波长色散X射线荧光光谱法测试钇稳定二氧化锆

X射线荧光光谱分析原理

一 X射线荧光光谱分析原理 利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X 射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。 X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X 光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅

度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。 X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器。探测器和记录等与X射线荧光光谱仪相同。 X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。 X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 二企业挑选X线荧光光谱仪的基本准则应该包括满足要求、优良性能和低购入成本三个方面。 1.满足使用要求是最基本要素

X射线荧光光谱仪介绍

X-射线荧光光谱仪(XRF) 1、仪器介绍 X-射线荧光光谱仪(XRF),现有日本Rigaku公司生产的ZSX primus波长色散型XRF一台,及配套所必须的电源设备、冷循环水设备和前处理熔样机等。X射线荧光光谱分析技术制样简单、分析快速方便、应用广泛,可用于测定包括岩石、土壤、沉积物等在内的各种地质样品的化学组成。分析元素范围从Be(4)到U(92),最常见的是用于主量元素分析,如SiO2、Al2O3、CaO、Fe2O3T、K2O、MgO、MnO、Na2O、P2O5、TiO2、LOI等元素。 2、仪器功能和技术参数: (1) 功能:定性分析、半定量分析和定量分析; (2) X射线管:4KW超薄端窗型(30μm)、铑靶X射线管; (3) 分光晶体:LiF(200)、Ge(111)、PET、RX25、LiF(220); (4) 进样器:48位自动样品交换器; (5) 测角仪:SC:5-118度(2θ);PC:13-148度(2θ); (6) 分析元素范围:Be4-U92; (7) 线性范围:10-2 - 10-6; (8) 仪器稳定度:≤0.05%; (9) 测量误差:<5%。 3、应用和优势: XRF应用广泛,可用于岩石、矿物、土壤、植物、沉积物、冶金、矿业、钢铁、化工产品等样品中常量和痕量的定量分析。具有快速方便、制样简单、无损测量、分析元素宽、灵敏度高等优点。 X-ray Fluorescence Spectrometer (XRF) 1、I nstrument Introducation: The wavelength dispersion X-ray fluorescence spectrometer (XRF) is ZSX primus, made by Rigaku, Japan, with a set of instruments of electrical power unit, cold circulating water equipment and automatic fusion machine. XRF is widely used for geological element analysis, including rocks, soils, sediments, etc, which is simplicity and convenience of operation. Its analyzable elements range is from Be (4) to U (92). XRF is most common for the analysis of major elements, such as SiO2, Al2O3, CaO, Fe2O3T, K2O, MgO, MnO, Na2O, P2O5, TiO2 and LOI. 2、Instrument Technical Parameters: (1) Fucation: qualitative analysis, semi-quantitative analysis and quantitative analysis; (2) X-ray tube: 4KW ultrathin end-window (30μm) Rh target X-ray tube;

X射线荧光光谱分析的基本原理解析

X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。 K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K 系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射。 如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE 释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数 Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定 的关系,据此,可以进行元素定量分析。 X射线荧光光谱法有如下特点: 1,分析的元素范围广,从4Be到92U均可测定; 2,荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便; 3,分析浓度范围较宽,从常量到微量都可分析。重元素的检测限可达ppm量级,轻元素稍 差; 4,分析样品不被破坏,分析快速,准确,便于自动化。 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子

稳态瞬态荧光光谱仪(FLS 920)操作说明书

稳态/瞬态荧光光谱仪(FLS 920)操作说明书 中级仪器实验室 一、仪器介绍 1.FLS 920稳态/瞬态荧光光谱仪具有两种功能 稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。 瞬态测量:荧光(磷光)寿命(100ps—10s)。 适合各类液体和固体样品的测试。 2.主要应用 高分子和天然高分子自然荧光的研究 溶液中大分子分子运动的研究 固体高分子取向的研究 高聚物光降解和光稳定的研究 光敏化过程的研究 3.主要性能指标 光谱仪探测范围:(光电倍增管, 190-870nm;Ge探测器,800-1700nm) 荧光寿命测量范围:100ps-10s 信噪比:6000:1(水峰Raman) 可以配用制冷系统,为样品提供变温环境 液氮系统(77K-320K) 使用Glan棱镜,控制激发光路、发射光路的偏振状态 使用450W氙灯和纳秒、微秒脉冲闪光灯做激发光源 F900系统软件:控制硬件,包括变温系统,数据采集、分析

