钻杆接头表面耐磨带堆焊方式

钻杆接头表面耐磨带堆焊方式
钻杆接头表面耐磨带堆焊方式

钻杆接头表面耐磨带堆焊方式

钻杆接头表面堆焊耐磨带是为了防止钻杆接头和套管磨损进行的有效而简易的措施之一。耐磨带堆焊方式有凸起和平坦两种状态,具体情况如下:

1、“凸起”焊接状态的耐磨带

建议在所有的钻杆接头上都使用“凸起”状态的耐磨带,以便使套管和钻杆接头得到最大程度的保护。所闻凸焊指耐磨带的高度比接头本体直径高。当用户要求在度斜面焊接的时候,可以选择在钻杆接头18度斜面吊卡处的表面加工一个凹槽,将耐磨带用“平坦焊接”的方式填平。然后在钻杆内螺纹接头外圆的一段长度内,再堆焊一层耐磨带使之呈“凸起”状态。

通常,建议在内螺纹接头的外圆上堆焊76mm宽、3mm厚的耐磨带。于是耐磨带自己形成一个接触面,而不是使钻杆内螺纹接头的全部长度都与套管或裸眼井的内壁表面相接触。这样就减少了套管和钻杆接头双方的磨损。例如φ168mm钻杆内螺纹接头外圆上堆焊“口起”状态耐磨带示意图见图1所示。

图1 “凸”状态的耐磨带

用这种方法堆焊的耐磨带可以吸收载荷的冲击。一旦发生了最恶劣的情况,比如说耐磨带被破坏了,那就需要剔除损坏的耐磨带,然后重新堆焊。把整个钻杆从意外的灾难中抢救恢复出来,以便今后继续使用。钻杆和套管的接触力主要分布在较小的耐磨带区域,而耐磨带的摩擦系数比钻杆接头小,当耐磨带与套管的内表面接触吋,由于摩擦系数的减小,同时也降低了钻具在延伸区作业或大角度钻井时产生的较大扭矩和拉力。这样,扭矩和拉力的减小又可以减少燃料的消耗。

2、“平坦”焊接状态的耐磨带

只有当钻杆接头的最大外径被限制,以免与套管内径相干涉时,才建议使普通平坦耐磨带的类型。所谓平焊指耐磨带高度与接头本体直径齐平,钻杆接头本体的外径与耐磨带同时都在受到摩擦。钻杆和套管的接触力或多或少地沿整个钻杆接头的长度方向分布,降低了耐

磨带的支撑,同时增加了钻杆接头本体与套管的接触,增大了钻杆接头和套管的磨损。用这种方法堆焊的任何一种耐磨带,包括KB150,都不能产生最大的耐磨效果。

对于平坦焊接类型的耐磨带的应用,需要在整个接头的耐磨带区域加工凹槽,然后填充磨带,使之与钻杆接头的外径齐平。耐磨带区域一般包括18°的吊卡台肩。例如φ168mm

钻杆内螺纹接头外圆上堆焊“平坦”状态耐磨带示意图见图2所示。

图2 “平坦”状态的耐磨带

3、钻杆接头表面耐磨带堆焊材料推荐

在焊接材料的选用上,考虑既要避免焊缝中裂纹的产生,同时又要保证焊接接头的强度满足产品的性能要求。为此,选择了焊接质量稳定,且熔敷速度高,焊接效率明显的KB150耐磨带焊丝,直径为1.6mm。

KB150耐磨带焊丝是北京固本公司第三代产品,是一种高级无裂纹、套管友好耐磨带,采用的是CO2气体保护焊。55以上的洛氏硬度,确保了钻杆接头和套管之间的理想摩擦和均衡保护。金相结构上的独特设计,在提供保护钻杆接头的能力,同时减小钻柱与套管、海洋钻井隔水管和防喷器之间的摩擦阻力,有效延长钻具和所有相关设备的工作寿命。

