WCDMA直放站功率放大器预失真线性化技术研究

WCDMA直放站功率放大器预失真线性化技术研究
WCDMA直放站功率放大器预失真线性化技术研究

微波线性功率放大器综述

微波线性功率放大器综述 1概述 微波线性功率放大器在现代微波(无线)通信系统中的重要性越来越大。特别是在CDMA 体制移动通信系统中,线性功率放大器已经是必不可少的重要部件。 2基本指标 2.1 AM/AM AM/PM失真 一个HPA的线性特征可以用AM/AM和AM/PM 曲线来表示. 输入的RF 信号可以表示为: x(t)=R i(t)?cos[ω0t+θx(t)] (1) 相应的输出表示为: y(t)=G[R i(f)] ?cos{ω0t+θx(t)+ψ[R i(f)]} (2) 其中G和ψ表示AM/AM 和AM/PM曲线,如图一。 图. 1 实测的放大器失真曲线 理想的线性功放的曲线如图2。 图. 2 理想的放大器AM/AM和AM/PM曲线

2.2 双音IMD 、IP3、P1dB 双音IMD ,在放大器输入端加入两个CW 信号,在放大器的输出端测量的3阶、5阶等信号大小,以dBc 表示。 IP3 IMD 、IP3及P 1dB 定义图示 2.3 ACPR ACPR 主要应用在象CDMA 这样的宽频谱信号的研究上。邻道功率(ACP )定义为当主信道加一信号时,紧邻主信道的两个信道内的功率大小。邻道功率的产生主要来自两个方面,一是由于器件的非线性作用产生,二是由于主信道信号本身频谱较信道宽。ACPR 定义为ACP 功率与主信道功率的比值。 图3 邻道功率(ACP )定义 图4 器件非线性产生的邻道功率 对移动通信的CDMA 信号而言,其IM3(即ACPR )与IP3的关系可以通过一公式表示。 IP3=-5log[P IM3(f 1,f 2)B 3/P O [(3B-f 1)3-(3B-f 2)3]]+22.2 (dBm) 其中: P IM3(f 1,f 2) 表示要求的IM3的输出功率(W ) B 表示二分之一CDMA 信号带宽 (KHz ) f 1,f 2表示两个边带频率相对于中心频率的差值(KHz )

线性化微波功放现状及发展趋势1..

线性化微波功放现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 教师:徐瑞敏教授 姓名:XXX 学号:2014210202XX 报告日期:2014.10.26

线性化微波功放现状及发展趋势 一、引言 电磁波和低频率端相比高频率端拥有其独特的优点,近年来尤其是微波毫米波电路作为航空航天的无线通信手段得到广泛应用。但是在几乎所有的微波电子系统中,要将信号放大都需要微波功放,因此微波功放在微波有源电路中拥有了无可比拟的重要地位。对微波功放,除了有一定的功率输出和增益指标以外,线性度也是一个十分重要的指标。例如在微波测试设备中,由于功放的非线性失真所产生的谐波往往影响了测试精度;在移动通信的基站和移动站中,功放的非线性失真往往会产生邻道干扰,从而引起信号失真。因此,在这些设备中对功放的线性度提出了很高的要求。 对功放线性度的衡量可从两个指标来考察:一为谐波抑制度,当放大器输人频率为f0的单频信号时,由于非线性失真,会产生频率为nf0等的谐波,如图1所示,输出主频与谐波的功率电平之差即为谐波抑制度,用dBc表示。 第二个衡量指标为三阶交调系数。当放大器输人一定频率间隔(例如SMH:)、幅度相同的频率为f,和f:两信号时,由于非线性失真,在放大器输出端除了放大的f’,和f:外,还有2j,;一J:和2j:一f,,此为三阶交调频率,如图1(b)所示,主频与三阶交调频率的功率电平之差即为功放的三阶交调系数,用(IBc表示也可用一分贝压缩点来表示功放的线性度的,一分贝压缩点与三阶交调之间具有换算关系。 二、功率放大器的非线性特性 现在一方面人们追求更高的功率利用率,另一方面是日益发展的无线通信产业的要求迫使我们不得不给予功率放大器的线性化问题以足够重视。要研究线性化技术,首先必须了解功率放大器的非线性失真特性,以做到有的放矢。 理想情况下,功率放大器工作在线性状态,传输系数与输入信号的幅度和相位无关。但在实际情况中并非这么简单,由于晶体管的特性,在达到一定输入功率时,放大器将呈现出非线性。信号的输入输出不在是上面简单的函数关系。放大器随着输入信号的增大,从线性区进入非线性区,此时功放的增益不再是常数,而是一个与输入信号有关的变量,输入输出呈非线性,甚至在达到一定输入功率后,功放输出将不再增加。此外功率放大器输出端产生了与输入频率有关的新的频率分量,当信号输入时,除了基波分量,还会出现各阶互调分量和高次谐波分量。这种非线性特性,在通信系统中对相邻信道的干扰,降低系统的性能。对于