4. 仪器主要部分结构图

5.仪器光路图 二、仪器测试原理(SPC) 时间相关单光子计数原理是FLS920测量荧光寿命的工作基础。 时间相关单光子计数法(time-correlated single photon counting)简称“单光子计数(SPC)法”,其基本原理是,脉冲光源激发样品后,样品发出荧光光子信号,每次脉冲后只记录某特定波长单个光子出现的时间t,经过多次计数,测得荧光光子出现的几率分布P(t),此P(t)曲线就相当于激发停止后荧光强度随时间衰减的I(t)曲线。这好比一束光(许多光子)通过一个小孔形成的衍射图与单个光子一个一个地通过小孔长时间的累计可得完全相同的衍射图的原理是一样的。

X射线荧光光谱分析法

X射线荧光光谱分析法 利用原级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。 简史20世纪20年代瑞典的G.C.de赫维西和R.格洛克尔曾先后试图应用此法从事定量分析,但由于当时记录和探测仪器水平的限制,无法实现。40年代末,随着核物理探测器的改进,各种计数器相继应用在X射线的探测上,此法的实际应用才成为现实。1948年H.弗里德曼和L.S.伯克斯制成了一台波长色散的X射线荧光分析仪,此法才开始发展起来。此后,随着X射线荧光分析理论和方法的逐渐开拓和完善、仪器的自动化和计算机水平的迅速提高,60年代本法在常规分析上的重要性已充分显示出来。70年代以后,又按激发、色散和探测方法的不同,发展成为X射线光谱法(波长色散)和X 射线能谱法(能量色散)两大分支,两者的应用现已遍及各产业和科研部门。 仪器X射线荧光分析仪(见彩图)主要由激发、色散(波长和能量色散)、探测、记录和测量以及数据处理等部分组成。X射线光谱仪与X射线能谱仪两类分析仪器有其相似之处,但在色散和探测方法上却完全不同。在激发源和测量装置的要求上,两类仪器也有显著的区别。

X射线荧光分析仪按其性能和应用范围,可分为实验室用的X射线荧光光谱仪和能谱仪、小型便携式X射线荧光分析仪及工业上的专用仪器。 X射线荧光光谱仪实验室用的X射线荧光光谱仪的结构见图1 。由X射线管发射出来的原级X射线经过滤光片投射到样品上,样品随即产生荧光X射线,并和原级X射线在样品上的散射线一起,通过光阑、吸收器(可对任何波长的X射线按整数比限制进入初级准直器的X射线量)和初级准直器(索勒狭缝),然后以平行光束投射到分析晶体上。入射的荧光X射线在分析晶体上按布喇格定律衍射,衍射线和晶体的散射线一起,通过次级准直器(索勒狭缝)进入探测器,在探测器中进行光电转换,所产生的电脉冲经过放大器和脉冲幅度分析器后,即可供测量和进行数据处理用。对于不同波长的标识X射线,通过测角器以1:2的速度转动分析晶体和探测器,即可在不同的布喇格角位置上测得不同波长的X射线而作元素的定性分析。

X射线荧光光谱分析基本原理及仪器工作原理解析

X射线荧光光谱分析基本原理 当能量高于原子内层电子电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子成为俄歇电子.它的能量是具有独一特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差,因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。如图所示: K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=E K-E L,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线, L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X 射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。而我们天瑞仪器公司生产的X射线荧光光谱仪就属于能量色散型的。下面是仪器的工作原理图: 能量色散型X射线荧光光谱仪工作原理 仪器工作原理 通过高压工作产生电子流打入到X光管中靶材产生初级X射线,初级X射线经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数模转换输入到计算机,计算机计算出我们需要的结果。

X射线荧光光谱仪结构和原理

X射线荧光光谱仪结构和原理 第一章 X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。 波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合 则结合了两者的优点。 X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和 数据处理等几部分组成。 § 1.1激发源 激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子 和同步辐射光源。波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管, 功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。能量色散X射线荧光光谱仪用 的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象 和核衰变等。商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的Y射线、电子俘 获和内转换所产生X射线和同步辐射光源。 § 1.1.1 X射线管 1、X射线管的基本结构 目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图 如下: X 光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并

