初中数学命题与证明的易错题汇编含答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.正多边形都是轴对称图形
D.圆锥的主视图一定是等边三角形
【答案】C
【解析】
【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.
【详解】A、 =( )2,当a<0时不成立,假命题;
B、位似图形在位似比为1时全等,假命题;
C、正多边形都是轴对称图形,真命题;
D、圆锥的主视图不一定是等边三角形,假命题,
故选D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.
6.现给出下列四个命题:
①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;
③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.
A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;
B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;
C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;
D、若 =a,则a=0或a=1,所以D选项为假命题.
故选:C.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
故选C.
【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.
5.下列各命题的逆命题是真命题的是
A.对顶角相等B.全等三角形的对应角相等
C.相等的角是同位角D.等边三角形的三个内角都相等
【答案】D
【解析】
【分析】
分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.
D.正确.线段垂直平分线上的点到线段两端的距离相等.
故选:C.
【点睛】
本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
17.下列四个命题中,其正确命题的个数是( )
①若ac>bc,则a>b;
②平分弦的直径垂直于弦;
A.两条直线被第三条直线,同位角相等
B.若a⊥b,b⊥c,则a⊥c
C.点p(x,y),若y=0,则点P在x轴上
D.若 =a,则a=﹣l
【答案】C
【解析】
【分析】
根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.
【详解】
【详解】
A.两直线平行,同位角相等,故A是假命题;
B.对顶角相等,故B是假命题;
C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;
D.如果点的横坐标和纵坐标互为相反数,那么点 在直线 的图像上,故D是真命题
故选:D
【点睛】
本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.
③一组对角相等一组对边平行的四边形是平行四边形;
④反比例函数y= .当k<0时,y随x的增大而增大
A.1B.2C.3D.4
【答案】A
【解析】
【分析】
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向,正确;
故语句正确的个数有3个
故答案为:C.
【点睛】
本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.
4.下列命题中真命题是( )
A. =( )2一定成立
B.位似图形不可能全等
9.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若 与 成轴对称,则 一定与 全等;④有一个角是 度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()
A. B. C. D.
【答案】A
【解析】
【分析】
利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.
12.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.
【详解】
①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;
②两点之间,线段最短,正确;
③两点之间的距离是连接两点的线段的长度,错误;
④延长射线 ,交直线 于点 ,正确;
其中不正确的命题的个数是( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;
②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;
③根据菱形的面积公式,错误;
④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.
11.下列命题是真命题的是()
A.同位角相等
B.对顶角互补
C.如果两个角的两边互相平行,那么这两个角相等
D.如果点 的横坐标和纵坐标互为相反数,那么点 在直线 的图像上.
【答案】D
【解析】
【分析】
根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.
【详解】
解: 等腰三角形底边的中点到两腰的距离相等;正确;
等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确:
若 与 成轴对称,则 一定与 全等;正确;
有一个角是 度的等腰三角形是等边三角形;不正确;
等腰三角形的对称轴是顶角的平分线所在的直线,不正确.
正确命题为: 个;
故选:
【点睛】
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
3.下列语句正确的个数是()
①两个五次单项式的和是五次多项式
②两点之间,线段最短
③两点之间的距离是连接两点的线段
④延长射线 ,交直线 于点
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向
【答案】A
【解析】
【分析】
根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.
【详解】
A、正确.
B、错误,对应边不一定成比例.
C、错误,不一定中奖.
D、错误,对角线相等的四边形不一定是矩形.
故选:A.
【点睛】
此题考查命题与定理,熟练掌握基础知识是解题关键.
D.线段垂直平分线上的点到线段两端的距离相等
【答案】C
【解析】
【分析】
根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.
【详解】
A.正确;有一个角是60°的等腰三角形是等边三角形;
B.正确.等边三角形有3条对称轴;
C.错误,SSA无法判断两个三角形全等;
利用不等式的性质分别判断后即可确定正确的选项.
【详解】
A、若a>b,则-a<-b,正确,是真命题;
B、若a>b,则a+3>b+3,正确,是真命题;
C、若a>b,则 ,正确,是真命题;
D、若a>b,则a2>b2,错误,是假命题;
故选:D.
【点睛】
此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.
