熔融法蓝宝石晶体退火特性研究

熔融法蓝宝石晶体退火特性研究
熔融法蓝宝石晶体退火特性研究

各种晶体总结及其应用

对晶体结构及其应用的认识 引言:化学中对晶体的研究促进了各种特性材料的发现和发明,也促进了各种催化剂的发现,晶体是美丽的,他们的最小单位——晶胞更是充分体现了各种对称美和造物者的神奇。晶体的应用在人类的生产生活中正发挥着巨大的作用。在本飞行器制造工程专业中也占据着不可忽视的作用。 关键词原子晶体,离子晶体,分子晶体,材料,制造业 高中时学习化学,曾接触过晶体的一些知识,因而对晶体产生了浓厚的兴趣,想借此机会,总结一下晶体结构以及晶体的各种应用。晶体分为原子晶体、离子晶体、分子晶体和金属晶体,我们生活的世界大部分是由这些物质构成。晶体具有以下特征: 自范性:晶体具有自发地形成封闭的凸几何多面体外形能力的性质,又称为自限性。 均一性:指晶体在任一部位上都具有相同性质的特征。 各向异性:在晶体的不同方向上具有不同的性质。 对称性:指晶体的物理化学性质能够在不同方向或位置上有规律地出现,也称周期性。最小内能和最大稳定性。 晶体中质点排列具有周期性和对称性整个晶体可看作由结点沿三个不同的方向按一定间距重复出现形成的,结点间的距离称为该方向上晶体的周期。同一晶体不同方向的周期不一定相同。可以从晶体中取出一个单元,表示晶体结构的特征。取出的最小晶格单元称为晶胞。晶胞是从晶体结构中取出来的反映晶体周期性和对称性的重复单元。 原子晶体是几种晶体中硬度最大,熔点较高的一类晶体。晶体中原子与原子通过共价键链接,构成一个空间的三维网络结构,所以具有他们特有的物理性质。俗话说“没有金刚钻别揽瓷器活”就是说的原子晶体中最典型的金刚石,金刚石

中C原子通过sp3杂化轨道与其他C原子相连,在空间形成承受力能力相当强的正四面体结构,我们不禁赞叹大自然的神奇,简单的C原子以这种方式连结竟然构成了世间最硬的物质。正是由于原子晶体的各种特异的性质,原子晶体在工业中具有广泛的应用,金刚石因为它的硬度较大,被广泛用在精密切割的刀具上,另外钻石还是昂贵的奢侈品;二氧化硅常被用在机械加工中各种砂轮砂纸上作为耐磨材料;高纯度的硅单质是良好的半导体,被广泛用于电子信息产业;碳化硅是良好的耐磨材料,。 离子晶体由阴、阳离子通过离子键结合而成的晶体,离子键:阴、阳离子间强烈的静电作用。离子键无饱和性、无方向性,大多数盐、强碱、活泼金属氧化物属于离子晶体,典型代表是氯化钠。相对于原子晶体,离子晶体更加普遍存在,同时它们也具有许多独特的特点。应为离子晶体是靠阴阳离子相互吸引结合,离子间以离子键相互结合,离子之间按照严格的规则排列,因此具有很漂亮的晶胞下面如图立方ZnS、CaF2、NaCl的晶胞 离子晶体在人类的生活中发挥着重要作用,冶炼金属,制作高储能的电池,制作具有各种光学特性光学器材,温度测量等很多地方都有应用。 分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。在固态和熔融状态时都不导电。 金属晶体:晶格结点上排列金属原子-离子时所构成的晶体。金属中的原子

