端面齿轮-齿轮啮合理论

齿轮啮合原理考题

一、基本概念(35分) 1.解释齿轮的瞬心线? 如图示,假设O 1和O 2是平面啮合时用来传递运动的两平行轴,从1O 轴向2O 轴传递回转运动,在垂直于轴线1O 和2O 的平面内,构件1和2的相对运动可以归结为两条共轭曲线的相互滚动,这两条相互滚动的共轭曲线就是瞬心线。 2.解释齿轮的瞬时回转轴? 答:两齿轮在空间任意点M 处的相对运动速度v 12 ,由式 v v r w r w v 2010221112 -+?-?=可以证明,空间上任意一点处的v 12 是和这个点绕某 个定轴作一定的螺旋运动时形成的线速度相同的。轴线k 称为瞬时回转轴,简称瞬时轴。 3.解释齿轮的瞬轴面? 答:让瞬时回转轴k 绕两个齿轮的轴线回转,可以得到两个双曲回转面P1及P2,它们称为两齿轮的瞬轴面。则P1和P2在k 轴处是相切的,当它们在切线处的相对运动速度v 12 =0,两瞬轴面作纯滚动。反之,它们会产生相对的的滑动。 4.解释共轭齿形? 答:齿轮传动过程中,两瞬心线作相对的纯滚动,两齿形则应时时保持相切接触(有相对滑动),它们常称为互相共轭的齿形或者共轭齿形。则得到,共轭齿形的公法线一定通过该瞬时的瞬心点P 。 5.解释啮合面? 答:配对曲面∑1和∑2在每一瞬时彼此沿一条线相接触,该线称作瞬时接触线。啮合面是表示在与机架刚性固接的固定坐标系f S 中的瞬时接触线族。啮合面用下列方程表 示:()(),,,,0f f u f u r r θφθφ== 。 式中:11 f f M r r = ,这里4×4矩阵1 f M 描述从1S 到f S 的坐标 变换。 6.解释齿廓渐屈线? 答:一条曲线的渐近线是该曲线的曲率中心的轨迹,也是原曲线的法线族的包络。 如图示,图中原曲线为渐开线,1M 、2M 、3M 为渐开线

齿轮啮合原理作业

硕士学位课程考试试卷 考试科目:齿轮啮合原理 考生姓名:考生学号: 学院:专业:机械设计及理论考生成绩: 任课老师(签名) 考试日期:2013 年6月日午时至时

一、 基本概念(每题3分,共计24分) 1.解释齿轮的瞬心线? 答:对于作平面运动的两个构件1和2,瞬心线是瞬时回转中心在坐标系i S (i=1,2)中的轨迹。当坐标系i S 绕i O 转动时,瞬时回转中心I 就会描绘出瞬心线。当齿轮传动比为常数时,瞬心I 保持在1O 2O 上的位置,瞬心线是半径分别为12ρρ和的两圆。当齿轮传动比不是常数时,瞬心在回转运动传递过程中沿1O 2O 移动,瞬心线是非圆形曲线,呈封闭的或者不封闭的。当一个构件回转运动时,另一个构件直移运动时,瞬心线是一个圆和与圆相切的直线。 2.解释平面曲线的曲率? 答:如图1所示,用s 表示曲线的弧长。考察曲线上分别与s 和s s +?对应的两个相邻的点M 和N ,如图1(a)所示,点M 和N 之间的弧长s ?,而α?是点M 和N 处的两条切线之间的夹角。当点N 趋近于点M 时,比值s α ??的极限称为曲线在点M 处的曲率(标记为K )。将K 取倒数得1 K 称为曲线在点M 处的曲率半径(标记为c ρ)。 这里的c ρ是极限(密切)圆的半径,而极限圆是当两个相邻点N 和'N 趋近于点M 时通过点M 和该两个相邻点画出来的,如图1(b)所示。我们把圆心C 称为曲率中心。 图1 平面曲线的曲率 3.解释齿廓渐屈线? 答:齿廓渐屈线是给定齿廓曲线 曲率中心的轨迹,同时也是给定齿廓 曲线密切圆圆心的轨迹,如图2所示。 从图上可以看出,齿廓曲线上每一点 的法线都是和其渐屈线相切的,换句 话说,齿廓渐屈线是齿廓曲线法线的 包络。

