产甲烷生化代谢途径研究进展_方晓瑜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期 Received: 2014-08-19 接受日期 Accepted: 2014-10-11*国家重点基础研究发展规划项目(973项目,2013CB733502)和国家自然科学基金项目(31300447,41371268)资助 Supported by the State Key Basic R & D Program of China (973 Program, 2013CB733502 ), and the National Natural Science Foundation of China (31300447, 41371268)**通讯作者 Corresponding author (E-mail: lixz@)
产甲烷生化代谢途径研究进展*
方晓瑜1, 2, 3 李家宝4, 5 芮俊鹏4, 5 李香真1, 2**
1中国科学院环境与应用微生物重点实验室(成都生物所) 成都 610041
2
中国科学院成都生物研究所环境微生物四川省重点实验室 成都 6100413
中国科学院大学 北京 1000494
中国科学院山地生态恢复与生物资源利用重点实验室(成都生物所) 成都 6100415
中国科学院成都生物研究所生态系统恢复与生物多样性保育四川省重点实验室 成都 610041
要 微生物产甲烷过程产生的甲烷约占全球甲烷产量的74%. 产甲烷过程对生物燃气生产和全球气候变暖等都有着重要的意义. 本文综述了产甲烷菌的具体生化代谢途径,其本质是产甲烷菌利用细胞内一系列特殊的酶和辅酶将CO 2或甲基化合物中的甲基通过一系列的生物化学反应还原成甲烷. 在这一过程中,产甲烷菌细胞能够形成钠离子或质子跨膜梯度,驱动细胞膜上的ATP 合成酶将ADP 转化成ATP 以获得能量. 根据底物类型的不同,可以将该过程分为3类:还原CO 2途径、
乙酸途径和甲基营养途径. 还原CO 2途径是以H 2或甲酸作为主要的电子供体还原CO 2产生甲烷,其中涉及到一个最新的发现——电子歧化途径;乙酸途径是乙酸被裂解产生甲基基团和羧基基团,随后,羧基基团
被氧化产生电子供体H 2用于还原甲基基团;
甲基营养途径是以简单甲基化合物作为底物,以外界提供的H 2或氧化甲基化合物自身产生的还原当量作为电子供体还原甲基化合物中的甲基基团. 通过这3种途径产甲烷的过程中,每消耗1mol 底物所产生ATP 的顺序为还原CO 2途径>甲基营养途径>乙酸途径. 由于产甲烷菌自身难以分离培养,未来将主要通过现代的生物技术和计算机技术,包括基因工程和代谢模型构建等最新技术来研究产甲烷菌的生化代谢过程以及其与其它菌群之间的相互作用机制,以便将其应用于生产实践. 图3 表1 参86
关键词 产甲烷菌;生化代谢;还原CO 2途径;乙酸途径;甲基营养途径
CLC Q939.9
Research progress in biochemical pathways of methanogenesis *
FANG Xiaoyu 1, 2, 3, LI Jiabao 4, 5, RUI Junpeng 4, 5 & LI Xiangzhen 1, 2**
1
Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3
University of Chinese Academy of Sciences, Beijing 100049, China 4
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 5
Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
Microbial methanogenesis accounts for approximately 74% of natural methane emission. The process plays a major role in global warming and is important for bioenergy production. This paper reviews the biochemical pathways of methanogenesis. It is currently recognized that methanogenesis proceeds via three biochemical pathways depending on the carbon sources, including hydrogenotrophic, aceticlastic, and methylotrophic methanogenesis. Multiple enzymes and coenzymes are involved in the
process, during which Na + or proton gradient is created across the cell membrane, contributing to limited ATP synthe
s is. In the hydrogenotrophic pathway, CO 2 is reduced to methane with H 2 or formate as an electron donor. In the aceticlastic pathway, acetate is split into methyl and carboxyl group, then the carboxyl group is oxidized to produce H 2 which is used as the electron donor to reduce methyl group. In the methylotrophic pathway, methyl group is reduced with external H 2 or reducing equivalent from the oxidation of its own methy l group. The ATP gained from per mol substrate for different pathways are as follows: hydrogenotrophic > methylotrophic > aceticlastic pathway. Due to the unculturability of most archaeal methanogens, understandings of the biochemical pathways of methanogenesis and the relationships between methanogens and other microbial communities will have to depend on new technologies including bioinformatics, gene engineering and metabolic modelling.
Keywords methanogen; biochemical pathways; CO 2-reducing methanogenesis; aceticlastic methanogenesis; methylotrophic
methanogenesis