InN薄膜的退火特性

第27卷 第2期2006年2月 半 导 体 学 报 C HIN ES E J OU RNAL O F S EM ICON D U C TO RS V ol.27 N o.2 Feb.,2006 3国家重点基础研究发展规划(批准号:G2000068305),国家高技术研究发展规划(批准号:2001AA311110,2003AA311060,2004AA311080), 国家自然科学基金(批准号:6039072,60476030),国家杰出青年基金(批准号:60025411)和江苏省自然科学基金(批准号:B K2005210,B K2003203)资助项目 通信作者.Email :xzl @https://www.360docs.net/doc/e011612754.html, 2005208224收到,2005210212定稿ν2006中国电子学会 In N 薄膜的退火特性 3 谢自力 张 荣 修向前 毕朝霞 刘 斌 濮 林 陈敦军 韩 平 顾书林 江若琏 朱顺明 赵 红 施 毅 郑有  (南京大学物理系江苏省光电功能材料重点实验室,南京 210093) 摘要:对InN 薄膜在氨气氛下的高温退火行为进行了研究.利用XRD ,S EM 和XPS 对样品进行了分析.结果表 明,InN 薄膜的结晶质量和表面形貌并不随退火温度单调变化.由于高温退火时N 原子的挥发,剩下的In 原子在样品表面聚集形成In 颗粒.当退火温度高于425℃时,In 原子的脱吸附作用增加,从而导致样品表面的In 颗粒在退火温度高于425℃时逐渐减少.XRD 和S EM 结果表明In 颗粒密度最高的样品具有最差的结晶质量.这种现象可能是由于In 颗粒隔离了其下面的InN 与退火气氛的接触,同时,金属In 和InN 结构上的差异也可能在InN 中导致了高密度的结构缺陷,从而降低了InN 薄膜的结晶质量. 关键词:InN ;热退火;X 射线衍射;扫描电子显微镜;X 射线光电子谱PACC :7360F ;7155;6820 中图分类号:TN30412+3 文献标识码:A 文章编号:025324177(2006)022******* 1 引言 在Ⅲ族氮化物半导体中,I nN 有其特殊的物理性质.例如,I nN 具有最小的电子有效质量,它决定了I nN 具有最高的峰值和饱和电子漂移速率.这使I nN 在高速、高频电子器件如高电子迁移率晶体管方面有着极为重要的应用价值.I nN 具有最小的禁带宽度(最新报道为017eV ),其和GaN 的合金I n x Ga 1-x N 的带隙宽度覆盖了从红外到紫外的波长范围.因此I n GaN 合金不仅可以用来做紫外和红外光电子器件,而且目前光纤通信中所应用的光学器件也有可能用I n GaN 合金来制备.另外,调节I n x Ga 1-x N 中的I n 组分可以用来制备不同禁带宽度的多结太阳能电池,其理论效率可达到70%以上.因此,I nN 作为Ⅲ族氮化物半导体中的一员,有 着重要的研究价值[1] .但是直到现在,对于I nN 材料的研究还不够充分,一些光电子参数比如光学常数、禁带宽度、载流子的有效质量和声子波数等都有待更精确地确定,这主要是因为高质量的I nN 薄膜很难制备[2]. 由于I nN 具有低的离解温度(≥600℃分解)要求低温生长,而作为氮源的N H 3的分解温度较高,在1000℃左右,这是I nN 生长的一对矛盾.其次,对 于I nN 材料生长缺少与之匹配的衬底材料.这就使 得高质量I nN 材料生长特别困难.因此I nN 材料的研究几乎没有取得什么进展.我们对I nN 材料的性质知之甚少[3,4]. 最近几年,由于科学技术的进步和发展,I nN 材料生长技术也越来越成熟.生长的I nN 材料中杂质也越来越少.特别是2002年,对I nN 材料本征能隙认识的新突破,对于纯度更纯的I nN 材料,其能隙是016~017eV ,而不是人们一直认为的119eV.这使得I nN 材料在微电子和光电子领域中的应用将有更好的表现.在国际上也因此掀起了一股I nN 材料的研究热潮.因而有必要对I nN 材料进行研究[5]. 本文对I nN 薄膜在氨气氛下的高温退火行为进行了研究.利用X RD ,S EM 和XPS 对样品进行了分析.结果表明,I nN 薄膜的结晶质量和表面形貌并不随退火温度单调变化.由于高温退火时N 原子的挥发,剩下的I n 原子在样品表面聚集形成I n 颗粒.当退火温度高于425℃时,I n 原子的脱吸附作用增加,从而导致样品表面的I n 颗粒逐渐减少.X 射线衍射(X RD )和电子显微镜(S EM )结果表明,I n 颗粒密度最高的样品具有最差的结晶质量.这种现象可能是由于I n 颗粒隔离了其下面的I nN 与退火气氛的接触,同时,金属I n 和I nN 结构上的差异也