浅谈旧加重钻杆耐磨带堆焊的必要性

加重钻杆耐磨带堆焊的必要性及其应用 论文摘要:在深井超深井勘探过程中,由于径向力、涡动、横向振动等因素的存在,随着钻井时间的增长,钻柱作用于套管内壁的侧向力增大,导致套管和钻具接头磨损的问题越来越严重。造成钻具耐磨带失效的主要原因有地层研磨性、钻杆的井下工况、耐磨材料选择与敷焊工艺的影响。选择合理的耐磨材料与敷焊工艺对解决钻具耐磨带失效问题非常重要。 论文关键词:耐磨带钻具铁基合金粉焊丝 一、加重钻杆的作用 加重钻杆通常应用于水平井、定向井以及深井等难度较大的井位中,可以部分代替钻铤以提高钻机的钻深能力,由于它的弹性比普通钻铤高,在弯曲井眼中用它来代替钻铤时,可以降低旋转扭矩和提升负荷。另外在弯曲井段用加重钻杆代替钻杆时,由于加重钻杆于井壁接触面积较小,能减少旋转扭矩和上提阻力以及压差卡钻的可能性。更重要的是有利于保持定向井的方向。 二、钻井过程中的磨损种类 在油气田勘探开发钻井中,尤其是在深井、大位移井、水平井、大斜度井中,钻杆和套管的磨损严重,给油气田带来重大损失。因此,钻井过程中钻杆和套管的磨损及防磨问题,已引起钻井界的密切关注。 套管磨损———套管磨损的主要形式为偏磨,偏磨后的套管横截面呈月牙型。一方面套管圆周上呈月牙型部位壁厚最薄,导致抗挤强度大大降低。在高地层压力作用下,假如设计的套管安全系数没有足够大,轻易导致套管挤毁,造成钻井报废或局部井段报废。另一方面,偏磨套管在抗挤强度降低的同时其抗内压强度也随着降低。在井控及中途测试时,假如没有充分考虑到套管磨损的影响,可能造成严重后果,即气井完井井控和测试时,要么冒套管破裂地面窜气的风险,要么提前入套管或下套管后再测试。这不仅造成重大经济损失,而且给加深钻井造成困难或钻不到设计深度。

钻机技术要求

二、技术要求 1.井型概述 寿阳作业区所部署井位主要为煤层气水平井组,根据已知部分井位的钻井设计,直井井深为700-800米左右,水平井井深在1500-1600米左右。QYN1-12井组的直井和水平井一开井眼尺寸预计为311.2mm,下244.5mm套管;二开井眼尺寸为215.9mm,下177.8mm套管;水平井三开井眼尺寸为130.2mm,PE管完井。 2、规范及行业标准

三. 技术要求 3.1总体技术要求 钻机要求ZJ30撬装钻机,具体设备参数要求如下: (1)设备要满足井场露天作业的要求,在防爆、防渗漏、防腐、防尘、耐高温方面严格要求,并具有较高的适应性,同时要求容易检查、保养和维修;(2)所有液、气、电线走向规范、安全可靠、布局合理,标识清晰、按相关标准和规范进行安装、固定; (3)危险区内所有电气设备满足防爆要求,并提供防爆证书; (4)钻机各报警、限位及互锁装置灵敏、可靠、准确。所有安全设备(压力容器)有合格证、检测报告; (5)整套钻机设备配齐标准的安全标识和警示牌; (6)钻机总体布局合理并考虑集约化。需要具有较强的丘陵地区运输能力,车载钻机设计包括轴荷、载重、刹车、照明、尺寸等满足公路运输要求(7)钻机设备需配备FZ18-14型防喷器装置; (8)钻机设备需配备配套顶驱装置 3.2适用条件 环境温度 -20℃~+45℃ 湿度 90﹪(+20℃时) 满足2500米井深钻深需要,山西等山区煤层气作业,高沙尘环境,低温。

3.3 钻机技术要求 3.3.1钻机底座系统 ◆台面面积 ◆立根盒容量整套钻机满足钻井深度为2500m(5″钻杆)的作业◆立根盒为硬方木,方木作防腐处理; ◆配套2个B型钳尾绳桩,1个液压大钳尾绳桩及2套液压猫头等; ◆钻台配两套扶梯,一个门形坡道,大小鼠洞和钻台围栏等。 3.3.2提升系统 3.3.2.1井架 ◆最大钩载≥180T ◆井架有效度满足至少两根单根立柱摆放且安全距离≥2m。 ◆二层台立根容量 5”钻杆,19m立根≥2500m 3-1/2”钻杆≥2000m 6-1/2"钻挺≥12柱 4-3/4"钻铤≥9柱 二层台安装高度(钻台面之上) 17.5m、19.5 m、 3.3.2.2 天车 ◆规格 TC250及以上 ◆天车架设缓冲防碰木,并加护网。 ◆配避雷针、标高灯。 3.3.2.3绞车 ◆规格 ◆主刹车机械带式刹车或者液压盘式刹车