岛津分子荧光光谱仪RF-5301PC氙灯安装及性能测试(整理的说明书)

岛津分子荧光光谱仪 RF-5301PC 氙灯安装和性能测试

岛津分子荧光光谱仪RF-5301PC 氙灯安装和性能测试 摘要:介绍了岛津分子荧光谱仪RF-5301PC的氙灯安装和仪器的灵敏度,S/N,波长准确度测试,及荧光谱仪的结构和一些主要构件。 面向的对象:主要是化验人员的仪器维护和初次接触荧光光谱仪的工程人员。另一个目的也是自己以后维护便于查看。这个仪器接触不多,也希望其他朋友帮助指正。 目录: 一些安全问题------------------------------------------------------1楼 仪器的一个不能和计算机通信的问题解决------------------------1楼 RF-5301的通信设置---------------------------------------------------2楼 灯的安装及位置的校准------------------------------------------------3楼 仪器灵敏度的调整(增益调整)------------------------------------4楼 仪器性能测试(S/N的测试)----------------------------------------5楼 校准波长准确度---------------------------------------------------------6楼 分子荧光光谱仪介绍---------------------------------------------------7楼 参考文献: 图片后面的【x】表示引用的文献。 仪器专场展示:分子荧光光谱圆二色光谱拉曼光谱

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

EI操作手册稳态瞬态荧光光谱仪(FLS 920)操作说明书

Edinburgh Instrument FLS920 User Manual

目录 一、开机步骤 (2) 二、实验操作 (4) 1、实验前准备 (4) 2、稳态实验 (6) A、发射光谱实验 (6) B、激发光谱实验 (9) C、同步谱 (10) D、Map (11) E、偏振光谱 (12) 3、低温实验 (17) A、液氮冷却系统(Oxford) (17) B、ARS冷却系统 (19) 4、样品衰减操作 (22) A、纳秒、皮秒级衰减 (22) 纳秒灯为光源 (22) 激光器为光源 (27) B、微妙、毫秒级衰减 (29) 三、数据处理 (32) 1、数据一般处理 (32) 2、稳态光谱 (33) 3、瞬态光谱 (33) 四、附录 (36) 1、氢灯清洗方法 (36)

一、开机步骤 1、打开总电源(开之前保证所有仪器开关关闭) 2、开启PH1 3、开启PMT制冷电源CO1 4、开启光谱仪控制电源CD920(控制盒)或样品室下方的控制板电源 此为控制盒 此为控制板 5、根据需要的光源开启氙灯或是其它灯源电源 此为氙灯电源 此为氢灯电源

6、开启电脑,同时将谱仪样品室上方盖子移开。待进入操作系统后进入F900软件。

二、实验操作 1、实验前准备 在做实验前有几点需要注意: A 、 对于红敏PMT (R928),其制冷必须达到一定温度,一般为室温-40℃左右。待C O 1 显示在-17℃左右的时候,在软件的S i g n a l R a t e 窗口里观察E m 1的C P S 读数显示。 若其读数维持在50C P S 以下,则表明读数正常,P M T 制冷达到工作状态,可以用该探测器进行实验。 Fig.2.1 B 、 对于近红PMT (5509),其必须准备以液氮杜瓦罐(约15升左右),将制冷部件的 管子插入罐中,开启制冷电源 Fig.2.2 制冷电源 杜瓦罐 通气管道

2021年X射线荧光分析的基本原理

X射线荧光分析的基本原理 欧阳光明(2021.03.07) 1. 绪论 物质是由各种元素按照不同的构成方式构成的。各种元素的原子是由原子核和一定数目的核外电子构成。不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O…层。K层上的电子能量最低,由里向外,电子的能量逐渐升高。原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子……。当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内层电子层上即出现一个“空穴”。具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.001~10nm)。为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。对于K 层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为Kα谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为Kβ谱线,其他层的电子发生跃迁时的情况依此类推(如图 1.1所示)。利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分析,称为X射线荧光光谱分析。 图1.1原子结构示意图 在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。对K层电子而言,特定元素的荧光X射线Kα>Kβ,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。 2. X射线与固体之间的相互作用

