利率风险管理课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chap 2. 利率风险管理
课程内容
1. 利率的期限结构 2. 利率敏感性 3. 利率风险的传统度量方法
影响利率的因素
中央银行的货币政策 中央银行货币政策的目标:
钉住某一利率/钉住银行准备金
金融市场全球一体化加速了利率的变动 和各国利率波动之间的传递
中央银行货币政策的影响
1. Term Structure of interest Rate
2022/3/23
14
Interest Rate Uncertainty & Forward Rates
Example(Certainty):
Now consider a short term investor who wishes to invest only for 1 year. She can purchase the 1-year zero first, then purchase the 2-year zero with 1 year to maturity.
缺陷:远期利率并非能对未来利率进行最佳预测(未来利率以 及货币政策的不确定性,导致持有长期证券是有风险的)。
1. 利率期限结构
流动性溢价理论
考虑了未来的不确定性;
长期利率等于现行利率与预期短期利率加上流动性溢价 的几何平均数。流动性溢价随着期限增加而上涨。
1. 利率期限结构
市场分割理论
投资者有着各自特有的期限偏好,因此不同到期期限的证 券之间不是完全的替代品,投资者意愿的持有期是由其 拥有的资产和负债的性质决定的。
What will be the price of each purchase? What is the holding-period return?
2022/3/23
15
Interest Rate Uncertainty &
Forward Rates
Example:
Suppose that most investors have short-term horizons and therefore are willing to hold the 2-year bond only if its price falls to $881.83. At this price, the expected holding-period return on the 2-year bond is 7% . The risk premium of the 2-year bond, therefore, is 2%; it offers an expected rate of return of 7% versus the 5% risk-free return on the 1-year bond. At this risk premium, investors are willing to bear the price risk associated with interest rate uncertainty.
2022/3/23
11
Forward Rates
(1 yn )n (1 yn1)n1 (1 rn )
(1
rn )
(1 yn )n (1 yn1)n1
Total growth factor of an investment in an (n-1)-year zero
2022/3/23
12
Interest Rate Uncertainty & Forward Rates
2. Invest the same price in a 1-year zero-coupon bond with a yield to maturity of 5%. Then reinvest in another 1-year bond.
2022/3/23
10
Example
We compare two 3-year strategies. One is to buy a 3-year zero, with a yield to maturity of 7%, and hold it until maturity. The other is to buy a 2-year zero yielding 6%, and roll the proceeds into a 1-year bond in year 3, at the short rate r3.
Bond stripping / bond reconstitution
2022/3/23
5
1. 利率期限结构
三Leabharlann Baidu主要理论:
无偏预期理论 流动性溢价理论 市场分割理论
1. 利率期限结构
无偏预期理论
某一特定时间下的收益曲线反映了当时市场对未来短期利率的 预期。
长期利率是现行的短期利率与预期的短期利率的几何平均值。
The structure of interest rates for discounting cash flows of different maturities. (不同证券的市场收益率 或利率)
Yield curve(收益率曲线): 收益与到期期限的关系
flat, upward-sloping, downward-sloping, humped-shaped
2022/3/23
13
Interest Rate Uncertainty & Forward Rates
Example(Certainty): Suppose that today’s rate is r1=5%, and that the expected short rate for the following year is E(r2)=6%. If investors cared only about the expected value of the interest rate, what would be the price of a 2-year zero?
比较:银行,寿险公司
利率是由某个期限等级或某个分割市场内的供求条件决定 的。
Term Structure of interest Rate
Yield Curve under Certainty Consider 2-year bond strategies:
1. buying the 2-year zero offering a 2-year yield to maturity of 6%, and holding it until maturity
In a certain world:
Two consecutive 1-year investments in zeros would need to offer the same total return as an equal-sized investment in a 2-year zero.
课程内容
1. 利率的期限结构 2. 利率敏感性 3. 利率风险的传统度量方法
影响利率的因素
中央银行的货币政策 中央银行货币政策的目标:
钉住某一利率/钉住银行准备金
金融市场全球一体化加速了利率的变动 和各国利率波动之间的传递
中央银行货币政策的影响
1. Term Structure of interest Rate
2022/3/23
14
Interest Rate Uncertainty & Forward Rates
Example(Certainty):
Now consider a short term investor who wishes to invest only for 1 year. She can purchase the 1-year zero first, then purchase the 2-year zero with 1 year to maturity.
缺陷:远期利率并非能对未来利率进行最佳预测(未来利率以 及货币政策的不确定性,导致持有长期证券是有风险的)。
1. 利率期限结构
流动性溢价理论
考虑了未来的不确定性;
长期利率等于现行利率与预期短期利率加上流动性溢价 的几何平均数。流动性溢价随着期限增加而上涨。
1. 利率期限结构
市场分割理论
投资者有着各自特有的期限偏好,因此不同到期期限的证 券之间不是完全的替代品,投资者意愿的持有期是由其 拥有的资产和负债的性质决定的。
What will be the price of each purchase? What is the holding-period return?
2022/3/23
15
Interest Rate Uncertainty &
Forward Rates
Example:
Suppose that most investors have short-term horizons and therefore are willing to hold the 2-year bond only if its price falls to $881.83. At this price, the expected holding-period return on the 2-year bond is 7% . The risk premium of the 2-year bond, therefore, is 2%; it offers an expected rate of return of 7% versus the 5% risk-free return on the 1-year bond. At this risk premium, investors are willing to bear the price risk associated with interest rate uncertainty.
2022/3/23
11
Forward Rates
(1 yn )n (1 yn1)n1 (1 rn )
(1
rn )
(1 yn )n (1 yn1)n1
Total growth factor of an investment in an (n-1)-year zero
2022/3/23
12
Interest Rate Uncertainty & Forward Rates
2. Invest the same price in a 1-year zero-coupon bond with a yield to maturity of 5%. Then reinvest in another 1-year bond.
2022/3/23
10
Example
We compare two 3-year strategies. One is to buy a 3-year zero, with a yield to maturity of 7%, and hold it until maturity. The other is to buy a 2-year zero yielding 6%, and roll the proceeds into a 1-year bond in year 3, at the short rate r3.
Bond stripping / bond reconstitution
2022/3/23
5
1. 利率期限结构
三Leabharlann Baidu主要理论:
无偏预期理论 流动性溢价理论 市场分割理论
1. 利率期限结构
无偏预期理论
某一特定时间下的收益曲线反映了当时市场对未来短期利率的 预期。
长期利率是现行的短期利率与预期的短期利率的几何平均值。
The structure of interest rates for discounting cash flows of different maturities. (不同证券的市场收益率 或利率)
Yield curve(收益率曲线): 收益与到期期限的关系
flat, upward-sloping, downward-sloping, humped-shaped
2022/3/23
13
Interest Rate Uncertainty & Forward Rates
Example(Certainty): Suppose that today’s rate is r1=5%, and that the expected short rate for the following year is E(r2)=6%. If investors cared only about the expected value of the interest rate, what would be the price of a 2-year zero?
比较:银行,寿险公司
利率是由某个期限等级或某个分割市场内的供求条件决定 的。
Term Structure of interest Rate
Yield Curve under Certainty Consider 2-year bond strategies:
1. buying the 2-year zero offering a 2-year yield to maturity of 6%, and holding it until maturity
In a certain world:
Two consecutive 1-year investments in zeros would need to offer the same total return as an equal-sized investment in a 2-year zero.