石油钻具耐磨带敷焊技术

石油钻具耐磨带敷焊技术 (北京固本科技有限公司) 随着石油勘探开发的不断深人,越来越多的新工艺、新技术应用到生产实践中,很多特殊工艺并对钻具接头的耐磨性提出了更高要求,其中地层研磨性、敷焊工艺技术和耐磨材料的选择、钻具在井下的工况等是影响钻具耐磨带失效的主要原因,因此为了适应不同井型及特殊工艺井的钻井需求,必须使用高性能的钻具耐磨带焊丝。 1、钻具耐磨带焊丝的特征 (1)耐磨带表面无裂痕。 (2)在施工过程中,钻具对套管的磨损相对较低。 (3)在没有技术套管钻井工况下,钻杆耐磨带焊丝的耐磨性与碳化钨相对。 (4)与正常耐磨带相比,在同样工况下能够提高300%钻具使用寿命。 (5)在钻井生产应用中,能够同时保护套管和钻杆接头。 (6)实现废物利用,可在原碳化钨堆层上继续加焊。 2、钻具焊接工艺 对于常用钻具耐磨焊丝和堆焊设备,都有特殊的技术要求和参数设置,在实际堆焊施工中可以根据不同的堆焊厚度进行调整。 2.1、焊接设备 (1)根据钻具耐磨带和堆焊的特殊性,在设备选择上选用电压

为22V-28V、电流为240A-320A的自动气体保护直流焊机。 (2)在夹紧钻具接头装置选择上,选用转速可调,能在焊枪下面正、反旋转钻具接头的装置。 (3)夹紧焊枪并可以带动焊枪自由摆动,摆动幅度为15-40mm。 (4)焊枪在上、下、左、右范围内均可大幅度移动。 (5)选用速度可调、送丝结构平稳的焊机,压丝轮紧度可调,要适中。送丝速度要在6-12m/min范围内。 2.2、敷焊工艺技术 在敷焊过程中需要有一定的敷焊参数,其中焊机电流要在300A-350A范围内、焊机摆动频率在40-50min,焊机送丝速度在6-8m/min,敷焊速度保持在120-135mm/min,若按照以上参数进行施工,那么敷焊过程中可以达到以下技术效果。 (1)耐磨带尺寸能够达到标准要求,其高度在2.5mm,宽度在25-30mm之间。 (2)焊机操作过程送丝平稳、稳定。 (3)耐磨带表面形成的鱼鳞状花纹比如平整光滑,均匀细密。 (4)耐磨带表面无飞溅、残留,边缘平整。 (5)耐磨带与钻具本体融合好,无针孔和裂纹。 3、等离子喷焊工艺技术 电控操纵柜是等离子喷焊工艺不可缺少的机械设备,它主要有计数器控制原件、气路原件、参数调节原件和可编程PLC控制原件组成。

钻杆接头扣型

钻杆接头的扣型 NC77 4 161.85 204.79 2 3/8"REG 5 47.62 68.20 231×230 2 7/8"REG 5 53.97 77.78 331×330 3 1/2"REG 5 65.07 90.48 431×430 4 1/2"REG 5 90.47 119.06 531×530 5 1/2"REG 4 110.06 141.68 631×630 6 5/8"REG 4 131.03 153.9 国内现场叫 法 API 名称 每英寸扣数 公扣小头端 面外径/mm 母扣台肩 端面内径 /mm 211×210 NC26=2 3/8"IF 4 60.3 5 74.61 NC31=2 7/8' 4 71.31 87.71 311×310 NC38=3 1/2"IF 4 85.06 103.58 NC40=4"FH 4 89.06 110.33 NC44 4 98.42 119.06 4A11×4A10 NC46=4"IF 4 103.73 124.61 411×410 NC50=4 1/2"IF 4 114.30 134.91 NC56 4 117.50 150.81 NC61 4 126.60 165.10 NC70 4 147.6 5 187.33