非线性丙类功率放大器--实验报告

南昌大学实验报告 学生姓名:付文平学号: 6102215151 专业班级:通信154班实验类型:■验证□综合□设计□创新实验日期: 2017.10.31 实验成绩:实验名称:非线性丙类功率放大器实验报告 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。 2、了解激励信号变化对功率放大器工作状态的影响。 3、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点。 2、测试丙类功放的调谐特性。 3、测试丙类功放的负载特性。 4、观察激励信号变化、负载变化对工作状态的影响。 三、实验仪器 1、信号源模块 1块 2、频率计模块 1块 3、8 号板 1块 4、双踪示波器 1台 四、实验原理 非线性丙类功率放大器的电流导通角θ<90〇效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大

器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC谐振回路。 丙类功率放大器 丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO ) 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号为正弦波时,集电极的输出电流i C 为余弦脉冲波。利用谐振回路LC的选频作用 可输出基波谐振电压v c1,电流i c1 。下图画出了丙类功率放大器的基极与集电极间 的电流、电压波形关系。分析可得下列基本关系式: 式中,V c1m 为集电极输出的谐振电压及基波电压的振幅;I c1m 为集电极基波电流振 幅;R 为集电极回路的谐振阻抗 2 1 2 1 1 12 1 2 1 2 1 R V R I I V P m c m c m c m c C = = = 式中,P C 为集电极输出功率. 式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。放大器的效率 1 1 R I V m c m c = CO m c CC m c I I V V 1 1 2 1 ? ? = η

非线性丙类功率放大器实验报告讲解

非线性丙类功率放大器实验报告 姓名: 学号: 班级: 日期: 37 38 非线性丙类功率放大器实验 一、实验目的 1. 了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。 2. 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。 3. 比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验基本原理 非线性丙类功率放大器的电流导通角 o 90<θ, 效率可达到 80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号 (信号的通带宽度只有其中心频率的 1%或更小 ,基极偏置为负值,电流导通角o 90<θ,为了不失真地放大信号,它的负载必须是 LC 谐振回路。 丙类功率放大器

丙类功率放大器的基极偏置电压 V BE 是利用发射极电流的直流分量 I EO (≈ I CO 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号 ' i v 为正弦波时,集电极的输出电流 i C 为余弦脉冲波。利用谐振回路 LC 的选频作用可输出基波谐振电压 v c1, 电流 i c1。图 8-3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 011R I V m c m c = 式中, m c V 1为集电极输出的谐振电压及基波电压的振幅; m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。 2102111212121R V R I I V P m c m c m c m c C === 39 式中, P C 为集电极输出功率 CO CC D I V P = 式中, P D 为电源 V CC 供给的直流功率; I CO 为集电极电流脉冲 i C 的直流分量。 放大器的效率η为 CO m c CC m c I I V V 1121? ?

利用数字预失真线性化宽带功率放大器

利用数字预失真线性化宽带功率放大器 2. Wiener系统 Wiener模型是Volterra模型一种有意义的简化,包括一个线性滤波器,后接无记忆非线性。可以采用查询表对非线性进行模型化,也可用FIR 滤波器线性对线性滤波器进行模型化。Werner系统在模型化大多数RF功率放大器方面的有效性有限。模型参数的估算相当复杂,这使其对实时自适应没有吸引力。 3.Hammerstein系统此外,Hammerstein模型也是Volterra模型的一种简化,包含一个无记忆非线性,后跟一个线性滤波器。这是一种简单的记忆模型,其模型参数的计算比Wiener模型要简单。这种模型对模型化所有不同类型RF功放的有效性有限。 4. Wiener-Hammerstein 将一个线性滤波器、一个无记忆线性与另一个线性滤波器级联起来就构成了Weiner-Hammerstein模型。这种模型比Weiner或Hammerstein模型更加一般,包括Volterra数列许多项,可以更好地进行非线性模型化。 5. 记忆多项式限制(1)中的Volterra数列,使除了中心对角线上的项以外,各个项都为0,即只有i1=i2=i3…时hn(i1,i2,i3…) != 0,得到如式子B所示的记忆多项式模型,其中M为记忆长度,K为非线性阶数。

已经证明这种模型(及其变种)对线性化宽带功放是有效的,硬件和软件计算要求也合适。 文献中也提出了上述模型的不同组合,每一种都有其优缺点。商业上可实施的前置补偿器要求能够擅长处理大量非线性行为,对不同应用可能需要不同模型。对于这些模型中的大多数而言,前置补偿器系数适合采用最小二乘法识别的间接学习架构。 本文第三部分将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在无线系统中,功放(PA)线性度和效率常是必须权衡的两个参数。工程师都在寻找一种有效而灵活的基于Volterra的自适应预失真技术,可用于实现宽带RF 功放的高线性度。本文将概述不同数字预失真技术,介绍一种创新性DPD线性化电路特有的自适应算法。 本文的第二部分介绍了线性化方案对于前置补偿器具有高度精确模型的需求。下面我们将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在GC5322前置补偿实施中,为易于实现,采用算术和模型简化方法的混合。通

