填料与补强

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

强度:材料抵抗变形或破坏的能力,即材料所能承受的最大载荷,表征了材料的受力极限 玻璃钢:以玻璃纤维及其制品玻璃布、玻璃带、等为增强材料,以树脂为粘结剂,经一定的成型工艺制作而成的一种功能型的新型复合材料。 吸留橡胶指未硫化混炼胶在填料(炭黑)中能被良溶剂溶解的那部分像胶 结合橡胶也称为炭黑凝胶,是指炭黑混炼胶中不能被橡胶的良溶剂溶解的那部分橡胶。 硫化:线性的高分子在物理或化学作用下,形成三维网状体型结构的过程。实际上就是把塑性的胶料转变成具有高弹性橡胶的过程。 结构化效应:硅橡胶与白炭黑的混炼胶随存放时间的延长会出现粘度上升,硬度增加,以致无法返炼的现象。 离聚物或称离聚体是指含有少量离子基团的聚合物。 并用:将两种或两种以上的不同橡胶或橡胶与合成树脂,借助机械力的作用搀混成一体,用以制造各种橡胶制品,称为橡胶机械共混或橡胶的并用 聚合物的相容性:指两种不同聚台物在外力作用下的混合,移去外力后仍能彼此相互容纳并保持宏观均相形态的能力。 工艺相容性: 这种共混物在微观区域内分成了两个相,构成多相形态,但在宏观上仍能保持其均匀性。 韧性是指材料破坏前吸收外加能量的能力。 冲击破坏是材料在高速冲击下的断裂现象. 冲击强度是标准试样在冲击断裂时单位面积上所消耗的能量或断裂时单位切口所消耗的能量,是度量材料在高速冲击下的韧性大小和抵抗断裂能力的参数。 复合材料的界面是指基体相与增强相之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。 复合材料,是指由两种或两种以上不同性质的材料,通过一定的工艺方法人工合成的,各组分间有明显界面且性能优于各组成材料的多相材料。

影响高分子材料强度的因素

1.高分子本身结构

1.1 分子链结构的影响

1)主链结构 ,高分子链刚性增加,聚合物强度增加,韧性下降,像主链含有芳杂环结构的聚合物其强度和模量比脂肪族主链高。主链上含有大的侧基,刚性大。2)链节极性,链节含有强极性基团或氢键的基团使得分子间作用力增大,强度提高3)空间立构:结构规整和等规度高的聚合物因结晶而强度提高。4)支化:支化破坏了链的规整性结晶度降低,还增加了分子间的距离分子间力减小,都使强度降低。但是韧性有所提高。

1.2 交联的影响

交联一方面可以提高材料的抗蠕变能力,另一方面也能提高断裂强度。一般认为,对于玻璃态聚合物,交联对脆性强度的影响不大;但对高弹态材料的强度影响很大。随交联程度提高,橡胶材料的拉伸模量和强度都大大提高,达到极值强度后,又趋于下降(结晶取向下降);断裂伸长

1.3 分子量及其分布的影响:分子量是对高分子材料力学性能(包括强度、弹性、韧性)起决定性作用的结构参数。低分子有机化合物一般没有力学强度(多为液体),高分子材料要获得强度,必须具有一定聚合度,使分子间作用力足够大才行。

2.结晶与取向

2.1 结晶的影响:结晶对高分子材料力学性能的影响也十分显著,主要影响因素有结晶度、晶粒尺寸和晶体结构。1)结晶度:随着结晶度上升,材料的屈服强度、断裂强度、硬度、弹性模量均提高,但断裂伸长率和韧性下降。这是由于结晶使分子链排列紧密有序,孔隙率低,分子间作用增强所致2)晶体尺寸:小球晶:强度、伸长率、模量和韧性得到提高,大球晶:断裂伸长和韧性下降,冲击强度下降3)结晶形态:同一类聚合物,伸直链强度最大,串晶次之,球晶最小。

2.2 取向的影响:加工过程中分子链沿一定方向

取向,使材料力学性能产生各向异性,在取向方向得到增强。对于脆性材料,取向使材料在平行于取向方向的强度、模量和伸长率提高,甚至出现脆-韧转变,而在垂直于取向方向的强