齿轮啮合原理大作业

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:齿轮啮合原理教师:林超 姓名:张清亮学号:20150713090 专业:车辆工程类别:车辆工程领域上课时间:2015 年9 月至2015 年11 月 考生成绩: 卷面成绩平时成绩课程综合成绩 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

一、基本概念(每题2分,共计20分) 1、解释齿廓渐屈线? 答:一条给定齿廓曲线的渐屈线是该齿廓曲线曲率中心的轨迹,也是该齿廓曲线密切圆圆心的轨迹(图 1.1)。齿廓曲线每一点的法线都和其渐屈线相切,因此,齿廓渐屈线也是齿廓法线族的包络。 在齿轮的瞬心线给出的情况下(图1.2),齿轮齿廓的渐屈线可由p r PC =+确定, 式中p为齿廓渐屈线的径矢,r为瞬心线的径矢。PC的模l由下式确定: sin() 1sin PC l r d u d λμ λ φ - == ?? + ? ?? 式中r r =。在图1.10的直角坐标系中,齿廓的渐屈线方程为: cos cos() sin sin() x r l y r l φφλ φφλ =++ ? ? =++ ? 图1.1 齿廓的渐屈线图1.2 齿廓渐屈线坐标系本题参考文献:李特文. 齿轮几何学与应用理论[M]. 国楷, 叶凌云, 范琳等, 译. 上海: 上海科学技术出版社, 2008. 2、解释平面曲线的曲率? 答:在图1.3中,用s表示曲线的弧长。考察曲线上分别与s和s s +?对应的两个相邻的点M和N,图1.3(a)。点M和N之间的弧长s?,而α ?是点M和N处的两条 切线之间的夹角。当点N趋近于点M时,比值 s α ? ? 的极限称为曲线在点M处的曲率 (标记为K),即 lim s K s α ?→ ? = ? 。在 lim= s d s ds αα ?→ ? ? 存在的条件下, d K ds α =。比值 s α ? ? 称为曲线在点M处的曲率半径(标记为 c ρ),即= c s ρ α ? ? ,且 1 = c K ρ。这里的 c ρ是极限(密切)圆的半径,极限圆是当两个相邻点N和'N趋近于点M时通过点M和该两个相邻点画出的,图1.3(b)。圆心C称为曲率中心。

齿轮基础知识问答

齿轮基础知识问答 1.什么是齿廓啮合基本定律,什么是定传动比的齿廓啮合基本定律?齿廓啮合基本定律的作用是什么? 答:一对齿轮啮合传动,齿廓在任意一点接触,传动比等于两轮连心线被接触点的公法线所分两线段的反比,这一规律称为齿廓啮合基本定律。若所有齿廓接触点的公法线交连心线于固定点,则为定传动比齿廓啮合基本定律。 作用;用传动比是否恒定对齿廓曲线提出要求。 2.什么是节点、节线、节圆?节点在齿轮上的轨迹是圆形的称为什么齿轮? 答:齿廓接触点的公法线与连心线的交点称为节点,一对齿廓啮合过程中节点在齿轮上的轨迹称为节线,节线是圆形的称为节圆。具有节圆的齿轮为圆形齿轮,否则为非圆形齿轮。 3.什么是共轭齿廊? 答:满足齿廓啮合基本定律的一对齿廓称为共轭齿廓。 4.渐开线是如何形成的?有什么性质? 答:发生线在基圆上纯滚动,发生线上任一点的轨迹称为渐开线。 性质:(1)发生线滚过的直线长度等于基圆上被滚过的弧长。 (2)渐开线上任一点的法线必切于基圆。 (3)渐开线上愈接近基圆的点曲率半径愈小,反之则大,渐开线愈平直。 (4)同一基圆上的两条渐开线的法线方向的距离相等。 (5)渐开线的形状取决于基圆的大小,在展角相同时基圆愈小,渐开线曲率愈大,基圆愈大,曲率愈小,基圆无穷大,渐开线变成直线。 (6)基圆内无渐开线。 5.请写出渐开线极坐标方程。 答:rk = rb / cos αk θk= inv αk = tgαk一αk 6.渐开线齿廓满足齿廓啮合基本定律的原因是什么? 答;(1)由渐开线性质中,渐开线任一点的法线必切于基圆 (2)两圆的同侧内公切线只有一条,并且两轮齿廓渐开线接触点公法线必切于两基圆,因此节点只有一个,即 i12 =ω1 / ω2 =O2P / O1P =r2′/ r1′= rb2 / rb1 = 常数 7.什么是啮合线? 答:两轮齿廓接触点的轨迹。 8.渐开线齿廓啮合有哪些特点,为什么? 答:(1)传动比恒定,因为i12 =ω1 /ω2=r2′/r1′ ,因为两基圆的同侧内公切线只有一条,并且是两齿廓接触点的公法线和啮合线,因此与连心线交点只有一个。故传动比恒定。 (2)中心距具有可分性,转动比不变,因为i12 =ω1 /ω2=rb2 / rb1 ,所以一对齿轮加工完后传动比就已经确定,与中心距无关。