731×7307 5/8"REG4144.47180.18 831×8308 5/8"REG4167.84204.39 321×320 3 1/2"FH577.62102.79 4"FH=NC40489.66110.33 421×420 4 1/2"FH596.31123.83 521×520 5 1/2"FH4126.79150.02 621×620 6 5/8"FH4150.37173.83 211×210 2 3/8"IF=NC2 6 460.3574.61 2 7/8"IF=NC3 1 471.3187.71 311×310 3 1/2"IF=NC3 8 485.06103.58 4A11×4A104"IF=NC464103.73124.61 411×410 4 1/2"IF=NC5 4114.30134.91 511×510 5 1/2"IF4141.32163.91注:1>.IF是内平 2>.FH是贯眼 3>.REG是正规 套管外径mm壁厚mm 内径mm 千米容积m3/km 139.7 7.72 124.26 12.13 9.17 121.36 11.57

钻杆接头耐磨带材料研究进展

石油钻杆接头耐磨带材料发展现状 随着油气田勘探开发钻井技术的不断发展,深井、大位移井、水平井、多分支井、大斜度井等复杂井身结构的应用越来越广泛,石油钻井过程中地层结构也越来越复杂,其中强研磨性地层的数量急剧增加,这都对钻杆的防磨与减摩特性提出了更高的要求。 钻杆接头是钻杆的重要组成部分,采用较大壁厚,接头外径大于钻杆本体外径,用以连接钻杆形成管柱。在钻进过程中,当井斜角较大或钻柱受到侧向力作用时,钻杆接头与井壁或套管内壁接触摩擦,造成钻杆接头和套管壁的双向磨损。目前,钻杆接头防磨技术主要有:钻杆接头耐磨带、钻杆胶皮护箍、旋转钻柱接头、钻杆保护器等,其中钻杆接头耐磨带操作方便,效果最好,是减少钻杆、套管磨损的最有效措施。 在研磨性较强的地层中,常规材料钻杆接头的耐磨带磨损严重,使得钻杆的使用寿命显著降低,胀扣、脱扣、断钻杆等井下事故明显增加,钻杆接头的返修率急剧升高,维修费用和钻杆报废量急剧增加。在井身结构较复杂的井中,由于套管层次多、钻柱变形弯曲严重,常规材料钻杆接头耐磨带对套管的磨损比较大,起不到防磨保护的作用。 随着钻杆接头耐磨带材料在现场应用中出现的问题的逐步解决,新型耐磨带材料不断被推出,耐磨带的材料品种也越来越丰富。本文综合

评述钻杆接头耐磨带材料的发展及其应用,为推动钻杆接头耐磨带技术的进一步完善具有重要意义。 1 钻杆接头耐磨带对材料性能的要求 耐磨带是在钻杆接头、钻铤或加重钻杆上固定一层硬化层。该硬化层将钻杆接头与套管或井壁隔离,具有一定的硬度,可保护钻杆接头。摩擦因数低于钻杆接头,可减少对套管的磨损。耐磨带通常采用惰性气体保护焊工艺固定在钻杆母接头末端。 钻杆接头耐磨带早在20世纪30年代就已出现,早期主要用来保护钻杆和其他工具免受磨粒磨损,延长使用寿命。但是随着大位移井、水平井、高温高压井等复杂井的增加,钻杆接头耐磨带对套管磨损严重,套管失效事故增加,每年给油田造成上百万美元的维修、侧钻甚至全井报废成本。此后,新型耐磨带注重减轻钻柱在旋转钻进和起下钻过程中对套管的磨损,与此同时却牺牲掉了耐磨带对钻杆接头的保护作用。20世纪90年代中期,由于钻杆的价格、运输时间、运输成本增加,人们