射频功放的立方预失真线性化技术

射频功放的立方预失真线性化技术 王伟旭,张玉兴 (电子科技大学,四川成都610054) 摘 要 预失真技术是射频功率放大器线性化技术中的一种,与其他线性化技术相比具有电路简单可靠、性能优良、成本低廉等优点。立方预失真技术是其中的一种,该技术易于设计调试,且性能优良。对射频功率放大器的非线性特性进行了深入的理论分析,剖析了非线性失真产生的根源。说明了预失真技术的工作原理和结构,重点讨论了立方预失真器的原理和结构,并且给出了理论和实际系统的仿真结果。 关键词 线性功率放大器;立方预失真器;预失真;三阶交调中图分类号 T N722 文献标识码 A Cubic Pre 2distortion Linearization T echnique for RF Pow er Amplifier W ANG Wei 2xu ,ZH ANG Y u 2xing (UESTC ,Chengdu Sichuan 610054,China ) Abstract Pre 2distortion is one of the linearization techniques for RF power am plifier.C om pared with other linearization techniques ,it provides sim ple and reliable circuit design ,g ood per formance and relative low cost.M oreover ,it is easy to design and test.This paper analyzes non 2linearization of RF power am plifier ,explains how the pre 2distorter w orks ,discusses the principle and structure of cubic pre 2distorter ,and presents the simulation results. K ey w ords linear power am plifier ;cubic pre 2distorter ;pre 2distortion ;I M D3 收稿日期:2005212217 0 引言 随着现代通信技术的发展,对功率放大器的线性度要求越来越高,对放大器的线性度改善的研究成为一个热点。主要的线性化方法有负反馈、前馈和预失真等。负反馈的主要缺点是降低放大器的增益,并且存在使放大器不稳定的风险;前馈技术虽然性能优良,但电路设计较复杂,成本高,在很多情况下使用受到限制;预失真技术在避免这些缺点的情况下,仍然可以达到较好的校正效果。其中立方预失真技术就是一种电路简单、调试方便而效果显著的方案。 1 基本原理 111 单音信号通过放大器的非线性分析 由于放大器采用的器件(如晶体管)存在非线性 特性,当工作在大信号状态下,其输出函数可以按泰勒级数展开。假设放大器的输入信号为: v =v 0cos (ωt ) (1) 输出信号按照泰勒级数展开为:v out =a 1v +a 2v 2 +a 3v 3 +a 4v 4 +…… (2) 将式(1)代入式(2),按照三角函数积化和差,由于正弦函数的奇次方项都含有基波分量,将所有的基波分量提出相加合并得: v out =(a 1+34a 3v 02+58a 5v 0 4 + 3564a 7v 0 6 …)v 0cos (ωt )+… (3) 如果只考虑基波的表达式,而不考虑放大器输出的高次谐波,显然,输出信号v out 的基波分量的系数就是放大器的增益。即 A =a 1+ 34a 3v 02+58a 5v 04+3564a 7v 0 6 (4) 由于a 3、a 5、a 7…为负数,则增益特性表现为所谓的 压缩特性。 112 双音信号通过放大器的非线性分析 假设输入信号为: v =v 1cos (ω1t )+v 2cos (ω2t ) (5) 式中,ω1和ω2相差很小。将式(5)代入式(2),整理 得: 电磁场与微波

预失真线性化技术原理分析

文章编号:1000-9930(2001)01-0068-03 预失真线性化技术原理分析 邬书跃1, 周少武1, 黄 丹1, 张尔杨2 (1.湘潭工学院信息与电气工程系,湖南湘潭411201;2.国防科技大学电子科学与工程学院,湖南长沙410073) 摘要:对两种基本型式的预失真线性化技术数字基带预失真和射频预失真的组成原理进行了详尽的分析.结果表 明,这两种技术具有线性度高、收敛速度快和便于实现等特点,因此可用于对移动发射机中的功率放大器进行线性化.图4,参8. 关 键 词:预失真;线性化;自适应;功率放大器中图分类号:TP391.9;TN929.5 文献标识码:A 数字网络系统发展的新趋势已经引起人们对数字移动通信系统的广泛关注.数字化系统丰富了从普通话音传输业务到数据传输业务的各种业务.在大多数数字移动无线电系统的最新研究中,人们认为像QPSK 和QAM 线性调制方法的引入理论上可以获得高的频谱效率,但它们容易给发射台的功率放大器带来非线性失真,而且由于存在RF 互调失真(通常可由放大器的AM-AM 和AM-PM 转换特性来描述)使得功放的频谱有扩展的趋势.因此线性调制方法需要有线性功率放大技术,否则移动台功率放大器会消除由于线性调制方法的应用而得到的频谱效率的任何优点.在现有移动通信系统中,对邻信道干扰的要求是非常严格的.通常要求已调信号在邻信道的辐射功率(带外发射功率)与所需功率之比应低于-60dB,即与带内信号功率相比,带外发射功率应小于-60dB~-70dB.线性放大器在某种程度上具有功率效率低的缺点,这使得它们不能满足上面所提到的邻信道干扰的严格要求.人们曾尝试对于较小邻信道干扰放宽这一严格要求,并尝试在不牺牲放大器功率效率的情况下保持高的频谱效率.然而即使在非常窄的频带系统(像30kHz 或10kHz 信道间隔系统)中,这一严格要求依然存在.在这种窄信道间隔系统中,发射机功率放大器为了实现高功率效率和低的带外发射则会遇到这一要求.为了克服这一问题,人们对用于基站和移动台的高功效非线性放大器的线性化技术进行了研究.迄今,已研究出了多种对移动发射机中功率放大器进行线性 化的技术,其中主要的技术[1] 有正向前馈(feed -forward )、负反馈(negative feedback )和预失真(predistortion)技术.正向前馈法已广泛使用,然而该方法存在一定的局限性.例如,在工作环境变化时(温度、时间、工作频率及电源电压值发生改变),电路的参数变化不可能严格地保持一致,从而造成放大线性的恶化,因此其稳定性不好.同时在末级大功率合成器处构成自适应环路具有一定的技术难度,所以一般在功率合成级不便采用自适应技术.此外,该方法效率低而且设备很复杂.负反馈技术需要特别处理时延和所需的带宽,这种技术使得放大器带宽很窄,不适合宽频带放大.因此预失真技术成为对功率放大器进行线性化的理想技术.通常这种技术可使放大器得到宽的频带和宽的动态范围.这种技术的实质就是预先使放大器的输入信号在幅度和相位方面产生预定的反失真去抵消放大器内的非线性失真.产生反失真的器件称做线性化器件.图1给出了预失真线性化电路框图 . 本文对两种预失真线性化技术的组成原理及实现方法作了较为详尽的论述,介绍了该技术的应用及发展前景,并指出了今后的研究方向. 收稿日期:2000-07-22 作者简介:邬书跃(1963-),男,湖南常德人,湘潭工学院副教授,博士生,主要从事数字移动通信和自适应功放等方面的研究. 第16卷第1期2001年 3月湘潭矿业学院学报J.XIANGTAN MIN.INST.Vol.16No.1Mar. 2001