荧光光谱检测技术

荧光光谱技术是一种重要的光电检测技术,具有许多独特优势,选题合理。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80 荧光光谱检测技术 荧光光谱技术是一种重要的光电检测技术,特别是在物质种类检测中有着重要的应用。它是对辐射能激发出的辐射强度进行定量分析的发射光谱分析方法。物体经过叫短波长的光照射后辐射出较长波长的光,这种光就是荧光,最常见的日光灯的发光原理就是物质吸收较短波长的光(紫外光)能量辐射出较长波长的光(可将光)的现象。 一、荧光光谱检测技术原理 通常条件下,分子处于单重态的基态。分子受到紫外至红外激励的光子入射作用后,分子得到受激而引起电子能级的跃迁或振动和转动能级的跃迁,分子受激后,处于电子激发的单重态的某种振动激发态( v ≠0)的分子(见图1)或通过内部转换(Internal Conversion)和振动弛豫(Vibrational Relaxation)的非辐射,相继发 射荧光光子,回到电子基态得到荧光光谱 hv;或通过激发单重态S1和激发三重 f 态T1间的系间窜越(Intersystem Crossing)和振动弛豫至T1 ( v =0),放出能量回到基态S0( v =0,1)得到荧光光谱的光子 hv。 r 图1 光致发光系统部分

每一种物质的分子或原子结构是独一无二的,原子能级图也就有不同的分布,原子能级跃迁也就会辐射出不同频率的电磁波,就好比是人的指纹;每一种物质的荧光效应都有其特定的吸收光的波长和发射的荧光波。利用这一特性,可以定性鉴别物质。研究分子的荧光光谱可为研究分子的微观结构、分子的构象特点及变换情况提供帮助。 任何发荧光的分子都具有两个特征光谱:荧光激发光谱(Excitation Spectrum)和荧光发射光谱(Emission Spectrum)。它们是荧光分析法进行定性和定量分析的基本参数和依据,也是荧光光谱稳态分析中的两个基本特征。 二、荧光光谱检测技术的特点 1.灵敏度高 荧光光谱检测分析有着极高的灵敏度。与常用的紫外—可见分光光度法比较,荧光是从入射光的直角方向检测,即在相对的暗背景下检测荧光的发射,而分光光度法是在人射光的直线方向检测,即在亮背景下检测暗线。因此一般荧光检测分析的灵敏度要比分光光度法大2-3个数量级。例如,对易致癌的3, 4苯并花(3,4-Benzopyrene)的测定,若采用分光光度法,可检测到10-6数量级;而采用荧光法可以达到10-9数量级。 2.选择性强 荧光光谱包括激发光谱和发射光谱。所以荧光法既能依据特征发射,又可按照特征吸收,即用激发光谱来鉴定物质.假如某几种物质的发射光谱相似,可从激发光谱差异区分它们。若其吸收谱相同,则可用发射谱将其区别。因此,与只能得到待测物质的特征吸收光谱的分光光度法相比,在鉴定物质时,荧光法选择性更强。 3.样品用量少及方法简便 由于灵敏度高,所以可大大减少样品用量。特别在使用微量样品时,效果明显。例如用荧光法测定蛋白质中色氨酸的含量时,只用40ug的样品即可。另外荧光分析方法简便,快速。 4.能提供较多的物理参数 可提供包括激发光谱、发射光谱及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数.这些参数反映了分子的各种特性,且通过它们可以得到被研究分子的更多信息,这也是分光光度法不能相比的地方。 5. 环保特点 具备环保性,试验后的样品不污染环境,绿色检测手段,将会获得不断推广。 三、荧光光谱检测技术的应用 由于荧光光谱检测具有如上诸多优点,所以在工程应用中有着广泛的应用,如在食品加工过程中用于食品安全的监测、地质学中用于石油矿物勘探、土壤矿物成分的测定以及物质中微量元素的检测等等。 1.用于元素种类的定性分析 由Moseley 定律可知: 1 =- K Z S () λ