硕士齿轮啮合原理考试作业

*************学校 硕士学位课程考试试卷》 考试科目:齿轮啮合原理 考生姓名:考生学号: 学院:机械工程学院专业:机械制造及自动化考生成绩: 任课老师(签名) 。

~ 一 基本概念 1.解释齿轮的瞬心线? 两平面啮合齿轮的传动比可以是可变的,也可以是恒定的,传动比函数将确定两齿轮的瞬时角速度比,后者随第一个齿轮的转角1?而变化 )(2:112112???ωωf dt d dt d i == = 类似的 () 121121?ωf i == 在1?的变化范围内,函数()112?f i =取有限的正值。假定从1 o 轴向2o 轴传递回转运动(如图), 在垂直于轴线1o 和2o 的平面内, 构件1 和构件2的相对运动可以归结为两条共轭曲线的相互滚动,这两条相互滚动的共轭曲线叫瞬心线。 在齿轮啮合原理中,把瞬心P 称为啮合节点。传动比恒定时,节点P 固定不动;传动比是变数时,节点P 在连心线21O O 上作相应的变动。每个齿轮的瞬心线,就是节点p 在与该齿轮相固连的坐标系中的轨迹,因而两齿轮的相对运动可以归结为它们的瞬心线作纯滚动。 " 2. 解释共轭齿廓? 凡满足齿廓啮合基本定律的一对齿轮的齿廓称共轭齿廓,共轭齿廓的齿廓曲线称为共轭曲线。 共轭齿廓在接触点处的公法线(简称为齿廓法线)必须通过瞬心线的瞬时切点。这是齿廓啮合的基本定理,确定了一对共轭齿廓的几何条件。 共轭齿廓的曲线: 在已知一条齿廓曲线) (1Γ 和两构件相对运动的条件下,与) (1Γ 相共轭的齿廓曲线) (2Γ 的曲率 2k 可用下式求得: )1()12()1(11)12()1(12n dt r d k dt r d k ?-=??? ? ??+ωυ (1) 式中 ) 1(n ——齿廓) (1Γ 的幺法矢; 1k ——) (1Γ 的相对曲率。 \ 当) (1Γ 以方程式1111) 1()()(j u y i u x r +=给出时,1k 由下式计算: 2/32121 1111 1)(y x y x y x k '+''''-'''= (2) 3.解释Willis 定理? Willis 定理也称为啮合基本定理,起表述如下:按给定角速比变化规

哈工大(威海)机械原理大作业齿轮-31概论

Harbin Institute of Technology 课程名称:机械原理大作业说明书设计题目:齿轮机构设计(31)院系: 班级: 设计者: 学号: 指导教师: 设计时间:2015年5月 哈尔滨工业大学(威海)

齿轮传动机构设计 1、设计题目 1.电动机 2,4.皮带轮 3.皮带 5,6,7,8,9,10,11,12,13,14.圆柱齿轮15,16.圆锥齿轮。 序 号 电机转速 (r/min) 输出轴转速 (r/min) 带传动最 大传动比 滑移齿轮传动定轴齿轮传动 最大传 动比 模数 圆柱齿轮圆锥齿轮 一对齿轮 最大传动 比 模 数 一对齿轮 最大传动 比 模 数311450 44 49 57 ≤2.5 ≤4 2 ≤4 3 ≤4 3 2、传动比的分配计算 电动机转速min / 1450r n=,输出转速m in / 57 1 r n o =,min / 49 2 r n o =m in / 44 3 r n o =,,带 传动的最大传动比5.2 max = p i,滑移齿轮传动的最大传动比4 m ax = v i,定轴齿轮传动的最大传动比