一维光子晶体带隙结构研究_张玲

第37卷第9期2008年9月 光 子 学 报 ACTA P HO TON ICA SIN ICA Vol.37No.9 September 2008 Tel :02928220149828313 Email :warltszhang @https://www.360docs.net/doc/e011612754.html, 收稿日期:2007204228 一维光子晶体带隙结构研究 张玲,梁良,张琳丽,周超 (西安建筑科技大学物理系,西安710055) 摘 要:在考虑介质色散的基础上,研究了介质层厚度对光子晶体带隙结构的影响.利用传输矩阵法,计算了以Li F 和Si 两种材料组成的一维光子晶体带隙结构.结果表明,介质层厚度的增加会引起禁带的红移,厚度减小会引起蓝移.分析了含空气缺陷层、金属缺陷层的光子晶体结构,发现空气缺陷层对带隙结构的高反射区域变化不大,而在低反射区域,反射系数为零的波带之间出现了两边反射系数增加,中间反射系数减小的情况.在金属缺陷层的带隙结构中,金属对整个波长范围光的吸收作用不同,金属对低反射区1.6μm 、1.85μm 处透射率较大的透射光吸收作用明显,而在1.28~1.38μm 处透射率波长区间,几乎无吸收. 关键词:光子晶体;色散;带隙结构;空气缺陷层;金属缺陷层中图分类号:O734 文献标识码:A 文章编号:100424213(2008)092181524 0 引言 微加工技术的进步,使得光子晶体[1]在理论和实验研究上取得了重大进展,利用光子晶体可以制造出光通信中的许多器件,如光纤、微谐振腔,品质优良的光子晶体滤波器、集成光路等等[223].实验室一般采用不同折射率介质在空间的周期性排列形成光子晶体,Ward 等人提出一种增强块状金属反射能力的方法,他们预测含有Al/玻璃层的一维金属/电介质光子晶体比块状Al 的反射能力更强[4].对Au/MgF 2光子晶体透射性质的研究发现,周期性结构产生的透射共振使得光通过金属层的透射率大大增强,并有效抑制了吸收.通过控制金属层和电介质的厚度以及周期数,可以调节透射区域的波长范围、宽度和陡度[5].如果在光子晶体中引入缺陷,可使光子局域化[6],在有缺陷层的一维光子晶体(AB )n D m (BA )n 的带隙结构发现随着缺陷层厚度的增加,在禁带中出现的缺陷模向低频方向移动[7].还有一些金属/电介质光子晶体可以对某些晶体的闪烁光谱进行修饰,使得其对慢衰减成分的相对抑制比大大提升等等[8].本文在考虑色散关系的基础上对于LiF 与Si 构成的2元一维光子晶体的带隙结构进行了研究,通过改变介质层的厚度,分析了其带隙结构的变化,另外当该结构的光子晶体中有空气缺陷层、金属缺陷层时,其带隙结构的变化[2],并对计算结果做了分析. 1 理论模型 典型的光子晶体是由两种不同介电常量(εa ,εb ),厚度为(d a ,d b )的材料交替排列的其结构如图1,根据光在介质薄膜传播的传输矩阵方法,在第一 介质中的传输矩阵为 M a = cos δa isin δa /ηa i ηa sin δa cos δa (1) 图1 一维光子晶体模型 Fig.1 The structure of 12D photonic crystal 在第二介质中的传输矩阵为 M b = cos δb isin δb /ηb i ηb sin δb co s δb (2) 式(1)、(2)中δj =2πn j d j cos θ/λ,n j 、d j 、θj ,分别为第 j 层(j =(a ,b ))的折射率,介质层厚度,入射角, λ为真空中的波长,对于TE 波:ηj =n j cos θj ,对于TM 波ηj =n j /co s θj , 对于整个光子晶体的传输矩阵,若取层的对数为n ,则 M =(M a ,M b )n = M 11M 12M 21 M 22 (3) 设光子晶体周围材料的折射率为n 0,对于TE 波η0=n 0co s θ0,光在光子晶体传播时的反射系数和透射系数分别为 r = (M 11+M 12η0)η0-(M 21+M 22η0)(M 11+M 12η0)η0+(M 21+M 22η0) (4)