线性功放知识简介

目录 1、术语、定义和缩略语 2、为什么宽带信号要采用线性功放技术(NCDMA、WCDMA) 3、功放线性功化技术分类(前馈和预失真) 4、预失真技术原理简介 5、前馈技术原理 6、800MHz 30W线性功放实现原理和调试方法 7、工艺结构及信号流向图 8、附录 一、术语、定义和缩略语 1、前馈技术:利用主环路和误差环路来改善功率放大器的非线性失真,即将主环路提取的交调失真信号,在误差环中反相并放大后和主功率放大器输出的信号进行交调失真抵消,从而改善功率放大器非线性失真的一种技术 2、主环:将功率放大器输出的信号(含交调失真信号)与输入的信号(不含交调失真信号)在载频抵消电路中进行载频抵消,其输出只含交调失真信号的一种闭环电路 3、误差环:将功率放大器输出的信号(含交调失真信号)与只含交调失真的信号在交调抵消电路中进行交调失真抵消,其输出只含较小失真信号的一种闭环电路。 4、载频抵消:依靠一个定向耦合电路,将耦合通路上的载频信号(含交调失真信号)与通道上同载频信号在定向耦合电路上进行模拟抵消载频信号的过程 5、交调抵消:依靠一个定向耦合电路,将主环输出的交调失真信号放大后耦合在主功率输出的通道上,在定向耦合电路上模拟抵消交调失真信号的过程 6、预失真技术:是依靠在功率放大器的输入通道中插入预失真部件,造成输入信号的预先岐变失真,由于预失真部件的失真特性与功率放大器的非线性失真特性正好相反,从而消除功率放大器输出信号中的非线性失真产物,实现功率放大器线性化改善目标的信号处理方案。预失真技术根据预失真器件的实现方法可以分为模拟预失真和数字预失真。利用模拟器件的非线性行为直接实现功率放大器输入信号预失真的方法称为模拟预失真,通过数字算法对基带信号进行处理实现预失真的方法称为数字预失真。 C D M A码分多址(C o d e D i v i s i o n M u l i t i p l e A c c e s s) L M D S本地点对多点分布系统(L o c a l M u l i t i p o i n t D i s t r i b u t i o n S y s t e m) W L A N无线局域网(W i r e l e s s L o c a l A r e a N e t w o r k) A C P R邻信道泄漏功率抑制比(A d j a c e n t C h a n n e l L e a k a g e P o w e r R a t i o) D S P数字信号处理器(D a t a S i g n a l P r o c e s s o r) F P G A现场可编程门阵列(F i e l d P r o g r a m G a t e A r r a y) L P A线性功率放大器(L i n e r P o w e r A m p l i f i e r) V S W R电压驻波比(V o l t a g e S t a n d i n g W a v e R a t i o) R F射频(R a d i o F r e q u e n c y) I F中频(I n t e r m e d i a t e F r e q u e n c y)