API钻杆接头螺纹检验

API钻杆接头螺纹检验 1、总则 本文适用于API Sspec7-2、API Spec 5DP标准,并依据本厂制定的内控标准,或以订货合同规定的标准与技术条件协议作为生产的钻杆接头螺纹的检验,包括螺纹尺寸要求及质量要求。 2、工作程序 检验人员应严格按照图纸规定检验产品。 3、检验项目 外观检查、锥度、螺距、齿高、紧密距、内外螺纹长度、台肩面倒角直径、螺纹轴线与台肩面垂直度、台肩面平整度、内螺纹镗孔直径、大钳吊卡长度、外径、内径。 4、检验前的准备 4.1量具准备 检验前根据所检产品规格,准备相应的量具、量规和单向仪,并对量具和单向仪进行有效性的检查及校对。 4.2待检产品准备 检查前螺纹表面的乳液、铁屑等异物用压缩空气吹干净,螺纹起始端的翻边必须去除。 5、检验频度与质量要求 5.1 外观检验 5.1.1采用视觉、手感等方法进行检验 5.1.2检验频度:每件

5.1.3质量要求 从管端起,螺纹应无明显的撕裂、刀伤、划痕、铁屑镏、台肩、波纹或破坏螺纹连续性的任何缺欠,外螺纹起始点应位于管端倒角面大于1mm,螺纹加工应具有一定的牙形和尺寸精度及粗糙度,同时台肩面不允许存在肉眼可见的任何缺欠。 5.2锥度检验 锥度是单位长度内螺纹节圆直径的变化量。 5.2.1质量要求 锥度偏差及范围见下表: 5.2.2测量频度 每班首检三件外,检验频度不得低于10%,当设备发生故障重新加工时,应按首件进行检验,当抽检中发现锥度不合格,必须往前逐根检验,直至合格。 5.3螺距检验 螺距是螺纹上某一点到下一螺纹对应点之间平行于螺纹轴线的距离。 5.3.1质量要求

螺距偏差与范围见下表: 5.3.2测量频度 每班首检三件外,检验频度不得低于10%,当设备发生故障重新加工时,应按首件进行检验,当抽检中发现锥度不合格,必须往前逐根检验,直至合格。 5.4齿高检验 齿高是螺纹顶部与螺纹根部之间垂直于螺纹轴线的距离。 5.4.1质量要求 齿高偏差与范围见下表: 5.4.2测量频度 每班首检三件外,检验频度不得低于10%,当设备发生故障重新

石油钻杆接头耐磨带焊丝对比分析

石油钻杆接头耐磨带焊丝对比分析 石油钻杆接头耐磨带以其一定的耐磨性和减磨性,保护钻杆接头和套管免遭强烈的磨损,钻井工程中获得了广泛的应用。钻杆耐磨带主要是采用耐磨带焊丝通过二氧化碳气体保护焊的方式堆焊到钻杆接头部位的一种高合金耐磨材料。目前国内所使用的耐磨带焊丝大部分依赖进口,其中美国某公司的100XT型产品使用最为广泛、最具代表性。北京固本科技发展有限公司根据钻杆现场施焊特点,结合钻杆耐磨带的磨损情况,研制了一种替代进口耐磨带焊丝的国产钻杆耐磨带焊丝KB100,在提高钻杆接头的耐磨性能的基础上,为油田钻井服务和钻杆生产企业降低生产成本,增加企业效益作出了积极作用。本文从耐磨带焊丝堆焊层的化学成分、金相硬度、磨粒磨损等多个方面对国产KB150和进口100XT钻杆耐磨带焊丝的性能作了分析与对比。 一、钻杆接头耐磨带焊丝 1、美国安科100XT耐磨带焊丝 100XT耐磨带焊丝是一款金属芯焊丝。该耐磨带100%无裂纹,并且具有硬、坚韧、高耐磨、套管友好等特性。100XT耐磨带焊丝是美国安科技术公司自主研制,美国安科位于美国德克萨斯州的休斯顿市,属于美国TRITEN集团,是进行井下钻具保护和防磨研究的一个机构。 2、北京固本KB150耐磨带焊丝 KB150耐磨带焊丝为铁基药芯焊丝,是一种高级无裂纹、套管友好耐磨带。55以上的洛氏硬度,确保了钻杆接头和套管之间的理想

摩擦和均衡保护。KB150耐磨带焊丝由北京固本科技有限公司自主研制,公司有近10年的钻杆耐磨带焊丝研制、开发、生产、销售和服务经验。北京固本是国内唯一一家专业研发耐磨堆焊金属材料的高新技术企业,公司是国家级大学科技园企业,并获政府相关部门专项资助。 二、金相硬度对比 在单层焊的情况下,不同位置上分别测试7个点的硬度,100XT 耐磨带焊丝平均硬度值为55.7HRC,KB150耐磨带焊丝平均硬度值为 61.3HRC。 三、磨粒磨损对比 通过这2种型号耐磨带焊丝磨损量测试结果可知,KB150耐磨带焊丝磨损量明显小于100XT。在相同载荷下,北京固本KB150耐磨带焊丝堆焊后的耐磨带与美国安科100XT型相比,相对耐磨性提高1.75倍。 四、两种耐磨带实际使用结果