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

离子注入和快速退火工艺处理

离子注入和快速退火工艺 离子注入是一种将带电的且具有能量的粒子注入衬底硅的过程。注入能量介于1keV到1MeV之间,注入深度平均可达10nm~10um,离子剂量变动范围从用于阈值电压调整的1012/cm3到形成绝缘层的1018/cm3。相对于扩散工艺,离子注入的主要好处在于能更准确地控制杂质掺杂、可重复性和较低的工艺温度。 高能的离子由于与衬底中电子和原子核的碰撞而失去能量,最后停在晶格内某一深度。平均深度由于调整加速能量来控制。杂质剂量可由注入时监控离子电流来控制。主要副作用是离子碰撞引起的半导体晶格断裂或损伤。因此,后续的退化处理用来去除这些损伤。 1 离子分布 一个离子在停止前所经过的总距离,称为射程R。此距离在入射轴方向上的

投影称为投影射程Rp。投影射程的统计涨落称为投影偏差σp。沿着入射轴的垂直的方向上亦有一统计涨落,称为横向偏差σ┷。 下图显示了离子分布,沿着入射轴所注入的杂质分布可以用一个高斯分布函数来近似: S为单位面积的离子注入剂量,此式等同于恒定掺杂总量扩散关系式。沿x 轴移动了一个Rp。回忆公式: 对于扩散,最大浓度为x=0;对于离子注入,位于Rp处。在(x-Rp)=±σp处,离子浓度比其峰值降低了40%。在±2σp处则将为10%。在±3σp处为1%。在±4σp处将为0.001%。沿着垂直于入射轴的方向上,其分布亦为高斯分布,可用: 表示。因为这种形式的分布也会参数某些横向注入。 2 离子中止 使荷能离子进入半导体衬底后静止有两种机制。 一是离子能量传给衬底原子核,是入射离子偏转,也使原子核从格点移出。设E是离子位于其运动路径上某点x处的能量,定义核原子中止能力:

热敏电阻温度特性的研究

热敏电阻温度特性的研究 一、实验目的:了解和测量热敏电阻阻值与温度的关系 二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理 热敏电阻是其电阻值随温度显著变化的一种热敏元件。热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。热敏电阻的电阻-温度特性曲线如图1所示。 图1 NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点: 1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量; 3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适 用于远距离的温度测量和控制; 4.制造工艺比较简单,价格便宜。半导体热敏电阻的缺点是温度测量范围较窄。 NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示 )/exp(T B A R T = (1) 式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。由式(1)可得到当温度为0T 时的电阻值0R , 即 )/exp(00T B A R = (2) 比较式(1)和式(2),可得 )]1 1(exp[0 0T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为 0T 时的电阻值0R ,就可以利用式(3)计算在