实验七非线性丙类功率放大器实验报告

实验七 非线性丙类功率放大器实验 一、 实验目的 1、 了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时 的动态特性。 2、 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状 态的影响。 3、 比较甲类功率放大器与丙类功率放大器的特点 4、 掌握丙类放大器的计算与设计方法。 二、实验内容 1、 观察高频功率放大器丙类工作状态的现象,并分析其特点 2、 测试丙类功放的调谐特性 3、 测试丙类功放的负载特性 4、 观察激励信号变化、负载变化对工作状态的影响 三、 实验仪器 1、 信号源模块 1块 2、 频率计模块 1块 3、 8 号板 1块 4、 双踪示波器 1台 5、 频率特性测试仪(可选) 1台 6、 万用表 1块 四、实验基本原理 放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。功率放大器电流导通角θ越小,放大器的效率η越高。 甲类功率放大器的o 180= θ,效率η最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输出功率较小的末级功率放大器。

非线性丙类功率放大器的电流导通角o 90<θ,效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角 o 90<θ,为了不失真地放大信号,它的负载必须是LC 谐振回路。 电路原理图如图7-1(见P.48)所示,该实验电路由两级功率放大器组成。其中N 4、T 5组成甲类功率放大器,工作在线性放大状态,其中R 14、R 15、R 16组成静态偏置电阻。N 4、T 6组成丙类功率放大器。R 18为射极反馈电阻,T 6为谐振回路,甲类功放的输出信号通过R 17送到N 4基极作为丙放的输入信号,此时只有当甲放输出信号大于丙放管N 4基极-射极间的负偏压值时,Q 4才导通工作。与拨码开关相连的电阻为负载回路外接电阻,改变S 1拨码开关的位置可改变并联电阻值,即改变回路Q 值。 下面介绍甲类功放和丙类功放的工作原理及基本关系式。 1、甲类功率放大器 1) 静态工作点 如图7-1所示,甲类功率放大器工作在线性状态,电路的静态工作点由下列关系式确定: 15R I v EQ EQ = BQ CQ I I β= V v v EQ BQ 7.0+= 15R I V v CQ CC CEQ -= 2) 负载特性 如图7-1所示,甲类功率放大器的输出负载由丙类功放的输入阻抗决定,两级间通过变压器进行耦合,因此甲类功放的交流输出功率P 0可表示为: B H P P η' 0= 式中,' H P 为输出负载上的实际功率,B η为变压器的传输效率,一般为B η=0.75~0.85 图7-2为甲类功放的负载特性。为获得最大不失真输出功率,静态工作点Q 应选在交流负载线AB 的中点,此时集电极的负载电阻R H 称为最佳负载电阻。集电极的输出功率P C 的表达式为:

短波线性功率放大器调试

短波线性功率放大器的原理与调试 本文就300瓦线性短波功率放大器的原理和调试作个简单介绍。 1 电路结构: z功率放大器由T1(9:1)输入变压器,T3,T4组成的1:4输出变压器,T5,C6,R11-R14组成的负反馈电路,U1,R3,R4,R15,D1,T2等组成的偏流电路,C2-C5,R7-R10组成的频率补偿电路,Q1,Q2功放管等组成的AB类推挽放大器。 z T1把50欧的输入端阻抗转换成5.5欧以配合晶体管的输入阻抗,由C1补偿T1的寄生电感。 z T5,C6,R11-R14组成负反馈电路,C6与T5的一组线圈(1圈)组成谐振电路,降低高频段的反馈量,并减少负反馈电阻R11-R14对T1次级阻抗的影响。 z C2-C5是频率补偿电容,目的是提高放大器在高端的增益。 z上面所述电路的元件参数对放大器的输入驻波、增益的平坦性等有很大的影响,在调试中要通过多次试验而取得放大器各种参数的平衡。 z U1,R3,R4,R15,D1,T2等组成的偏流电路,由紧贴在功放管上的D1跟踪功放管的温度变化,保持偏流的稳定。 z R16是用来检测放大器的工作电流的。 z输出变压器T4的阻抗比是1:4,在低阻端阻抗为12.5欧,根据推挽放大器的理论可计算出功放的不失真最大输出功率 P max=2(48-2)(48-2)/12.5=338W。(P max=2(Vcc-Vsat)*2/R) z输出变压器采用传输变压器形式,用3mm的25欧电缆绕制。 z C12-C17是隔直耦合电容,隔离直流电位,耦合高频信号。 z功放管是用货源较多的拆机ENI21(类似于MRF448,原用于13.56MHZ的射频源),当然可以用TH430,2SC2652,681033等晶体管来代替,但反馈和频率补偿网络的相关参数要作调整。

功率放大器非线性测量和设计的新范例

功率放大器非线性测量和设计的新范例— NVNA非线性矢量网络仪和ADS基于X参数的功放设计 非线性测量和设计的创新技术— X参数 频率覆盖10MHz-13.5/26.5/43.5/50GHz