4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为 439.2557145011=== o n n i 592.2949145022===o n n i 955.3244145033===o n n i 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为, 5.2max =p i 滑移齿轮的传动比为1v i 、2v i 、3v i ,定轴齿轮传动的传动比为f i ,则总传动比 f v p i i i i 1max 1= f v p i i i i 2max 2= f v p i i i i 3max 3 = 令4max 3==v v i i 则可得定轴齿轮传动部分的传动比为 2955.34 5.2955 .32m ax m ax 3=?=?= v p f i i i i 滑移齿轮传动的传动比 088.32955.35.2439 .25max 11=?= ?= f p v i i i i 592.32955 .35.2592 .29max 22=?= ?= f p v i i i i 定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 4488.12955.3max 33=≤===d f d i i i 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求: 1、每对相互啮合的齿轮最好互为质数; 2、每对相互啮合的齿轮的中心距相同; 3、啮合齿轮5、6的传动比约为088.31=v i ,啮合齿轮7、8的传动比约为592.32=v i ,

齿轮啮合原理考题

1.解释齿轮的瞬心线? 如图示,假设O 1和O 2是平面啮合时用来传递运动的两平行轴,从1O 轴向2O 轴传递回转运动,在垂直于轴线1 O 和2O 的平面内,构件1和2的相对运动可以归结为两条共轭曲线的相互滚动,这两条相互滚动的共轭曲线就是瞬心线。 2.解释Willis 定理? Willis 定理也称为啮合基本定理,起表述如下:按给定角速比变化规律传递平行轴之间的回转运动的两个齿廓,其接触点处的公法线应当通过瞬时啮合节点。Willis 定理确定了按给定传动比规律传递运动的一对齿廓共轭的几何条件。不论对定传动比的平面啮合,还是对变传动比的平面啮合都是正确的。 2.解释齿轮的瞬时回转轴? 答:两齿轮在空间任意点M 处的相对运动速度v 12 为v v r w r w v 2 10221112-+?-?=可以证明,空间上任意一点处的 v 12 是和这个点绕某个定轴作一定的螺旋运动时形成的线速度相同的。该定轴称为瞬时回转轴,简称瞬时轴。在平 行轴或相交轴的齿轮副中,即为两齿轮作相对的瞬时回转运动的轴线,在交错轴齿轮副中,即为两齿轮作相对的瞬 时螺旋运动的轴线。 3.解释齿轮的瞬轴面? 答:让瞬时回转轴k 绕两个齿轮的轴线回转,可以得到两个双曲回转面P1及P2,它们称为两齿轮的瞬轴面。则P1和P2在k 轴处是相切的,当它们在切线处的相对运动速度 v 12 =0,两瞬轴面作纯滚动。反之,它们会产生相对的 的滑动。 4. 解释平面曲线的曲率 曲线上有两个相邻的点M 和N ,它们之间的弧长为s ?,两点处的切线之间的夹角为α?。当两点趋于重合时,比值 s α ??的极限称为曲线在点M 处的曲率(标记为K ),即0lim s K s α?→?=?。曲线的曲率就是针对曲线上某个点的切线方 向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。 曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径 4.解释共轭齿形? 答:齿轮传动过程中,两瞬心线作相对的纯滚动,两齿形则应时时保持相切接触(有相对滑动),它们常称为互相共轭的齿形或者共轭齿形,并且共轭齿形的公法线一定通过该瞬时的瞬心点P 。 5.解释啮合面? 答:配对曲面∑1和∑2在每一瞬时彼此沿一条线相接触,该线称作瞬时接触线。齿轮齿面上瞬时接触线的位置决定于运动参数φ,啮合面是表示在与机架刚性固接的固定坐标系f S 中的瞬时接触 线族。啮合面用下列方程表示: () (),,,,0f f u f u r r θφθφ==。式中: 11f f M r r =,这里4×4矩阵 1 f M 描述从1S 到f S 的坐标变换。 5. 写出Eulor-Savary 的方程式? 212111sin 11r r a x x +=??? ? ??±+ρρ 在两瞬心线内切的情况下,方程式中凹形瞬心线的曲率半径应取负值。类似