初中数学命题与证明的易错题汇编含答案
一、选择题
1.下列选项中,可以用来说明命题“若 ,则 ”是假命题的反例是()
A. B. C. D.
【答案】B
【解析】
分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
详解:∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.
故选B.
点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种
A.两条直线B.相交
C.只有一个交点D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
15.下列命题中,假命题是()
A.平行四边形的对角线互相垂直平分
B.矩形的对角线相等
C.菱形的面积等于两条对角线乘积的一半
D.对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A.平行四边形的对角线互相平分,故是假命题;
B.矩形的对角线相等,故是真命题;
C.菱形的面积等于两条对角线乘积的一半,故是真命题;
D.对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
16.下列命题是假命题的是()
A.有一个角是60°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
根据垂直的性质和平行线的性质,可知“若 , ,那么 ”,是真命题.
故选C.
8.下列命题中,是假命题的是( )
A.若a>b,则-a<-b
B.若a>b,则a+3>b+3
C.若a>b,则
D.若a>b,则a2>b2
【答案】D
【解析】
【分析】
B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;
C.若a>|b|,则a2>b2,正确;
D. a<1,如a=-1,此时a= ,故D选项错误,
故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.
13.下列命题中,真命题的是( )
14.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()
A.1B.2C.3D.4
【答案】A
【解析】
【分析】
根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.
【详解】
本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.
10.下列命题是真命题的是()
A.方程 的二次项系数为3,一次项系数为-2
B.四个角都是直角的两个四边形一定相似
C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
D.对角线相等的四边形是矩形
【详解】
A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;
B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;
C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;
D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.
综合以上分析,不正确的命题包括①②③.
故选C.
7.下列命题中是假命题的是().
A.同旁内角互补,两直线平行
B.直线 ,则 与 相交所成的角为直角
C.如果两个角互补,那么这两个角是一个锐角,一个钝角
D.若 , ,那么
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线 ,则 与 相交所成的角为直角”,是真命题;
①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;
②两点之间线段最短;真命题;
③相等的圆心角所对的弧相等;假命题;
④平分弦的直径垂直于弦;假命题;
真命题的个数是1个;
故选:A.
【点睛】
考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
D.圆锥的主视图一定是等边三角形
【答案】C
【解析】
【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.
【详解】A、 =( )2,当a<0时不成立,假命题;
B、位似图形在位似比为1时全等,假命题;
C、正多边形都是轴对称图形,真命题;
D、圆锥的主视图不一定是等边三角形,假命题,
故选D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.
6.现给出下列四个命题:
①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;
③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.
A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;
B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;
C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;
D、若 =a,则a=0或a=1,所以D选项为假命题.
故选:C.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
故选C.
【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.
5.下列各命题的逆命题是真命题的是
A.对顶角相等B.全等三角形的对应角相等
C.相等的角是同位角D.等边三角形的三个内角都相等
【答案】D
【解析】
【分析】
分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.
D.正确.线段垂直平分线上的点到线段两端的距离相等.
故选:C.
【点睛】
本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
17.下列四个命题中,其正确命题的个数是( )
①若ac>bc,则a>b;
②平分弦的直径垂直于弦;
A.两条直线被第三条直线,同位角相等
B.若a⊥b,b⊥c,则a⊥c
C.点p(x,y),若y=0,则点P在x轴上
D.若 =a,则a=﹣l
【答案】C
【解析】
【分析】
根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.
【详解】
【详解】
A.两直线平行,同位角相等,故A是假命题;
B.对顶角相等,故B是假命题;
C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;
D.如果点的横坐标和纵坐标互为相反数,那么点 在直线 的图像上,故D是真命题
故选:D
【点睛】
本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.
③一组对角相等一组对边平行的四边形是平行四边形;
④反比例函数y= .当k<0时,y随x的增大而增大
A.1B.2C.3D.4
【答案】A
【解析】
【分析】
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向,正确;
故语句正确的个数有3个
故答案为:C.
【点睛】
本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.
4.下列命题中真命题是( )
A. =( )2一定成立
B.位似图形不可能全等
9.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若 与 成轴对称,则 一定与 全等;④有一个角是 度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()
A. B. C. D.
【答案】A
【解析】
【分析】
利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.
12.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.
