%~25%,以减少钢丝锚固后的应力损失。 3.5锚固前,补足或放松预应力钢绞线的拉力至控制应力。测量、记录预应力钢绞线的延伸量,并核对实测值与理论计算值,其误差应在±6%范围内,若不符合规定,则应找出原因及时处理。所以钢绞线的实测值在462mm和522mm之间。 3.6张拉满足要求后,锚固预应力钢绞线、千斤顶回油至零。 3.7预应力筋张拉及放松时,均填写施工记录。 3.8各阶段张拉时,对应油表读数 3.8.1初应力10%σk时: 初应力采用单根钢绞线张拉,最终施加荷载值为195.3KN 表号:NO.08-8042压力表与油泵线性回归方程:P=0.2384F+0.4045 式中:F为施加荷载值KN P为压力表读数MPa P=0.2384×195.3×0.1+0.4045=5.06MPa 表号:NO.08-8048压力表与油泵线性回归方程:P=0.2337F+0.1318 式中: F为施加荷载值KN P为压力表读数MPa P=0.2337×195.3×0.1+0.1318=4.70MPa 3.8.2 20%σk时: 20%σk采用整体张拉,最终施加荷载值为195.3×21=4101.3KN,由于采用两个千斤顶张拉,每个千斤顶的最终施加荷载值为4101.3×50%=2050.65KN 表号:NO.08-8042压力表与油泵线性回归方程:P=0.0155F+0.2091 式中: F为施加荷载值KN P为压力表读数MPa P=0.0155×2050.65×0.2+0.2091=6.57MPa 表号:NO.08-8048压力表与油泵线性回归方程:P=0.0154F-0.4545

钢绞线张拉伸长量的计算

钢绞线张拉伸长量的计算 桥梁结构常用钢绞线的规格一般是ASTM A416 、270 级低松弛钢绞线,公称直径为 15.24mm ,标准强度为1860MPa ,弹性模量为195000MPa ,桥梁施工中张拉控制应力(本文中用Ycon 表示)一般为标准强度的75%即1395MPa 本文重点介绍曲线布置的钢绞线伸长量计算,并给出CASIO fx-4800P 计算器的计算程序,另外简要介绍千斤顶标定的一些注意问题。参照技术规范为《公路桥涵施工技术规范》( JTJ 041-2000 )(以下简称《桥规》)。一、预应力系统安装: 1、波纹管、锚垫板和连接器安装: (1) 、波纹管安装: 预应力用波纹管采用塑料波纹管,波纹管严格按设计图纸位置和要求安装,并要以定位筋将波纹管固定牢固,在直线段约为0.3 米一道“U”字形架立筋固定,曲线段加密,以免在混凝土浇筑过程中,波纹管产生移位,影响钢束对箱梁混凝土的压力,如果管道和钢筋发生冲突,应以管道位置不变为主。 (2) 、锚垫板安装:在固定端和张拉端分别安装对应型号和规格的锚垫板和螺旋筋,并将锚垫板喇叭口底端和波纹管连接牢固,锚垫板要牢固地安装在模板上。要使垫板与孔道严格对中,并与孔道端部垂直,不得错位。锚下螺旋筋及加强钢筋要严格按图纸设置,喇叭口与波纹管道要连接平顺,密封。对锚垫板上地的压浆孔要妥善封堵,防止浇注混凝土时漏浆堵孔。安装锚垫板时,对于两端张拉的锚具,需注意压浆端进浆孔向下,出

气孔向上,对于一端张拉的P锚、H 锚应把张拉端作为进浆孔,且向下,以保证压浆的密实。 (3) 、连接器安装: 从第二孔箱梁开始,在前一段已张拉完的群锚连接体上安装连接器,并进行钢绞线接长。 2、钢绞线安装: a. 钢绞线下料:钢绞线必须在平整、无水、清洁的场地下料,钢绞线下料长度要通过计算确定,计算应考虑孔道曲线长,锚夹具长度,千斤顶长度及外露工作长度等因素,预应力筋地切割宜用砂轮锯切割,下料过程中钢绞线切口端先用铁丝扎紧,采用砂轮切割机切割。 b. 编束:编束时必须使钢绞线相互平行,不得交叉,从中间向两端每隔1m 用铁丝绑紧,并给钢绞束编号。束成后,要统一编号、挂牌,按类堆放整齐,以备使用。 c. 穿束穿束前应检查管道是否畅通,如果出现堵塞孔道现象,必须采取措施疏通。钢绞线端头必须做成锥型并包裹,可利用人工或卷扬机进行牵引,并在浇砼之前穿束(跨大堤悬浇箱梁在浇筑后穿束)。 穿束时在管道内穿入一根引索,利用引索将钢丝引出,将钢丝另一端与钢束拖头连在一起,用卷扬机将钢束拉出。 3、横向预应力安装横向预应力钢绞线及波纹管在纵向预应力管道安装完毕后安装。采用人工穿束,把钢绞线一头用扎花锚锚固,另一头慢慢穿入扁型波纹管道内。 固定端挤压头:挤压器型号GYJA 型,配用油泵ZB4-500 型。二、预应力体系张拉:1、张拉前的准备工作:预应力筋要按设计及规范要求进行,对所用钢铰线应进行检查,保