机械原理大作业-齿轮(优推内容)

三、 齿轮传动设计 一、设计题目 如图所示一个机械传动系统,运动由电动机1输入,经过机械传动系统变速后由圆锥齿轮16输出三种不同的转速。根据表中的传动系统原始参数设计该传动系统。 1.机构运动简图 1.电动机 2,4.皮带轮 3.皮带 5,6,7,8,9,10,11,12,13,14.圆柱齿轮 15,16.圆锥齿轮 2.机械传动系统原始参数 序 号 电机转速 (r/min) 输出轴转速(r/min ) 带传动最大传动比 滑移齿轮传动 定轴齿轮传动 最大传动比 模数 圆柱齿轮 圆锥齿轮 一对齿轮最多传动比 模数 一对齿轮最多传动比 模数 28 1450 40 45 50 <=2.5 <=4 2 <=4 3 <=4 3 二、传动比的分配计算 电动机的转速1450/min n r =,输出转速1n =50r/min ,2n =45r/min ,3n =40r/min, 带传动的最大传动比max 2.5p i =,滑移齿轮的传动的最大传动比max 4v i =,定轴齿轮传动的最大传动比max 4d i =。 15 4 9 10 13 23 1 5 6 7 8 11 14 12 16

根据系统的原始参数,系统的总传动比为1i = 1 n n =1450/50=29.00 2i = 2 n n =1450/45=32.222 3i =3n n =1450/40=36.25 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为max 2.5p i =,滑移齿轮的传动比为1v i 、2v i 和3v i ,定轴齿轮传动的传动比为f i 则总传动比为 1max 1p v f i i i i = 2max 2p v f i i i i = 3max 3p v f i i i i = 令3max 4v v i i == 则可得定轴齿轮传动部分的传动比为f i = max max 3 *v p i i i =4 *5.225.36=3.625 滑移齿轮传动的传动比为1v i = f p i i i *max 1= 9 .2*5.229 =4 2v i = f p i i i *max 2=9.2*5.222 .32=4.444 定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 d i =3f i =3625.3=1.536 三、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、 8、9和10、为角度变位齿轮,其齿数: 52,19,41,17,50,231098765======z z z z z z 它们的齿顶高系数1a h *=,顶隙系数0.25c *=,分度圆压力角=20a o ,实际中心距取mm a 73=。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11, 12, 13和14为角度变位齿轮,齿数:==1311z z 17,==1412z z 23。它们的齿顶高系数