热退火对多晶硅特性的影响

第26卷 第12期2005年12月 半 导 体 学 报 CHIN ESE J OURNAL OF SEMICONDUCTORS Vol.26 No.12 Dec.,2005 Received 10J une 2005 Ζ2005Chinese Institute of Electronics E ffect of Therm al Annealing on Characteristics of Polycrystalline Silicon Ren Bingyan 1,Gou Xianfang 1,2,Ma Lifen 1,2,Li Xudong 2,Xu Ying 2,and Wang Wenjing 2 (1Semiconductor Research I nstit ute ,Hebei Uni versit y of Technolog y ,Tianj in 300130,China ) (2B ei j ing S olar Energ y Research I nstit ute ,Bei j i ng 100083,China ) Abstract :Oxygen and carbon behaviors and minority 2carrier lifetimes in multi 2crystalline silicon (mc 2Si )used for solar cells are investigated by FTIR and QSSPCD before and after annealing at 750~1150℃in N 2and O 2ambient.For comparison ,the annealing of CZ silicon with nearly the same oxygen and carbon concentrations is also carried out under the same conditions.The results reveal that the oxygen and carbon concentrations of mc 2Si and CZ 2Si have a lesser decrease ,which means oxygen precipitates are not generated ,and grain boundaries in mc 2Si do not affect car 2bon behavior.Bulk lifetime of mc 2Si increases in N 2and O 2ambient at 850,950,and 1150℃,and the lifetime of mc 2Si wafers annealed in O 2are higher than those annealed in N 2,which shows that a lot of impurities in mc 2Si at high temperature annealing diff use to grain boundaries ,greatly reducing recombination centers.Interstitial Si atoms filling vacancies or recombination centers increases lifetime.K ey w ords :polycrystalline silicon ;oxygen ;lifetime EEACC :2520C C LC number :TN30411+2 Document code :A Article I D :025324177(2005)1222294204 1 Introduction Polycrystalline Si wafers have become preva 2lent in t he recent p hotovoltaic market.However ,t hey need f urt her quality imp rovement for highly efficient ,low 2co st solar cells.First we must under 2stand t he behaviors of imp urities and defect s in t he polycrystalline Si wafers in more detail.Because t here are grain boundaries and more imp urities and defect s ,mc 2Si material has more complicated p hysi 2cal behavior in high temperat ure annealing t han mono 2crystalline silicon.Oxygen in mc 2Si is a very important imp urity t hat affect s t he elect rical and mechanical properties of silicon material during heat t reat ment s [1].However ,t he formation of oxy 2gen precipitates ,t he variety of minor carrier life 2times ,and t he influence of t he annealing ambient are less investigated for polycrystalline silico n solar cells.In t his paper ,t he effect s of t hermal annealing on oxygen behavior and carrier lifetimes for poly 2crystalline Si wafers are investigated. 2 Experiment The polycrystalline Si wafers provided by Ba 2yer Solar Corporation in t his experiment were p 2 type ,019Ω?cm ,and 285 μm t hick.The interstitial oxygen and substit ute carbon concent rations of t he samples were 813×1017and 2×1017cm -3,respec 2tively.For comparison ,p 2type CZ 2Si samples wit h 〈100〉orientation ,1~3Ω?cm ,a t hickness of 330 μm ,and almost t he same oxygen concent ration were also st udied.The samples were cleaned wit h chemical solution ,and Si oxide was removed in an HF (10%)solution.Then t hey were subjected to heat t reat ment at 1260℃for 1h in N 2ambient so as to eliminate t he influence of t hermal history before

蓝宝石生长方法

一、蓝宝石生长 1.1 蓝宝石生长方法 1.1.1 焰熔法Verneuil (flame fusion) 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil) 和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末 与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。后 来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil) 改进并发展这一技术使之能进行商业化生产。因此,这种方 法又被称为维尔纳叶法。 1)基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在 通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种 晶上固结逐渐生长形成晶体。 2)合成装置与条件、过程 焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生 高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在 一个冷却的结晶杆上结成单晶。下图是焰熔生长原料及设备 简图。这个方法可以简述如下。图中锤打机构的小锤7按一 定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过 筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。 氢经入口流进,在喷口和氧气一起混合燃烧。粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。炉体4设有观察窗。可由望远镜8观看结晶状况。为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。 焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。 A.供料系统 原料:成分因合成品的不同而变化。原料的粉末经过充分拌匀,放入料筒。如果合成红宝石,则需要Al2O 粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。三氧化 3 二铝可由铝铵矾加热获得。料筒:圆筒,用来装原料,底部有筛孔。料筒中部贯通有

热敏电阻温度特性的研究带实验数据处理

本科实验报告 实验名称:热敏电阻温度特性的研究 (略写) 实验15热敏电阻温度特性的研究 【实验目的和要求】 1. 研究热敏电阻的温度特性。 2. 用作图法和回归法处理数据。 【实验原理】 1. 金属导体电阻 金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示: )1(320 ++++=ct bt t R R t α (1) 式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。 在很多情况下,可只取前三项: )1(20bt t R R t ++=α (2) 因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似

写成: )1(0t R R t α+= (3) 式中α称为该金属电阻的温度系数。 2. 半导体热敏电阻 热敏电阻由半导体材料制成,是一种敏感元件。其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为 T B T e A /0=ρ (4) 式中0A 与B 为常数,由材料的物理性质决定。 也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。其电阻率的温度特性为: T B T e A ?'=ρρ (5) 式中A '、 ρ B 为常数,由材料物理性质决定。 对(5)式两边取对数,得 A T B R T ln 1 ln += (6) 可见T R ln 与T 1 成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。 3. 实验原理图