我很清楚我所设计的放大器增益随着负载的变化而变化,但是 传统的“Hot S22”在非线性条件下并不能帮我解决问题。 当我将各级功率放大器级联时,总的输出结果并没有像我所想 象的那样。不知道到底是怎么回事? 因此我需要新的工具,能让我 深入了解器件的非线性特性。 如果我能够获得器件基波及谐波的幅度和相位信息,将大大节 省我花在功率合成放大器的匹配电路设计上的时间。 半导体厂家提供的管芯的小信号S参数对我设计放大器几乎没 有作用,我需要大信号激励下管芯的非线性参数。我真希望有一种 测量工具能让我提取出完全表征器件非线性特性的参数。 传统的负载牵引系统并不能帮我解决大信号模型问题,因此我 需要新方法帮我快速提取出器件的大信号模型,从而让我使用ADS 软件有效而且快速地设计出满足指标的功率放大器。 安捷伦科技非线性矢量网络分析仪 (NVNA)荣获《电子产品世界》2008 年度产品奖, 2008年EDN创新奖, 并被选为射频和微波年度最佳产品 2

众所周知,功率放大器是每个发射机系统的核心部件,随着雷达应用、卫概述 星通信及无线通信的迅速发展,要求研发工程师和科学家们不断地研究和设计 出具有更高的输出功率、更高的功率附加效率以及更高的线性度等指标的功率 放大器,以满足更快的数据通信、更宽的雷达信号等需求。这就需要不断提高 半导体功率管的性能,并把对半导体功率管的应用扩展到其性能的极限,经常 使其进入到半导体功率管的非线性工作区域甚至饱和状态。器件的非线性特性 非常容易给雷达系统、卫星系统及通信系统造成严重问题,往往是信息之间互 相干扰、系统有效带宽下降的最主要原因。如何更深刻地了解并掌握器件与电 路的非线性特性是每个射频工程师每天所面临的棘手难题,急需解决。而现有 的工具和手段并不能有效地帮助工程师解决这些 问题。因此,处理非线性问题需要使用超越今天 我们测试线性参数范畴的新工具,这种全新的 工具能够让工程师快速地获得完全表征功率管 非线性行为的非线性参数,从而能够进行 快速建模、仿真并且彻底改善新技术 产品的设计流程。 当今,雷达系统、卫星系统及 当前的问题 无线通信系统的研发工程师和科学家 的目标很明确: 高效和精确地仿真设计 功率放大器。仿真和设计必然需要功率管的大信号模型,但是很多半导体厂家 并不提供设计功放所需要的功率管的大信号模型。有些客户自己曾经试图使用 直流信号分析仪结合网络仪测量S参数提取Spice物理模型,最后通过数学运 算拟合出大信号模型,但是这个过程很漫长而且往往不准确。另外,由于在非 线性器件和系统的设计过程中一直没有一个集建模、仿真和测试于一体的方 案,工程师们只能依赖信息量很有限的小信号S参数并根据各自的经验,花费 大量时间和成本做大量的设计迭代实验,使得整个设计过程变得既费时又昂 贵。为改变目前困境,就需要工程师能够精确快速地提取功率管的大信号模 型,使其掌握器件的线性和非线性行为性特性,同时还需要在ADS软件中准 确地仿真出功率管的非线性行为。 现在也有部分客户逐渐接受负载牵引系统的概念,但是单纯的负载牵引系 统不能够满足客户快速高效地设计高性能功放的需求,原因在于负载牵引系统 存在一些不足: ●负载牵引系统特别消耗时间,不能够在扫频、扫功率及扫直流偏置模式下测 量等高线。 ●不能提供完整的大信号模型,因此不能让设计师有效地使用EDA工具进行 功放的设计和仿真。 ●没有考虑谐波分量及谐波分量对基波的影响,无法测量出谐波的相位信息, 但是功放非线性设计必须考虑谐波成分。 ●即使可以把负载牵引测试数据导入EDA工具,但是由于只有功率信息,没 有直流信息、谐波信息等。因此只能仿真功率等高线,不能仿真谐波的幅度 相位、功率效率等高线、交调失真及ACPR等。 现在安捷伦推出了全新的解决方案使工程师在对有源器件建模、仿真及设 计时,显著减少花费在设计迭代上的时间,从而让我们加快新产品推向市场的 速度。 3

实验九 线性宽带功率放大器实验

实验九线性宽带功率放大器 一、实验目的 了解线性宽带功率放大器工作状态的特点 二、实验内容 1.了解线性宽带功率放大器工作状态的特点 2.掌握线性功率放大器的幅频特性 三、实验原理及实验电路说明 1.传输线变压器工作原理 现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。当然,所付出的代价是输出功率和功率增益都降低了。因此,一般来说,宽带功率放大器适用于中、小功率级。对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。 最常见的宽带高频功率放大 器是利用宽带变压器做耦合电路 的放大器。宽带变压器有两种形 式:一种是利用普通变压器的原 理,只是采用高频磁芯,可工作 到短波波段;另一种是利用传输 线原理和变压器原理二者结合的 所谓传输线变压器,这是最常用 的一种宽带变压器。 传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。图9-1为4:1传输线变压器。图9-2为传输线变压器的等效电路图。