齿轮啮合原理

螺旋面加工中刀具干涉检查研究 1课题背景 随着机械制造工业的发展,各种新型螺杆机构不断涌现。螺杆泵、螺杆马达(钻具)、螺旋挤压机、螺杆式气体压缩机等设备在石油钻采、化工、轻工、军工、造船、橡塑等行业的应用日益广泛。虽然螺杆机构的设计制造技术具有悠久的历史,但由于新型螺杆机构的螺旋面廓形设计比较复杂,精度要求不断提高[1][2],一些大型螺杆的加工效率和制造成本问题越来越突出,而且国内外尚未制定出系统的设计制造标准。因此,从客观上促进了螺旋面加工技术的不断发展,使之成为目前机械制造领域中倍受关注的研究课题[3]。 目前,在三坐标数控螺杆铣床上,采用截面包络法加工复杂螺杆是一项新的螺杆加工工艺。与传统的展成法与成形法加工相比,该工艺方法具有切削用量大、加工效率高、刀具结构简单、对工件型线适应广、调整方便、可控精度高等许多优点。它是一种使标准刃形刀具相对于工件按一定规律作包络运动,加工出工件螺旋表面的铣削方法。其编程思想是从端截面出发,采用等精度曲线逼近的方法,使刀具切削刃在工件的接触轨迹在给定的精度范围内逼近工件的理论轮廓。使用这种编程方法加工出的螺杆能够满足一般精度螺杆的加工要求。目前,国产及进口专用机床所提供的编程系统均采用平面包络的计算方法,即认为在加工过程中刀具与工件的接触点(简称刀触点)轨迹为平面曲线,而实际上在三坐标专用铣床上进行包络加工时,刀触点轨迹为复杂的空间曲线。因此,按平面包络计算方法得到的刀具轨迹及数控程序必然存在理论误差,影响加工精度。如何才能找到一种快速高效的基于空间包络加工原理的编程方法,已经成为螺旋面数控加工研究领域的热点问题[4]。在众多的研究成果中,基于最小有向距离理论并结合五点寻优方法而得到的最小有向距离算法[5],是一种基于空间包络加工原理的编程方法,它解决了迭代算法中存在的收敛性问题,避免了全局区域内大量的点集计算,具有计算速度快、原理简单等特点,已成为一种非常有效的在复杂螺旋面数控加工中计算刀位轨迹的方法。该算法的基本思想为:设有两个连续可微曲面F.、FZ,在不发生干涉的条件下,当F.相对于F:沿终结运动方向运动时,在该运动方向上两曲面之间距离最小的对应点分别是两曲面上的啮合点(即加工过程中的刀触点)。这样就将计算空间刀位轨迹的问题转化为平面问题,既保证了加工精度又大大降低了计算难度。然而,该算法没有对生成的刀位轨迹进行干涉校验。为了保证加工质量,提高加工精度,必须在此基础上对刀具是否发生过切干涉的判定算法进行研究。同时,从提高加工效率和刀具耐用度、降低生产成本的角度看,也必须进行刀具干涉检查,尽可能在满足加工精度的前提下改进刀具结构[6][7]。尽管国内外许多学者和工程技术人员对于刀具干涉检查的算法进行了大量的研究,针对不同的加工对象提出了许多实用的计算方法,但一般只对某些问题有效,存在着一定的局限性[8]。 本文利用最小有向距离理论,将刀具干涉检查问题转化为求取刀具和工件之间沿终结运动方向对应点距离的全局最小值问题。利用遗传算法,针对复杂螺旋面各处吃刀深度不同的特点,提出并实现了基于最小有向距离理论的刀具干涉检查算法。 2国内外复杂曲面加工刀具干涉检查研究现状与发展趋势

齿轮啮合原理作业汇总

硕士学位课程考试试卷 考试科目:齿轮啮合原理 考生姓名:考生学号: 学院:专业:机械设计及理论 考生成绩: 任课老师(签名) 考试日期:2013年6月日午时至时

一、基本概念(每题3分,共计24分) 1 ?解释齿轮的瞬心线? 答:对于作平面运动的两个构件1和2,瞬心线是瞬时回转中心在坐标系 S (i=1,2) 中的轨迹。当坐标系S 绕O 转动时,瞬时回转中心I 就会描绘出瞬心线。当齿轮传动 比为常数时,瞬心I 保持在0!。?上的位置,瞬心线是半径分别为 6和嘉的两圆。当齿 轮传动比不是常数时,瞬心在回转运动传递过程中沿 0,02移动,瞬心线是非圆形曲 线,呈封闭的或者不封闭的。当一个构件回转运动时,另一个构件直移运动时,瞬心 线是一个圆和与圆相切的直线。 2?解释平面曲线的曲率? 答:如图1所示,用s 表示曲线的弧长。考察曲线上分别与 s 和s 「s 对应的两 个相邻的点M 和N ,如图1(a )所示,点M 和N 之间的弧长二s ,而是点M 和N 处的两条切线之间的夹角。当点 N 趋近于点M 时,比值 的极限称为曲线在点M 处的曲率(标记为K )。 将K 取倒数得丄称为曲线在点M 处的曲率半径(标记为匚)。 K 这里的心是极限(密切)圆的半径,而极限圆是当两个相邻点 N 和N '趋近于点M 时 通过点M 和该两个相邻点画出来的,如图1(b )所示。我们把圆心C 称为曲率中心。 答:齿廓渐屈线是给定齿廓曲线 曲率中心的轨迹,同时也是给定齿廓 从图上可以看出,齿廓曲线上每一点 的法线都是和其渐屈线相切的,换句 话说,齿廓渐屈线是齿廓曲线法线的 包络。 4 ?解释齿轮的瞬时回转轴? ■ '■:s 3 ?解释齿廓渐屈线? 曲线密切圆圆心的轨迹,如图2所示 M / 图1平面曲线的曲率 图2齿廓渐屈线