蓝宝石晶体生长技术回顾

蓝宝石晶体生长技术回顾 (2011-07-12 15:21:18) 转载 分类:蓝宝石晶体 标签: 蓝宝石 晶体生长 技术 历史 杂文 杂谈 引言 不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。 可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听 起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么? 古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。如果没有对以往技术的熟练掌握、熟知精髓所在,没有

对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。 还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。 蓝宝石晶体生长技术简介

焰熔法(flame fusion technique)&维尔纳叶法(Verneuil technique) 1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳叶法。 弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。 博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。 至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。 100多年来火焰法工作者在气泡、微散射,晶体应力和晶体生长方向的关系,晶体生长方向与缺陷、成品率之间的关系做了大量的数据总结,可以讲在各个宝石生长方法中研究数据是最完备的。在这篇博文里我只讲讲个人认为对其他方法有借鉴意义的一些总结。

2020年常用晶体材料

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 Al2O3晶体 氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ 材料基本性能: CaF2晶体

折射率: MgF2晶体 氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F 2

折射率: LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 材料性能:

熔融法蓝宝石晶体退火特性研究

收稿日期:2011 04 05 作者简介:王 铎(1978-),男,汉族,吉林长春人,福建江夏学院助教,硕士,主要从事光电晶体方向研究,E mail:qglpw d@163. com. 第32卷第3期 长春工业大学学报(自然科学版) Vo l 32N o.32011年06月 Jour nal of Chang chun U niver sity o f T echnolog y (N atur al Science Edition) Jun 2011 熔融法蓝宝石晶体退火特性研究 王 铎 (福建江夏学院工商管理系,福建福州 350007) 摘 要:研究了蓝宝石( A l 2O 3)晶体热退火前后光学均匀性的变化,发现适当温度下退火可以降低晶体的内应力,提高晶体质量,从而提高晶体的光学均匀性。结果表明,采用自制内绕式钼丝炉在1890 下退火即可有效消除部分内应力,晶体经任意切割均无出现炸裂现象。 关键词:蓝宝石晶体;热处理;钼丝炉;内应力 中图分类号:O782 文献标志码:A 文章编号:1674 1374(2011)03 0296 04 Annealing properties of sapphire crystal with melting method WANG Duo (Department of Busin ess Administration,Fujian In stitute Jiangxia,Fuzh ou 350007,China) Abstract:T he optical ho mog eneity of the sapphir e ( A l 2O 3)crystals is studied before and after the annealing pro cess.It is found that the internal stress of the crystal can be reduced at an appropriate annealing temperature so that bo th the cr ystal quality and the optical homog eneity are improved.The results show that par t of the internal stress can be elim inated at 1890 w ith a self made moly bdenum w ire w o und furnace for annealing ,and no burst pheno menon appear s w hen the crystal is cut. Key words:sapphir e;therm al annealing;mo lybdenum filam ent fur nace;internal stress. 0 引 言 蓝宝石单晶(又称白宝石或刚玉)是一种简单的配位型氧化物晶体[1] ,也是一种优秀的多功能材料,具有一系列独特的物理化学性能[2 3] 。它的 介电常数小、介质损耗低,具有良好的电绝缘性和 耐各种射线能力。 蓝宝石晶体作为一种优良的透波材料,在紫外、可见光、红外波段、微波都具有良好的透过率,可以满足多模式复合制导(电视、红外成像、雷达 等)的要求,因而常被用作红外军事装置和高强度激光器的窗口材料,广泛应用于工业、国防和科研等多个领域;蓝宝石晶体也是目前发蓝、白光二极管(LED)[4 6]和蓝光激光器(LD)的首选基片材料。超高亮度蓝、白光LED 的品质取决于氮化镓(GaN)薄膜与所用基片间的晶格匹配度,c 面蓝宝石单晶与 族和 族沉积薄膜之间的晶格失配率小,同时符合镀膜过程中的高温要求,使得蓝宝石晶片成为制作蓝、白光LED 的关键材料。目前超过80%的主流LED 基板供应商仍是

蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究 【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。 【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。 焰熔法。确切来讲焰熔法是由弗雷米、弗尔、乌泽在