光谱仪荧光寿命模块升级

光谱仪荧光寿命模块升级 一、设备用途 在现有稳态荧光光谱仪上选择一套升级瞬态功能,用于荧光寿命和磷光寿命的测量。 二、技术指标 1,现有两套稳态荧光光谱仪型号:(1)爱丁堡 FLS920;(2)Horiba JY FluoroMax-4。 2,荧光寿命: 2.1工作原理:时间相关单光子计数(TCSPC) 2.2测量寿命范围:100ps-50μs 2.3激发光源:单波长皮秒脉冲LED,或者单波长皮秒脉冲激光器 *2.4实现时间分辨激发光谱、时间分辨发射光谱测量,可以同时测量得出多组分样品中各个组分的荧光寿命 2.5数据采集模块通过USB与计算机连接,通过软件自动切换 3,磷光寿命: *3.1测量寿命范围:1μs-10s 3.2最小时间分辨率≤10ns 3.3激发光源:微秒闪光灯,波长范围200-800nm 3.4完成时间分辨激发光谱、时间分辨发射光谱测量 4,配置清单: 4.1 寿命测试模块一套 4.2 微妙闪光灯一个,波长范围:200-800nm 4.3 405nm,485nm 或波长相近激光器各一个 5, 升级增值项目:可实现低温荧光寿命测量。 三、技术服务 1,设备安装调试 仪器到达用户所在地后, 在接到用户通知后1周内执行安装调试直至达到验收指标。

2,技术培训 在用户所在地对用户进行1~2人、为期至少1天的免费培训。培训内容包括仪器的技术原理、操作、数据处理、基本维护等。 3,保修期:提供1年全面免费保修,保修期自技术验收签字之日起计算。保修期满前1个月内卖方应负责一次免费全面检查,并写出正式报告,如发现潜在问题,应负责排除。 4 维修响应时间:卖方应在24小时内对用户的服务要求作出响应,一般问题应在48小时内解决,重大问题或其它无法迅速解决的问题应在一周内解决或提出明确解决方案,否则卖方应赔偿相应损失。

X射线荧光原理及其分析应用

X射线荧光分析原理及其应用 刘召贵白燕春编著 西安市西清华仪器研究所 一九九五年二月二十日

前言 X射线荧光分析技术是一门新兴的分析技术,利用这种技术,可以对固体、粉末、液体甚至气体等样品进行定性和定量分析。 作为一门分析技术,X射线荧光分析具有如下几个突出的特点:1)分析速度快;几十秒至几分钟内可同时分析样品中的多个元素; 2)分析准确度高; 3)无损; 4)与化学状态没有关系; 5)制样简单。鉴于以上突出优点,X 射线荧光分析技术在冶金、有色、地质、煤炭、造纸、建材、考古、商检等许多领域得到了越来越广泛的应用。对迅速指导生产起到了重大作用。 本书作为X射线荧光分析技术速成讲义,是以西安市西清华仪器研究所研制的WTH、GD系列X荧光分析仪为背景,本着深入浅出和理论结合实际的原则,旨在使初学者在短期内迅速掌握这门新兴的技术。 本讲义的第一、三、四、五讲由刘召贵编著,第二、六讲由白燕春编著。由于作者的水平有限,加上时间仓促,书中难免有不妥之处,希望大家提出宝贵意见,以便我们在今后的工作中做得更好。 编著者 一九九五年二月二十日

目录 第一讲X射线荧光及其分析原理 (1) 1、X射线 (1) 2、X射线荧光 (2) 3、特征X射线 (2) 4、X射线对物质的作用 (4) 5、X射线荧光分析 (4) 6、X射线荧光分析法与其它分析方法的比较 (4) 第二讲X射线荧光分析仪的原理及其构造 (6) 1、X射线荧光分析仪的分类 (6) 2、波长色散型 (6) 3、能量色散法 (8) 4、波长色散与能量色散仪器的比较 (10) 5、其他 (10) 第三讲样品的制备以及激发源的准备 (11) 1、制备样品的目的 (11) 2、样品中导致测量误差的主要因素 (11) 3、样品的制备 (11) 4、激发源的准备 (12) 第四讲基体效应的实验和数学校正法及其谱处理 (14) 1、基体效应的概念 (14) 2、基体效应的校正方法 (16) 3、经验系数法 (16) 4、校正效果的判断 (18) 5、校正元素的选择 (19) 6、谱处理 (19) 7、定性分析 (19) 第五讲X荧光分析测量一些基本概念 (21) 1、精密度 (21) 2、准确度 (21) 3、计数统计误差 (21) 4、检出限 (22) 5、灵敏度 (22) 6、漂移 (22) 7、误差 (22)

