第五章微讲义分方程模型
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产值 Q(t)
资金 K(t) 劳动力 L(t) 技术 f(t) = f0
Q (t)f0F (K (t)L ,(t))F为待定函数
1. 道格拉斯(Douglas)生产函数
静态模型 Q (K ,L )f0F (K ,L )
每个劳动 力的产值
z
Q L
每个劳动 力的投资
y
K L
模型假设 z 随着 y 的增加而增长,但增长速度递减
i(t)i0et
t i ?
若有效接触的是病人, 则不能使病人数增加
必须区分已感染者(病 人)和未感染者(健康人)
模型2
假设
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t),s(t)
SI 模型
2)每个病人每天有效接触人数 ~ 日
为, 且使接触的健康人致病
s s0
i0
相轨线
i(0 ) i0 , s (0 ) s0
相轨线 i ( s ) 的定义域
i(s)(s0ii0)s1lnss0
D { s ,i( )s 0 ,i 0 ,s i 1 } 1
在D内作相轨线 i ( s )
的图形,进行分析
D 0
s
1
模型4 相轨线 i ( s ) 及其分析
SIR模型
接触率
N [ i( t t) i( t) [ ]s ( t)N ] ( t) ti
di si
dt
s(t)i(t)1
di dt
i (1 i )
i ( 0 )
i 0
模型2
di
dt
i (1 i )
Logistic 模型
i
i ( 0 )
i 0
1
i(t)
1
1/2
i0
0
tm
t=tm, di/dt 最大
di
dt
si i
ds
dt
si
无法求出 i(t),s(t)
的解析解
i(0 ) i0 , s (0 ) s0
在相平面 s~i 上
研究解的性质
i0s01(通r常 (0)r0很小)
模型4
SIR模型
di
dt
si
i
消去dt
/
di
ds
1 1
s
ds
dt
si
i
zQ/Lf0g(y) g(y)y, 01
Qf0L(K/L)
g(y)
Q (K,L)f0KL 1 Douglas生产函数
Q, Q 0 K L
2Q 2Q K2 , L2 0
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段
• 按照传播过程的一般规律, 用机理分析方法建立模型
模型1 已感染人数 (病人) i(t)
假设
• 每个病人每天有效接触
(足以使人致病)人数为
建模 i(t t) i(t)i(t) t
di i dt i(0 ) i0
s
s0 - 1/ = x2
小, s0 1
提高阈值1/ 降低 被传染人数比例 x
5.2 经济增长模型
增加生产 发展经济 增加投资 增加劳动力 提高技术 • 建立产值与资金、劳动力之间的关系 • 研究资金与劳动力的最佳分配,使投资效益最大 • 调节资金与劳动力的增长率,使经济(生产率)增长
1. 道格拉斯(Douglas)生产函数
2)病人的日接触率 , 日治愈率, 接触数 = /
建模 s(t) i(t) r(t) 1
需建立 i(t),s(t),r(t)的两个方程
模型4
SIR模型
N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) ti
N [ s ( t t) s ( t) ] N ( t) i ( t s ) t
的估计
提高 r0
s0i0r01
s0 i0 s1lnss 0 0 忽略i0
群体免疫
lns0 lns
s0 s
模型4
被传染人数的估计
记被传染人数比例 xs0s
SIR模型
s0
i0
s1lnss 0
0
i0
0,
s0
1
x 1ln1( x)0
s0
i
x<<s0 x(1s012sx02)0
x2s0(s0 1)
P1
0 s 1/ s 0
0,
1
1i(t)
i0小
1
i(t)按S形曲线增长感健染康期者内人数有不效超接过触病感人染数的
模型2(SI模型)如何看作模型3(SIS模型)的特例
模型4
传染病有免疫性——病人治愈 后即移出感染系统,称移出者
SIR模型
假设 1)总人数N不变,病人、健康人和移
出者的比例分别为 i(t),s(t),r(t)
di
dt
si
i
ds
dt
si
di
ds
1 1
s
i
s s0
i0
i
1
i(s)(s0i0)s1lnss0
D
i(0 ) i0 , s (0 ) s0
P4
s(t)单调减相轨线的方向 im
s1/,iim t,i0
P2
P1
P3
s 满s足 0i0s1lnss 0 0 0 s S0 1/ s0
di dt
ቤተ መጻሕፍቲ ባይዱi(1 i)
i
i(0) i0
~ 日接触率 1/ ~感染期
/ ~ 一个感染期内每个病人的
有效接触人数,称为接触数。
模型3
di/dt
dii(1i)i /
dt
>1
ii0
>1
1-1/
0
1-1/ 1 i
i0
ddtii[i(11)]
i
i0
1
di/dt < 0
i()
1
1
,
0
1
接触t 数0=1 ~ 阈值 t
1s
P1: s0>1/
0 P2: s0<1/
i(t)先升后降至 i(t)单调降至0
传染病蔓延 1/ 传染病不蔓延 ~阈
值
模型4 预防传染病蔓延的手段
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
SIR模型
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
1
1 i0
1et
t
tm
1
ln
1 i
0
1
tm~传染病高潮到来时刻 t i 1?
(日接触率) tm
病人可以治愈!
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染 SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) t
第五章微分方程模型
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态 • 研究控制对象特征的手段
微分 方程 建模
• 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
问题
5.1 传染病模型