回旋加速器及习题训练资料
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:BD
4.两个相同的回旋加速器,分别接在加速电压为U1和U2的 高频交流电源上,且U2=2U1,有两个相同的带电粒子 分别在这两个加速器中运动,设两个粒子在加速器中运 动的时间分别为t1和t2,获得的最大动能分别为Ek1和Ek2, 则有( ) A.t1=t2 ,Ek1=Ek2 B.t1=t2 ,Ek1<Ek2 C.t1>t2 , Ek1=Ek2 D.t1>t2 ,Ek1<Ek2
(1) 粒子的回旋周期是多大? (2)高频电极的频率为多大? (3) 粒子的最大速度、最大动能各是多大? (4)设两D形盒间电场的电势差为U, 求加速到上述能量所需的时间.(不计粒子在电场中运动 的时间)
(1)T 2m
qB
(2) f qB
2m
(3)vm
qBd 2m
Ek
q2B2d
2
(4)t
8m
Bd2
答案:AB
3.回旋加速器是加速带电粒子的装置,其核心部分是分 别与高频交流电极相连接的两个D形金属盒,两盒间的 狭缝中形成的周期性变化的电场,使粒子在通过狭缝时 都能得到加速,两D形金属盒处于垂直于盒底的匀强磁 场中,如图所示,要增大带电粒子射出时的动能,则下 列说法中正确的是( ) A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.减小狭缝间的距离 D.增大D形金属盒的半径
功能显像的国际领先技术,它为临床诊断和治疗提供了
全新的手段.
(1)PET所用回旋加速器示意图如图示,其中置于高真
空中的金属D形盒的半径为R,两盒间距为d,在左侧D
形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,
方向如图所示.质子质量为m,电荷量为q.设质子从粒子
源S进入加速电场时的初速度不计,质子在加速器中运
8U
小结
① 粒子在磁场中做圆匀周速运圆动周周运期动,是周否期变不化变? ② 电场变化周 的期 周与 期粒与子粒在子磁在场磁中场做中圆做周圆运周动 运周 动期 周的 期关 相系 同? ③ 电场一个周期中方向变化几两次? ④ 粒子每一个周期加速几两次? ⑤ 粒子加速的最大速度由哪盒些的量半决径定和?磁场强度决定 ⑥ 粒电子场在加电 速场 过加 程速 中,过时程间中极时短间,可是忽否略可忽略? ⑦ 只回有旋回加旋 速加 器速 的器 局的限半性径足够大,粒子是否可被加速到任
答案:AD
2.回旋加速器是加速带电粒子的装置,其核心部分是分 别与高频交流电源两极相连接的两个D形金属盒两盒间 的狭缝中形成周期性变化的电场,使粒子在通过狭缝时 都能得到加速,两D形金属盒处于垂直于盒底的匀强磁 场中,如图所示.设D形盒半径为R.若用回旋加速器加 速质子时,匀强磁场的磁感应强度为B,高频交流电频率 为f.则下列说法正确的是( ) A.质子被加速后的最大速度不可能超过2πfR B.质子被加速后的最大速度与加速电场的电压大小无关 C.只要R足够大,质子的速度可以被加速到任意值 D.不改变B和f,该回旋加速器也能用于加速α粒子
q2B2R2 2m
3. 粒子回旋加速的时间?(忽略电场中加速的时间)
2nqU
1 2
mvm2
t nT
BR 2
t 2U
即时突破 小试牛刀
1. 1930年劳伦斯制成了世界上第一台回旋加速器,其 原理如图所示,这台加速器由两个铜质D形合D1、D2 构成,其间留有空隙,下列说法正确的是 ( ) A.离子由加速器的中心附近进入加速器 B.离子由加速器的边缘进入加速器 C.离子从磁场中获得能量 D.离子从电场中获得能量
动的总时间为t(其中已略去了质子在加速电场中的运动
时间),质子在电场中的加速次数与
回旋半周的次数相同,加速电子时的
电压大小可视为不变.求此加速器所需
的高频电源频率f 和加速电压U.
(1) f qB
2m
BR 2
U 2t
例1 回旋加速器中磁场的磁感应强度为B,D形盒的直 径为d,用该回旋加速器加速质量为m、电量为q的粒子, 设粒子加速前的初速度为零。求:
T电
T磁
2m
qB
2. 粒子回旋加速后的最大速度和最大动能?
qvm
B
m
vm2 R
vm
qBR m
Ek
q2B2R2 2m
•假设由你来设计一台回旋加速度器,要求能使带电 粒子获得更高的能量,你打算采用哪些措施?
•提高电源电压? •加大D形盒的半径? •增加磁感应强度?