PTI荧光稳态测量系统操作说明书 20101013

荧光稳态测量系统(PTI QuantaMaster TM 4CW)操作说明书 一.仪器介绍 1.荧光稳态测量系统(PTI QuantaMaster TM 4CW)功能 PTI推出的QuantaMaster/TimeMaster系列荧光稳态/瞬态测量系统具有测量可靠、灵敏度高、使用方便、配制灵活等优点,做稳态时:系统信噪比一般为6000:1,最高可达12000:1,数据采集速度可达1000 点/秒,波长范围从紫外到近红外,样品所处的环境温度可调。在稳态光谱测量中,通过使用光子计数技术,提供最高的微弱信号检出能力,可对荧光物质进行定性检测和定量分析。除常规的荧光稳态测量外,还可进行各向异性(偏振)、双发射、化学和生物发光等方面的测量。做瞬态(荧光寿命)测量时,系统采用了先进的频闪分时测量技术和非线性时标据采集技术,具有测量速度快、精度高、灵敏度高、使用方便、配制灵活等优点,是目前测量速度最快、最先进的荧光寿命测量系统。该系统能够探测7pM荧光素的寿命,最短测量寿命可达100ps。激发光源可采用激光、弧光脉冲及LED灯以满足不同的应用。通过扩展和升级,可实现电致发光、磷光、荧光比率和比率成像等的测量。 主要应用:1、光物理与光化学、光合作用机理;2、分子反应动力学;3、突变筛选;4、缩氨酸结合动力学;5、FRET动力学;6、发射光谱和荧光淬灭; 7、荧光量子产率、荧光偏振及导向性;8、蛋白质结构与折叠的研究;9、DNA 测序研究、ds-DNA中的染料探针;10、膜的渗透性及结构研究、膜的流动性和脂相转移;11、药物与生物体系相互作用的检测;12、溶剂-溶质相互作用; 13、麻醉过程研究;14、蛋白结构和折叠;15、核酸动态特性与结构;16、光合作用机理;17、激发态特性;18、层面研究;19、膜的渗透性与离子转移;20、膜的动态特性和结构;21、分子距离和旋转动态特性;22、溶剂与溶质的相互作用;23、微胞结构与反应动力学;24、污染物质的探测与辨别;25、聚合物结构和动态特性;26、药与生物系统的相互作用;27、混合荧光物质的探测与辨别。

荧光数据的可靠性测定(二)

荧光数据的可靠性测定(二) 刘美蓉 (分析测试中心光谱组电话:62566250 Email: mrliu@https://www.360docs.net/doc/d31865159.html,) 1.背景介绍 在荧光光谱仪的测试过程中,有很多影响因素决定了获得数据的可靠性(本文所有数据均出自Edinburgh FLS980 荧光光谱仪)。比如,杂散光、样品架、样品槽、脉冲周期、积分球污染等。本文从稳态、寿命,量子产率三个方面探讨可能影响测定结果准确性的因素。 2.方法介绍 2.1 技术原理: 一般固体样品散射光较强,溶液样品散射光较弱,散射光的强度与粒径大小的六次方成正比,粒径越小,散射光越弱。稳态光谱或寿命测试中可以通过添加滤光片或者与KBr 研磨压片,来降低杂散光,获得真实的荧光数据。寿命测试中,寿命曲线衰减是否完成直接影响拟合寿命值的准确性。寿命曲线必须衰减完成,才可以得到准确的寿命值。量子产率测定中,样品槽、积分球都会吸收光,造成量子产率测定的不准确性;溶液吸光度不同,会显著影响量子产率测定值;积分球污染会产生不必要的荧光,致使量子产率无法测试。 2.2实验方法: 稳态光谱 (1)杂散光的影响 一般固体样品散射光较强,溶液样品散射光较弱,散射光的强度与粒径大小的六次方成正比,粒径越小,散射光越弱。有的样品散射光非常强,如TiO 类样品,散射光远远 2 超过荧光信号,对测试带来极大的影响,无法获得真实的数据。因此,测试固体样品或浓溶液样品时,需要在激发处加带通滤光片,发射处加截止滤光片,有必要的话在激发、发射处加两片以上滤光片。