重庆大学硕士研究生齿轮啮合原理考题

一、 基本概念(每题4分,共计32分) 1.解释齿轮的瞬心线? 答:设有两个直齿齿轮,它们的轴线平行,在垂直于轴线的一个截面内,齿轮的中心为1O 及2O (图1.1),齿轮的瞬时角速度为1ω及2ω,从起始位置开始的转角为 1?及2?,则1212=,=d d dt dt ????,瞬时传动比为12i ,11112222d d dt i d d dt ?ω??ω?===。 如果齿轮副不是以等比传动,则12i 是个变数,它可以表示为齿轮1的转角的函数 1?,即121=()i f ?;当传动比是常值时,111222 i ω?ω?==。 设平面Ⅰ随同齿轮1绕1O 旋转,平面Ⅱ随同齿轮2绕2O 旋转。在任意一点M 处,齿轮1对齿轮2的相对运动速度矢量错误!未找到引用源。V I Ⅱ,M 点随着Ⅰ转动时的线速度矢量为V I ,M 点随着Ⅱ转动时的线速度矢量为V Ⅱ。M 点的位置不同,该点处的相对运动速度V I Ⅱ也不同。对于=V V I Ⅱ的点,其相对运动速度为零。由于这点的V I 与V Ⅱ方向相同,模也相等,它必定在中心联线12O O 上(否则V I 与V Ⅱ的方向不可能相同),设它为图1.1中的P 点,而1122O P r O P r ==,,则从V I 与V Ⅱ的模相等的条件可知,1122r r ωω?=?。所以瞬时传动比成为 121221 =r i r ωω= 。 P 点处的相对运动速度为零,所以P 点就是两齿轮的瞬时相对运动中心(瞬心)。由于P 点在联心线12O O 上,且221211 O P r i O P r ==,当传动比12i 是变数时,在齿轮传动过程中,P 点的位置也是在12O O 上变动的。P 点在平面Ⅰ及Ⅱ上的轨迹就称为齿轮1及齿轮2的瞬心线(图1.2)。 由于两瞬心线在任意瞬时都只接触在一点(瞬心),而在接触点处他们的相对运动速度又等于零,所以它们作相对的纯滚动。如果把两瞬心线做成摩擦轮并且让它们作纯滚动,那么它们的运动规律和两个齿轮的运动规律是一样的。

机械原理大作业-齿轮

机械原理大作业-齿轮

三、齿轮传动设计 一、设计题目 如图所示一个机械传动系统,运动由电动机1输入,经过机械传动系统变速后由圆锥齿轮16输出三种不同的转速。根据表中的传动系统原始参数设计该传动系统。 1.机构运动简图 1.电动机 2,4.皮带轮 3.皮带 5,6,7,8,9,10,11,12,13,14.圆柱齿轮 15,16.圆锥齿轮 2.机械传动系统原始参数 二、传动比的分配计算

电动机的转速1450/min n r ,输出转速1n =50r/min ,2n =45r/min , 3n =40r/min,带传动的最大传动比max 2.5p i ,滑移齿轮的传动的最大传动比 max 4v i ,定轴齿轮传动的最大传动比max 4d i 。 根据系统的原始参数,系统的总传动比为1i = 1 n n =1450/50=29.00 2i = 2n n =1450/45=32.222 3i =3 n n =1450/40=36.25 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为max 2.5p i ,滑移齿轮的传动比为1v i 、2v i 和3v i ,定轴齿轮传 动的传动比为f i 则总传动比为 1max 1p v f i i i i 2max 2p v f i i i i 3 max 3p v f i i i i 令3 max 4 v v i i 则可得定轴齿轮传动部分的传动比为f i = max max 3 *v p i i i =4*5.225.36=3.625 滑移齿轮传动的传动比为1v i = f p i i i *max 1= 9 .2*5.229 =4 2v i = f p i i i *max 2=9.2*5.222 .32=4.444 定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 d i =3f i =3625.3=1.536 三、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10、为角度变位齿轮,其齿数:

相关文档
最新文档