后张法预应力张拉计算书

后张法预应力张拉计算书 后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 1、计算公式 (1)预应筋伸长值ΔL的计算按照以下公式: ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); (2)《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式 Pp=P×(1-e-(kx+μθ)) kx+μθ P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张 拉力,即为前段的终点张拉力(N); θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,对于圆曲线, 为该段的圆心角,如果孔道在竖直面和水平面同时弯曲时,则θ为 双向弯曲夹角之矢量和。设水平角为α,竖直角为β,则θ=Arccos (cosα×cosβ)。 x—从张拉端至计算截面的孔道长度,分段后为每个分段长度。 k—孔道每束局部偏差对摩擦的影响系数(1/m),管道内全长均应考虑 该影响; μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数 的影响。 注: a、钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。所以钢绞线在使用前必须进行检测试验,计算时按实测值Ep’进行计算。 b、 k和μ是后张法钢绞线伸长量计算中的两个重要的参数,其大小取决于多方面的因素:管道的成型方式、预应力筋的类型、表面特征是光滑的还是有波纹的、表面是否有锈斑,波纹管的布设是否正确,弯道位置及角度是否正确,成型管道内是否漏浆等,计算时根据设计图纸确定。 2、划分计算分段 2.1 工作长度:工具锚到工作锚之间的长度,Pp=千斤顶张拉力;

低回缩预应力锚具锚下混凝土应力的试验研究

龙源期刊网 https://www.360docs.net/doc/cf1488781.html, 低回缩预应力锚具锚下混凝土应力的试验研究 作者:邵旭东肜辉张阳曾田胜 来源:《湖南大学学报·自然科学版》2010年第02期 摘要:低回缩预应力钢绞线体系是一种新型预应力体系.为了研究新型二次张拉低回缩预应力锚具的锚下构造,设计了采用二次张拉单孔预应力钢绞线锚具的预应力矩形梁试验,将理论计算结果分别与传统夹片式锚具锚下应力场、新型二次张拉低回缩预应力锚具锚下应力场进行对比,发现在张拉过程中三者锚下应力场的变化规律一致.当采用相同型号的锚下垫板时,各截面应力峰值相差很小,且均未超过试验混凝土的强度.因此,二次张拉单孔预应力钢绞线锚具锚下构造可与传统夹片式锚具完全相同. 关键词:矩形板试验;应力分析;低回缩预应力锚具;锚下构造;峰值应力 中图分类号:U448.35;U441.5文献标识码:A Experimental Study of Concrete Stress under Low Retracting Pre-stress Stranded Anchorage SHAO Xu-dong,RONG Hui,ZHANG Yang,ZENG Tian-sheng (College of Civil Engineering, Hunan Univ, Changsha, Hunan 410082, China) Abstract:Low retracting pre-stressing anchorage system (LRPAS) is a new type of post-tensioned prestressing system. An experimental study was carried out to investigate the structural behavior under the new LRPAS. A scaled test specimen using low retracting pre-stress stranded single anchorage was constructed and tested. Based on the strain measurements, the stress field under the traditional anchorage and the new LRPAS were obtained, and the test results were consistent with the theoretical calculation ones. When the same type of steel plate under the anchorage was used, the maximum stress of the cross-section was similar, and did not exceed the strength of concrete. Therefore, compared with the traditional anchorage, the low retracting pre-stress stranded single anchorage has the same construction under the anchor. Key words:test specimens; stress analyses; low retracting pre-stressing anchorage system;construction under anchorage; maximums stress

相关文档
最新文档