500 600 700 800 20000 40000 60000 80000 F l u o r e s c e n c e I n t e n s i t y wavelength/nm 470520570620670720770 -5000 05000 1000015000200002500030000 35000 F l u o r e s c e n c e I n t e n s i t y wavelength/nm (a )激发370nm ,激发处加370nm(带宽10nm) (b) 激发370nm ,激发处加370nm(带宽10nm) 滤光片,发射处加400nm 长通滤光片 滤光片,发射处加400nm 和420nm 长通滤光片 图1 TiO 2类样品荧光发射光谱 TiO 2类样品散射非常强,在370nm 激发下做荧光发射光谱时,图1(a )激发处加了370nm 带通滤光片,发射处加了400nm 长通滤光片,做出的谱图依旧完全没法用(670nm 后谱图有显著变化是因为仪器自带的自动长通滤光片670nm 在起作用);发射处又加了420nm 的长通滤光片,对杂散光抑制就非常好,得到样品的正常发射光谱,如图1(b )显示。 (a )发射处加400nm 长通滤光片 (b) 激发处加290nm-380nm 带通 (c )与KBr 混合研磨压片, 滤光片,发射处加400nm 长通滤光片 激发处加290nm-380nm 带通 滤光片,发射处加400nm 长 通滤光片 图2 某有机样品荧光发射光谱(激发350nm ) 某有机样品散射非常强,在350nm 激发下做荧光发射光谱,图2(a )发射处加了400nm (a ) (b ) (c )

荧光光谱的相关概念

实验1-4 荧光谱测量 发布时间:2008-06-23 实验1-4 荧光谱测量 某些物质受到电磁辐射而激发时,它们能重新发射出相同或较长波长的光。这种现象称为光致发光,荧光是光致发光现象中最常见的类型。如果停止照射,则荧光很快( 10-6s)地消失。通常所观察到的荧光现象是指物质吸收了波长较短的紫外光后发出波长较长的可见荧光。实际上,荧光现象并不限于上述情况。有些物质吸收了紫外光,仍然发出波长稍长的紫外荧光。有些物质吸收了比紫外光波长短得多的X射线,然后发出波长比所吸收的X射线的波长稍长的X射线荧光,据此而建立了X射线荧光分析法。通过测量荧光的强度,可用于定量测定许多无机和有机物质,它已成为一种很有用的分析方法,特别在生物化学方面有着广泛的应用。通过实验学习和掌握荧光光度计测定物质荧光光谱的原理和方法;熟悉荧光分光光度计的结构及使用方法;测量物质的荧光光谱 一、实验原理 发光物质因引起发光的原因不同可分为:热致发光、光致发光、电场致发光、阴极射线发光、高能粒子发光及生物发光等多种发光方式。光致发光的原理是分子在吸收了光能后,从基能态跃迁到高能态,在它们再从高能态返回基能态时,以光能的形式向外释放之前吸收的外来能量,即光致发光所发生的光。 (一)荧光的产生 物质吸收光能后所产生的光辐射称之为荧光和磷光单重态和三重态。分子中的电子运动包括分子

轨道运动和分子自旋运动,分子中的电子自旋状态,可以用多重态2S+1描述,S为总自旋量子数。若分子中没有未配对的电子,即S=0,则2S+1=1,称为单重态;若分子中有两个自旋方向平行的未配对电子,即S=1,则2S+1=3,称为三重态。 大多数分子在室温时均处在电子基态的最低振动能级,当物质分子吸收了与它所具有的特征频率相一致的光子时,由原来的能级跃迁至第一电子激发态或第二电子激发态中各个不同振动能级,其后,大多数分子常迅速降落至第一电子激发态的最低振动能级,在这一过程中它们和周围的同类分子或其他分子撞击而消耗了能量,因而不发射光。过程如图1-4-1所示。 处在第一激发单重态的电子跃回基态各振动能级时,将产生荧光,在这一过程中除了荧光还有磷光,以及延迟荧光等,本次实验我们主要讨论荧光。荧光的产生在10-7-10-9S内完成。荧光和磷光的根本区别:荧光是由激发单重态最低振动能层至基态各振动能层之间的跃迁产生的;而磷光是由激发三重态最低振动能层至基态各振动能层之间的跃迁产生的。