7
美
1932年,美国物理学家
国ቤተ መጻሕፍቲ ባይዱ
劳伦斯正是沿着与上述
第5节 洛伦兹力的应用 ——回旋加速器
一、回旋加速器的特点
➢ 两D形盒间缝隙有高频交变电场. ➢ 两D形盒中有强大的磁场无电场.
二、回旋加速器的加速原理
① 电场使粒子加速,磁 场使粒子回旋.
② 粒子回旋的周期不随 半径改变.
③ 粒子在一个周期加速 两次.
保证粒子始终被加速, 交变电场的周期与粒子 回旋的周期有什么样的 关系?
(1)R2:R1 2:1
(2)t BR2
2U
(2)试推证当R>>d时,质子在电场中加速的总时间 相对于在D形盒中回旋的总时间可忽略不计(质子在 电场中运动时,不考虑磁场的影响).
BR2
(2)t磁 2U
qBR
t电
vm a
m qU
BRd U
md
t电 2 d 1 t磁 R
6.正电子发射计算机断层(PET)是分子水平上的人体
m 2 m 3 m Bq Bq Bq
U
~0
t
5
二、回旋加速器的加速原理
① 电场使粒子加速,磁 场使粒子回旋.
② 粒子回旋的周期不随 半径改变.
③ 粒子在一个周期加速 两次.
④ 交变电场的周期与粒 子回旋的周期相等, 保证粒子始终被加速 .
三、回旋加速器中的基本问题
1. 粒子能回旋加速的条件?
答案:C
5.1932年,劳伦斯和利文斯设计出了回旋加速器。回旋 加速器的工作原理如图所示,置于高真空中的D形金属 盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可 以忽略不计。磁感应强度为B 的匀强磁场与盒面垂直。A 处粒子源产生的粒子,质量为m、电荷量为+q ,在加速 器中被加速,加速电压为U。加速过程中不考虑相对论 效应和重力作用。 (1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半 径比; (2)求粒子从静止开始加速到出口处所需的时间t;
物
相仿的巧妙思路,发明
理
了回旋加速器,从而使
学
人类在获得具有较高能
家
量的粒子方面迈进了一
劳
大步。为此,劳伦斯获
伦
得了1939年的诺贝尔物
斯
理学奖。
9
三、回旋加速器中的基本问题
1. 粒子能回旋加速的条件?
T电
T磁
2m
qB
2. 粒子回旋加速后的最大速度和最大动能?
qvm
B
m
vm2 R
vm
qBR m
Ek
4.两个相同的回旋加速器,分别接在加速电压为U1和U2的 高频交流电源上,且U2=2U1,有两个相同的带电粒子 分别在这两个加速器中运动,设两个粒子在加速器中运 动的时间分别为t1和t2,获得的最大动能分别为Ek1和Ek2, 则有( ) A.t1=t2 ,Ek1=Ek2 B.t1=t2 ,Ek1<Ek2 C.t1>t2 , Ek1=Ek2 D.t1>t2 ,Ek1<Ek2
(1) 粒子的回旋周期是多大? (2)高频电极的频率为多大? (3) 粒子的最大速度、最大动能各是多大? (4)设两D形盒间电场的电势差为U, 求加速到上述能量所需的时间.(不计粒子在电场中运动 的时间)
(1)T 2m
qB
(2) f qB
2m
(3)vm
qBd 2m
Ek
q2B2d
2
(4)t
8m
Bd2
答案:AB
3.回旋加速器是加速带电粒子的装置,其核心部分是分 别与高频交流电极相连接的两个D形金属盒,两盒间的 狭缝中形成的周期性变化的电场,使粒子在通过狭缝时 都能得到加速,两D形金属盒处于垂直于盒底的匀强磁 场中,如图所示,要增大带电粒子射出时的动能,则下 列说法中正确的是( ) A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.减小狭缝间的距离 D.增大D形金属盒的半径
功能显像的国际领先技术,它为临床诊断和治疗提供了
全新的手段.