【详解】
①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;
②两点之间,线段最短,正确;
③两点之间的距离是连接两点的线段的长度,错误;
④延长射线 ,交直线 于点 ,正确;
其中不正确的命题的个数是( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;
②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;
③根据菱形的面积公式,错误;
④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.
11.下列命题是真命题的是()
A.同位角相等
B.对顶角互补
C.如果两个角的两边互相平行,那么这两个角相等
D.如果点 的横坐标和纵坐标互为相反数,那么点 在直线 的图像上.
【答案】D
【解析】
【分析】
根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.
【详解】
解: 等腰三角形底边的中点到两腰的距离相等;正确;
等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确:
若 与 成轴对称,则 一定与 全等;正确;
有一个角是 度的等腰三角形是等边三角形;不正确;
等腰三角形的对称轴是顶角的平分线所在的直线,不正确.
正确命题为: 个;
故选:
【点睛】
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
3.下列语句正确的个数是()
①两个五次单项式的和是五次多项式
②两点之间,线段最短
③两点之间的距离是连接两点的线段
④延长射线 ,交直线 于点
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向
【答案】A
【解析】
【分析】
根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.
【详解】
A、正确.
B、错误,对应边不一定成比例.
C、错误,不一定中奖.
D、错误,对角线相等的四边形不一定是矩形.
故选:A.
【点睛】
此题考查命题与定理,熟练掌握基础知识是解题关键.
D.线段垂直平分线上的点到线段两端的距离相等
【答案】C
【解析】
【分析】
根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.
【详解】
A.正确;有一个角是60°的等腰三角形是等边三角形;
B.正确.等边三角形有3条对称轴;
C.错误,SSA无法判断两个三角形全等;
利用不等式的性质分别判断后即可确定正确的选项.
【详解】
A、若a>b,则-a<-b,正确,是真命题;
B、若a>b,则a+3>b+3,正确,是真命题;
C、若a>b,则 ,正确,是真命题;
D、若a>b,则a2>b2,错误,是假命题;
故选:D.
【点睛】
此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.
初中数学命题与证明的易错题汇编含答案
一、选择题
1.下列选项中,可以用来说明命题“若 ,则 ”是假命题的反例是()
A. B. C. D.
【答案】B
【解析】
分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
详解:∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.
故选B.
点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种
A.两条直线B.相交
C.只有一个交点D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
15.下列命题中,假命题是()
A.平行四边形的对角线互相垂直平分
B.矩形的对角线相等
C.菱形的面积等于两条对角线乘积的一半
D.对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A.平行四边形的对角线互相平分,故是假命题;
B.矩形的对角线相等,故是真命题;
C.菱形的面积等于两条对角线乘积的一半,故是真命题;
D.对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
16.下列命题是假命题的是()
A.有一个角是60°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
根据垂直的性质和平行线的性质,可知“若 , ,那么 ”,是真命题.
故选C.
8.下列命题中,是假命题的是( )
A.若a>b,则-a<-b
B.若a>b,则a+3>b+3
C.若a>b,则
D.若a>b,则a2>b2
【答案】D
【解析】
【分析】
B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;
C.若a>|b|,则a2>b2,正确;
D. a<1,如a=-1,此时a= ,故D选项错误,
故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.
13.下列命题中,真命题的是( )
14.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()
A.1B.2C.3D.4
【答案】A
【解析】
【分析】
根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.
【详解】
本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.
10.下列命题是真命题的是()
A.方程 的二次项系数为3,一次项系数为-2
B.四个角都是直角的两个四边形一定相似
C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
D.对角线相等的四边形是矩形
【详解】
A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;
B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;
C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;
D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.
综合以上分析,不正确的命题包括①②③.
故选C.
7.下列命题中是假命题的是().
A.同旁内角互补,两直线平行
B.直线 ,则 与 相交所成的角为直角
C.如果两个角互补,那么这两个角是一个锐角,一个钝角
D.若 , ,那么
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线 ,则 与 相交所成的角为直角”,是真命题;
①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;
②两点之间线段最短;真命题;
③相等的圆心角所对的弧相等;假命题;
④平分弦的直径垂直于弦;假命题;
真命题的个数是1个;
故选:A.
【点睛】
考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.