普通变压器上、下限频率 的扩展方法是相互制约的。为 了扩展下限频率,就需要增大 初级线圈电感量,使其在低频 段也能取得较大的输入阻抗, 如采用高磁导率的高频磁芯和 增加初级线圈的匝数,但这样 做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈的匝数,但这样做又会使下限频率提高。 把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决 带宽问题。传输线变压器有两种工作方式:一种是按照传输线方式来工作,即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好相互抵消。因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。这种工作方式称为传输线模式。另一种是按照变压器方式工作,此时线圈中有激磁电流,并在磁芯中产生公共磁场,有铁芯功率损耗。这种方式称为变压器模式。传输线变压器通常同时存在着这两种模式,或者说,传输变压器正是利用这两种模式来适应不同的功用的。 当工作在低频段时,由于信号波长远大于传输线长度,分布参数很小, 可以忽略,故变压器方式起主要作用。由于磁芯的磁导率很高,所以虽然传输线段短也能获得足够大 的初级电感量,保证了传输 线变压器的低频特性较好。 当工作在高频段时,传 输线方式起主要作用,由于两根导线紧靠在一起,所以导线任意长度处的线间电容在整个线长上是均匀分布的,如图9-3所示。也由于两根等长的导线同时绕在一个高μ磁芯上,所以导线上每一线段△l 的电感也是均匀分布在整个线长上的,这是 一种分布参数电路,可以利用分布参数电路理论分析,这里简单说明其工 图9-3传输线变压器高频段等效电路图

非线性电路 功率放大器练习题

非线性电路 功率放大器练习题 一、选择题 1、为获得良好的调幅特性,集电极调幅电路应工作于 状态。 A .临界 B .欠压 C .过压 D .弱过压 2、丙类谐振功放其谐振回路调谐于 分量 A .基波 B .二次谐波 C .其它高次谐波 D .直流分量 3、利用非线性器件相乘作用来实现频率变换其有用项为 。 A 、一次方项 B 、二次方项 C 、高次方项 D 、全部项 4、影响丙类谐振功率放大器性能的主要参数不包括 A 、 V CC B 、 V BB C 、 V bm D 、R i 5、要求本振信号功率大,相互影响小,放大倍数大,宜采用 混频电路。 A 、基极输入,发射极注入 B 、基极输入,基极注入 C 、发射极输入,基极注入 D 、发射极输入,发射极注入 6、在保持调制规律不变的情况下,将输入的已调波的载波频率s f 变换成固定的中频I f 的过程称为 。 A. 调制 B. 解调 C. 倍频 D. 变频 7、有一超外差接收机,中频在KHz f f f s L I 465=-=,当接收KHz f s 580=的信号时,产生中频干扰的电台的频率是 ,而产生镜频干扰的电台的频率是 。 A. 1510KHz B.1045KHz C. 465KHz D. 930 kHz 8、下面的几种频率变换电路中, 不是频谱的线性搬移。 A .调幅 B 包络检波 C .调频 D .混频 9、某电路的输入频谱为Ω±S ω;输出频谱为Ω±I ω,则电路功能为 。 A. 检波 B. 变频 C. 调幅 D. 调频 10、能够实现双向混频的电路是 。 A .二极管混频器 B . 三极管混频器 C . 场效应管混频器 D .以上三种都能实现 11、功率放大电路根据以下哪种说法可分为甲类、甲乙类、乙类、丙类等 ( ) A .电路特点 B .功率放大倍数 C .电流大小 D .功放管静态工作点选择情况 12、关于通角θ的说法正确的是 ( ) A . θ是指一个信号周期内集电极电流导通角度

微波功率放大器线性化技术

微波功率放大器线性化技术 刘海涛 京信射频技术研究部产品部 摘要:现代无线通信飞速发展,有限的频谱资源上需要承载越来越高的数据流量,4G LTE技术将达到100Mbps的传输速率。在这种情况下,无线传输系统的设计和工作将承受着巨大的压力。为了提高效率,作为系统中的核心部件——微波功率放大器一般都处于在非线性工作状态,而包络变化的调制信号经过非线性微波功率放大器后会产生互调失真,造成严重的码间干扰和邻信道干扰。为了保证通信质量,必须采用线性化技术。本文对目前常用的各种线性化进行梳理,并分析了工作原理、介绍了技术特点,为高线性高效率微波功率放大器的设计提供了重要的参考依据。 关键词:无线通信微波功率放大器线性化技术前馈预失真 1.引言 功率放大器的线性化技术研究可以追溯到上个世纪二十年代。1928在贝尔实验室工作的美国人Harold.S.Black发明了前馈和负反馈技术并应用到放大器设计中,有效地减少了放大器失真,可以认为是线性化功率放大器技术研究的开端。但那时主要是从器件本身的角度来提高功率放大器的线性度,所研究的功率放大器频率也较低。 随着通信技术的飞速发展,以下一些原因促使线性化功率放大器技术得到广泛研究并迅速发展: 1)早期的移动通信采用恒包络调制方式与单载波传输覆盖,对于功率放大器的线性要求并不高;而进入21世纪,无线通信的飞速发展和宽带通信业务的开展,通信频段变得越来越拥挤,为了在有限的频谱范围内容纳更多的通信信道,要求采用频谱利用率更高的传输技术与复杂调制模式;因此线性调制技术如QAM ( Quadrature Amplitude Modulation )、QPSK ( Quadrature Phase Shift Keying)等在现代无线通信系统中被广泛采用。但对于包络变化的线性调制技术,发射机系统会产生较大的失真分量,从而对传输信道或邻道产生不同程度的干扰,因此必须采用线性化的发射机系统。射频功率放大器是发射机系统中非线性最强的器件,特别是为了提高功率效率,射频功放基本工作在非线性状态,因此线性化功率放大器设计技术己成为线性化发射机系统的关键技术; 2)简单的功率回退技术不能满足现代系统要求:简单的功率回退技术虽然能获得较好的线性,但是由于器件本身的原因,纵使再深的回退,也无法达到很高的线性水平,满足不了系统的高线性要求,再者,功率回退技术使得电源利用率很低,一般仅为5%,会产生导致终端自主时间过短、基站热管理等一系列问题; 3)多载波调制技术的逐渐采用要求线性化的功率放大器:以OFDM ( Orthogonal Frequency Division Multiplexing)为代表的多载波调制技术具有高传输速率、不需均衡等明显优点,己为许多标准如802. 11, HDTV ( High Definition Television )、4G LTE等所采用。由