(1)PET所用回旋加速器示意图如图示,其中置于高真
空中的金属D形盒的半径为R,两盒间距为d,在左侧D
形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,
方向如图所示.质子质量为m,电荷量为q.设质子从粒子
源S进入加速电场时的初速度不计,质子在加速器中运
8U
小结
① 粒子在磁场中做圆匀周速运圆动周周运期动,是周否期变不化变? ② 电场变化周 的期 周与 期粒与子粒在子磁在场磁中场做中圆做周圆运周动 运周 动期 周的 期关 相系 同? ③ 电场一个周期中方向变化几两次? ④ 粒子每一个周期加速几两次? ⑤ 粒子加速的最大速度由哪盒些的量半决径定和?磁场强度决定 ⑥ 粒电子场在加电 速场 过加 程速 中,过时程间中极时短间,可是忽否略可忽略? ⑦ 只回有旋回加旋 速加 器速 的器 局的限半性径足够大,粒子是否可被加速到任
答案:AD
2.回旋加速器是加速带电粒子的装置,其核心部分是分 别与高频交流电源两极相连接的两个D形金属盒两盒间 的狭缝中形成周期性变化的电场,使粒子在通过狭缝时 都能得到加速,两D形金属盒处于垂直于盒底的匀强磁 场中,如图所示.设D形盒半径为R.若用回旋加速器加 速质子时,匀强磁场的磁感应强度为B,高频交流电频率 为f.则下列说法正确的是( ) A.质子被加速后的最大速度不可能超过2πfR B.质子被加速后的最大速度与加速电场的电压大小无关 C.只要R足够大,质子的速度可以被加速到任意值 D.不改变B和f,该回旋加速器也能用于加速α粒子
q2B2R2 2m
3. 粒子回旋加速的时间?(忽略电场中加速的时间)
2nqU
1 2
mvm2
t nT
BR 2
t 2U
即时突破 小试牛刀
1. 1930年劳伦斯制成了世界上第一台回旋加速器,其 原理如图所示,这台加速器由两个铜质D形合D1、D2 构成,其间留有空隙,下列说法正确的是 ( ) A.离子由加速器的中心附近进入加速器 B.离子由加速器的边缘进入加速器 C.离子从磁场中获得能量 D.离子从电场中获得能量
动的总时间为t(其中已略去了质子在加速电场中的运动
时间),质子在电场中的加速次数与
回旋半周的次数相同,加速电子时的
电压大小可视为不变.求此加速器所需
的高频电源频率f 和加速电压U.
(1) f qB
2m
BR 2
U 2t
例1 回旋加速器中磁场的磁感应强度为B,D形盒的直 径为d,用该回旋加速器加速质量为m、电量为q的粒子, 设粒子加速前的初速度为零。求:
T电
T磁
2m
qB
2. 粒子回旋加速后的最大速度和最大动能?
qvm
B
m
vm2 R
vm
qBR m
Ek
q2B2R2 2m
•假设由你来设计一台回旋加速度器,要求能使带电 粒子获得更高的能量,你打算采用哪些措施?
•提高电源电压? •加大D形盒的半径? •增加磁感应强度?
7
美
1932年,美国物理学家
国ቤተ መጻሕፍቲ ባይዱ
劳伦斯正是沿着与上述
第5节 洛伦兹力的应用 ——回旋加速器
一、回旋加速器的特点
➢ 两D形盒间缝隙有高频交变电场. ➢ 两D形盒中有强大的磁场无电场.
二、回旋加速器的加速原理
① 电场使粒子加速,磁 场使粒子回旋.
② 粒子回旋的周期不随 半径改变.
③ 粒子在一个周期加速 两次.
保证粒子始终被加速, 交变电场的周期与粒子 回旋的周期有什么样的 关系?
(1)R2:R1 2:1
(2)t BR2
2U
(2)试推证当R>>d时,质子在电场中加速的总时间 相对于在D形盒中回旋的总时间可忽略不计(质子在 电场中运动时,不考虑磁场的影响).
BR2
(2)t磁 2U
qBR
t电
vm a
m qU
BRd U
md
t电 2 d 1 t磁 R
6.正电子发射计算机断层(PET)是分子水平上的人体
m 2 m 3 m Bq Bq Bq
U
~0
t
5
二、回旋加速器的加速原理
① 电场使粒子加速,磁 场使粒子回旋.
② 粒子回旋的周期不随 半径改变.
③ 粒子在一个周期加速 两次.
④ 交变电场的周期与粒 子回旋的周期相等, 保证粒子始终被加速 .
三、回旋加速器中的基本问题
1. 粒子能回旋加速的条件?
答案:C
5.1932年,劳伦斯和利文斯设计出了回旋加速器。回旋 加速器的工作原理如图所示,置于高真空中的D形金属 盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可 以忽略不计。磁感应强度为B 的匀强磁场与盒面垂直。A 处粒子源产生的粒子,质量为m、电荷量为+q ,在加速 器中被加速,加速电压为U。加速过程中不考虑相对论 效应和重力作用。 (1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半 径比; (2)求粒子从静止开始加速到出口处所需的时间t;
物
相仿的巧妙思路,发明
理
了回旋加速器,从而使
学
人类在获得具有较高能
家
量的粒子方面迈进了一
劳
大步。为此,劳伦斯获
伦
得了1939年的诺贝尔物
斯
理学奖。
9
三、回旋加速器中的基本问题
1. 粒子能回旋加速的条件?
T电
T磁
2m
qB
2. 粒子回旋加速后的最大速度和最大动能?
qvm
B
m
vm2 R
vm
qBR m
Ek