1885 年发明的,后来法国化学家维尔纳叶改进、发 展并投入生产使用。焰熔法是以Al2O3 粉末为原 料,置于设备上部,原料在撒落过程中通过氢及氧气 在燃烧过程中产生的高温火焰,熔化,继续下落,落 在设备下方的籽晶顶端,逐渐生长成晶体。焰熔法生 产设备主要有料筒、锤打机构、筛网、混合室、氢气 管、氧气管、炉体、结晶杆、下降机构、旋转平台等 组成。锤打机构使料筒振动,与筛网合作使粉料少 量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。 提拉法。提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。

蓝宝石应力

蓝宝石应力 1. 概述 在晶体生长过程中晶体内存在的应力将引起应变,当应变超过了晶体材料本身塑性形变的屈服极限时,晶体将发生开裂。一般来说,根据晶体内应力的形成原因,可将其分为三类:热应力,化学应力和结构应力。 1.1热应力 蓝宝石晶体在从结晶温度冷却至室温过程中并不发生相结构的转变,因此,晶体内应力主要是由温度梯度引起的热应力。晶体热应力正比于晶体内的温度梯度、晶体热膨胀系数及晶体直径。最大热应力总是出现在籽晶与新生晶体的界面区域,较大热应力一般出现在结晶界面、放肩、收尾及直径发生突变的部位,在等径部位热应力相对较小。 1.2结构应力 由特定材料构建成的一个功能性物体叫做结构,在结构的材料内部纤维受到结构自身重力或者外界作用力下,纤维会产生变形,这种变形的能量来自于材料所受的应力,这种应力就叫结构应力。 2. 产生因素 晶体全开裂主要与晶体的生长速率和冷却速率有关,生长速率或冷却速率过快,必将使晶体整体的热应力过大。当热应力值超过屈服应力时,裂纹大量萌生,不断扩展,相互交织造成晶体整体碎裂,具有此种裂纹的晶体已失去使用价值,应当严格避免。通过相关理论分析和多次实验证明,采用匀速的降温程序,降温速率控制在1.5~3.0 K/h的范围

内,晶体生长速率为1.0~5.0 mm/h;依据蓝宝石晶体退火工艺,晶体强度与温度的变化关系,在10~30 K/h范围内设计晶体的冷却程序,完成晶体的退火和冷却。此晶体生长速率及冷却程序,可使晶体的整体碎裂得到有效控制。 在晶体生长中时常发现在晶体的引晶、放肩及晶体直径突变等部位发生裂纹萌生,并沿特定的晶面扩展。具有该种裂纹的晶体虽然仍可利用,但会使器件的尺寸受到一定的限制,降低晶体坯料的利用率,故应尽力避免。 此种裂纹的形成与泡生法晶体生长控制工艺密切相关。在晶体生长的引晶和放肩阶段主要是通过调节热交换器的散热能力来控制晶体生长,在籽晶和新生晶体的界面区域,受热交换器工作流体温度的影响较显著,温度梯度较大。同时,在此阶段需不断的调整晶体的生长 状态,造成此位置晶体外形不规则以及较高的缺陷浓度等都极易引起应力集中,裂纹萌生的机率也相对较大。在后续实验中,本实验室采用加长籽晶杆长度,增加温度梯度过渡区长度和恒定热交换器工作流体温度等措施来控制该区域的裂纹萌生,并取得了较好的效果。 3. 检测方法 检测工具为应力仪。 台式应力仪:S-18应力测试仪应用范围广泛。该仪器可以从水平或垂直角度,对玻璃和塑料配件进行检测,大多运用于品控。S-18有足够大的使用空间供各种产品进行测量。测量过程中,主要通过手持被测物体在偏光下进行观察测量。 标准配置的S-18包括一个光源,一个装有四分之一波盘的分析器和另一个装有四分之一波盘的偏光装置。S-18应力仪中已经置入了一块全波盘。 S-18应力测试仪使用时要垂直放置。机身上有2对橡胶脚垫减震器,便于从水平或垂直方向操作。 应力仪功能的优越点 应力仪是一种无损检测应力情况的机器,便于人们在生产国产中更直观的判别样品的应力情况。做好分析应力的情况,更好的改进生产工艺,做出更好的产品。 应力仪的操作简便易学,机器性能一般可以稳定维持3-5年。

相关文档
最新文档