度和伸长率降低。对于延性、易结晶材料,在平行于取向方向的强度、模量提高,在垂直于取向方向的强度下降,伸长率增大。对纤维和薄膜,取向是提高性能必不可少的措施。原因:取向后分子沿外力的方向有序排列,断裂时主价键比例增大,而使聚合物强度提高。

3.应力集中物如果材料内部存在缺陷,受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧的增加,远远超过应力平均值,这种现象称为应力集中。

4.增塑剂:抗张强度降低,冲击性能提高。原因:能够同聚合物相容的小分子,是使分子链之间的相互作用减弱,分子链活动性增加。从而使材料的拉伸强度下降,冲击强度升高。

5.填料除增强材料本身应具有较高力学强度外,增强材料的均匀分散、取向以及增强材料与聚合物基体的良好界面亲和也是提高增强改性效果的重要措施。粉状填料的增强效果主要取决于填料的种类、尺寸、用量、表面性质以及填料在高分子基材中的分散状况。

6.共聚和共混采用与橡胶类材料嵌段共聚、接枝共聚或物理共混的方法可以大幅度改善脆性塑料的抗冲击性能。

7.外力作用速度与温度当时间一定时,升高温度,链段活动容易,屈服应力降低,屈服强度低。相反降低温度会使材料的链段运动能力降低,材料在更高的外力下发生脆性断裂,温度一定,外力作用时间越短,链段跟不上外力的变化,为使材料屈服需要更大的外力,材料的屈服强度提高,当屈服强度大到超过断裂强度时,材料受力后,尚未屈服已先行断裂,呈现脆性断裂特征。

8.环境:表面侵蚀,局部侵蚀,力化学侵蚀

补强是指能使橡胶的拉伸强度、撕裂强度及耐磨性同时获得明显提高的作用。

填充是指在橡胶中加入一种物质后能降低成本、增大体积或改善加工性能等

炭黑的空隙度(表面粗糙度)炭黑粒子在形成过程中,高温作用使粒子的表面发生氧化侵蚀而形成许多直径数埃数十埃的孔洞,称为空隙度。影响炭黑结合胶的因素:

1). 炭黑的影响

(1) 炭黑比表面积的影响,结合胶几乎与炭黑的比表面积成正比。

( 2)炭黑结构度的影响高结构炭黑的结合胶含量较高。

( 3)炭黑粗糙度的影响炭黑的粗糙度越高,表面的微孔越多,可与橡胶分子触及的表面积越少,形成的结合橡胶越少。

( 4)炭黑表面活性的影响炭黑石墨化以后,表面的活性基团数量减少,形成结合橡胶的能力变差。

( 5)炭黑用量的影响在一定的范围内增加炭黑的用量,会使形成的结合橡胶量增多。

2). 生胶的影响生胶的品种:不饱和橡胶更容易生成结合橡胶;饱和橡胶对槽法炭黑的亲和力更强。

生胶的分子量:分子量越高,相同的条件下生成的结合橡胶量越高。

3). 工艺条件的影响(1)薄通次数的影响(2)混炼温度的影响(3)陈化温度和时间的影响混炼后随停放时间增加,结合胶量增加,大约一周后趋于平衡。陈放温度的提高也有利于加速吸附过程,结合橡胶的量也增加。

炭黑对橡胶的补强机理:

1)容积效应:这种补强作用称为“容积放大效应”。这种现象是基于橡胶大分子链在炭黑表面吸附呈现特殊的平面取向状态,增加了分子间的作用力,从而提高了橡胶的强力,能够承受较大的变形。

2)弱键和强键学说:炭黑与橡胶分子的结合是由各种能量不同的,键结合的结果,有比较弱的吸附的物理键,也有少数强的化学键。在外力作用下,炭黑表面与橡胶链的分离直至断裂时,剩下的为强键。强键直接影响硫化胶的抗张强度、抗撕裂和耐磨耗能力,强键数目越多补强作用越大。

3)Bueche炭黑粒子间橡胶链的有限伸长学说:炭黑补强的硫化胶在炭黑粒子之间有为数众多的橡胶链,一条断了,应力由其它链分担,因此炭黑起着均匀应力的作用,减少了整体的破裂。当伸长太大时,炭黑粒子也会移动,这种移动使应力松弛起着缓和应力的作用。从而提高了硫化胶的强度。

相关文档
最新文档