湖南大学非线性丙类功率放大器实验报告

实验七非线性丙类功率放大器实验 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态特性。 2、了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。 3、比较甲类功率放大器与丙类功率放大器的特点 4、掌握丙类放大器的计算与设计方法。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点 2、测试丙类功放的调谐特性 3、测试丙类功放的负载特性 4、观察激励信号变化、负载变化对工作状态的影响 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、8 号板1块 4、双踪示波器1台 5、频率特性测试仪(可选)1台 6、万用表1块 四、实验基本原理 放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。功率放大器电流导通角越小,放大器的效率越高。 甲类功率放大器的,效率最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输出功率较小的末级功率放大器。 非线性丙类功率放大器的电流导通角,效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角,为了不失真地放大信号,它的负载必须是LC谐振回路。 电路原理图如图7-1(见P.48)所示,该实验电路由两级功率放大器组成。其中N4、T5 组成甲类功率放大器,工作在线性放大状态,其中R14、R15、R16 组成静态偏置电阻。N4、T6 组成丙类功率放大器。R18 为射极反馈电阻,T6 为谐振回路,甲类功放的输出信号通过R17 送到N4 基极作为丙放的输入信号,此时只有当甲放输出信号大于丙放管N4 基极-射极间的负偏压值时,Q4 才导通工作。与拨码开关相连的电阻为负载回路外接电阻,改变S1 拨码开关的位置可改变并联电阻值,即改变回路Q 值。 下面介绍甲类功放和丙类功放的工作原理及基本关系式。 1、甲类功率放大器 1) 静态工作点 如图7-1 所示,甲类功率放大器工作在线性状态,电路的静态工作点由下列关系式确定

功率放大器线性指标分析

功放放大器线性相关知识概述 信号在通过射频通道(这里所谓的射频通道是指射频收发信机通道,不包括空间段衰落信道)时会有一定程度的失真,失真可以分为线性失真和非线性失真。产生线性失真的主要有一些滤波器等无源器件,产生非线性失真的主要有一些放大器、混频器等有源器件。另外射频通道还会有一些加性噪声和乘性噪声的引入。 1.功率放大器作为基站、直放站中的主要核心模块,对整个系统的通信质量起着至关重要的作用,而功放的线性指标,则是功放设计的基础和核心。下面先介绍一下一些与线性相关的基本知识。(1)信号的峰值功率、平均功率和峰均比PAR 很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的肩峰的瞬态功率。通常概率取为0.01%。 峰值功率即是指以某种概率出现的肩峰的瞬态功率。通常概率取为0.01%。平均功率是系统输出的实际功率。在某个概率下峰值功率跟平均功率的比就称为在某个概率下的峰均比,如PAR=9.1@0.1%,各种概率下的峰均比就形成了CCDF曲线(互补累积分布函数)。在概率为0.01%处的PAR,一般称为CREST因子。

功率放大器在设计的过程中,其线性指标和峰均比关系很大, (2)线性失真 线性失真又可以分成线性幅度失真和线性相位失真,从频域可以很方便表示这些失真,如下图: (3)非线性失真 非线性失真与线性失真相似,可以分成非线性幅度失真和非线性相位失真,图形表示如下:

(4)非线性幅度失真 非线性幅度失真常用1dB压缩点、三阶交调、三阶截止点等指标衡量,下面分别讨论这三个指标。 例如一个射频放大器,当输入信号较小时,其输出与输入可以保证线关系,输入电平增加1dB,输出相应增加1dB,增益保持不变,随着输入信号电平的增加,输入电平增加1dB,输出将增加不到1dB,增益开始压缩,增益压缩1dB时的输入信号电平称为输入1dB压缩点,这时输出信号电平称为输出1dB压缩点。如下图: (3)三阶交调 三阶交调(双音三阶交调)是用来衡量非线性的一个重要指标,在这里仍以放大器为例来说明三阶交调指标。用两个相隔⊿f,且电平相等的单音信号同时输入一个射频放大器,则放大器的输出频谱大致如下:

相关文档
最新文档