X射线荧光光谱仪原理及主要用途

X荧光光谱仪主要使用领域 X荧光光谱仪原理 仪器是较新型X射线荧光光谱仪,具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平,分析时间短。薄膜分析软件FP-MULT1能作镀层分析,薄膜分析。测量样品的最大尺寸要求为直径51mm,高40mm. 仪器类别: 0303040903 /仪器仪表 /成份分析仪器 /荧光光度计 指标信息: 1.发射源是Rh靶X光管,最大电流125mA,电压60kV,最大功率3kW2.仪器在真空条件下工作,真空度<13pascals 3.5块分析晶体,可以分析元素周期表F~U之间所有元素,含量范围是ppm~100%4.分析软件是Philips公司(现为PANalytical)最新版软件,既可作半定量,也可定量分析。精密度:在计算率N=1483870时,RSD=0.08% 稳定性计算率Nmax=6134524,Nmin=6115920,N平均=6125704,相对误差为0.03% 附件信息:循环水致冷单元,计算机 P10气体瓶空气压缩机 分析对象主要有各种磁性材料(NdFeB、SmCo合金、FeTbDy)、钛镍记忆合金、混合稀土分量、贵金属饰品和合金等,以及各种形态样品的无标半定量分析,对于均匀的颗粒度较小的粉末或合金,结果接近于定量分析的准确度。X荧光分析快速,某些样品当天就可以得到分析结果。适合课题研究和生产监控。 X射线荧光光谱仪分为波长色散、能量色散、非色散X荧光、全反射X荧光。 波长色散X射线荧光光谱采用晶体或人工拟晶体根据Bragg定律将不同能量的谱线分开,然后进行测量。波长色散X射线荧光光谱一般采用X射线管作激发源,可分为顺序式(或称单道式或扫描式)、同时式(或称多道式)谱仪、和顺序式与同时式相结合的谱仪三种类型。顺序式通过扫描方法逐个测量元素,因此测量速度通常比同时式慢,适用于科研及多用途的工作。同时式则适用于相对固定组成,对测量速度要求高和批量试样分析,顺序式与同时式相结合的谱仪结合了两者的优点。

荧光光谱技术在肿瘤诊断中的应用

荧光光谱技术在肿瘤诊断中的应用 院系: 专业: 学生姓名: 学号: 二〇一年月日

摘要 分析归纳了荧光光谱技术的产生和发展,并说明了其应用中存在的优缺点;阐述了人体正常组织和癌变组织在激光激发下辐射出的荧光光谱存在一定的差异,并以此为依据介绍荧光光谱技术在肿瘤诊断中的应用。 关键词:荧光光谱;肿瘤;诊断

ABSTRACT Analysis and summarizes the emergence and development of fluorescence spectroscopy, and describes the advantages and disadvantages of its application; expounds there are some differences between the fluorescence spectra of the body's normal tissue and cancerous tissue radiated in the laser excitation, and introduces the fluorescence spectroscopy in tumor diagnosis on the basis of the above content. Keywords: Fluorescence spectroscopy; tumor; diagnosis

目录 引言 (1) 1荧光光谱技术简介 (1) 1.1荧光发光机制 (1) 1.2荧光光谱系统 (1) 1.3荧光光谱技术的分类 (2) 2荧光光谱技术在肿瘤诊断方面的应用 (2) 2.1荧光光谱技术应用于肿瘤诊断的基本依据 (2) 2.2荧光光谱技术对于肿瘤的辅助诊断价值 (3) 3荧光光谱技术应用的展望 (3) 结语 (4) 参考文献 (5)

相关文档
最新文档