加重钻杆耐磨带焊接实例

加重钻杆耐磨带焊接实例 (北京固本科技有限公司) 随着石油钻探开采的发展,各类加重钻杆在石油钻探开采中的需求越来越大,用户对产品使用性能的要求也越来越高。如何采取合理的焊接工艺方法,以实现低成本高效率且又能满足产品技术要求的耐磨带焊接研究成为需要解决的课题之一。 某石油公司研发的材料牌号为AISI4145H钢的114.3mm(4.5in)加重钻杆有4段工作面需要增加耐磨带,4段焊缝分别为币φ158.8mmx101mm、φ127mmx76mm、φ127mmx76mm、φ158.8mmx101mm,焊缝需堆焊3mm厚,加重钻杆内孔为币φ71.41mm,钻杆内螺纹接头与钻杆吊卡扣合处制成18°锥形台肩,焊前经过285~341HBW调质处理。按石油天然气行业颁布的标准SY/5T146-1997规定:堆焊后,耐磨环外表面应平整过渡,基体不得有裂纹和焊层剥落等缺陷,表面硬度不低于50HRC,为使钻杆焊接后性能满足技术要求,需对原材料的焊接工艺、焊接质量进行分析和试验,以便制定合理可行的焊接工艺。 一、焊接性分析 钻杆的材料牌号为AISI4145H,其化学成分符合表1的规定。 表1 AISI4145H的化学成分(质量分数)(%) 按照国际焊接学会所推荐的碳当量计算公式,可计算出碳当量Ceq为0.725%~1%。据大量试验得知:当碳当量Ceq大于等于0.60%时,属于高淬透性的钢,冷裂纹倾向较为严重,焊接性较差,这是因为材料中的含碳量较高,加人的合金元素也较多,在500℃以下的温度区间过冷奥氏体具有更大的稳定性所致其含碳量越高,淬硬倾向越大,冷裂纹倾向也越大,而且由于M点较低,在低温下形成的马氏体一般难以产生“自回火”效应,并且马氏体中的含碳量较高,有很大的过饱和度,点阵的畸变就更严重,因而硬度和脆性就更大,对冷裂纹的敏感性也就更大另外,由于原材料的含碳量及合金元素的含量都较高,因此液一固相区间较大,偏析也更严重,这就促使其具有较大的热裂纹倾向。 二、焊接工艺特点 加重钻杆是在调质状态下进行焊接的,除了裂纹外,热影响区的主要问题是高温回火区软化引起的强度下降。从焊接方法考虑应采用热量集中、能量密度大,而且焊接热输人越小越好;同时,为防止延迟裂纹的产生,必须选择正确的预热温度。

钻杆接头

钻杆接头 连接器、钻杆接头产品,采用优质低碳合金钢为原料,经高压成型,真空调质处理,机械性能高。主要分为锚索钻杆连接器,地质钻杆接头,手持式气动钻机接头,各种钻杆变径接头和岩芯套管变径接头等系列产品。 【型号】Φ24 Φ28 Φ36 Φ42 Φ50 Φ63.5 Φ73 Φ76 F12 F18 F26 【材质】采用优质低碳合金钢为原料。 【工艺】经高压成型,真空调质处理,机械性能高。 【分类】主要分为锚索钻杆连接器,地质钻杆接头,手持式气动钻机接头,各种钻杆变径接头和岩芯套管变径接头等系列产品。

钻杆接头·规格型号 规格型号 生产工艺链接形式直径(mm) 长度(mm)螺纹形式 F12 100 四方连接精锻而成四方连接 Φ24 30 矩形螺纹高压成型与钻杆连接 Φ28 80 矩形螺纹高压成型与钻杆连接 Φ36 120 矩形螺纹精锻而成与钻杆连接 Φ42 120 锥螺纹精锻而成与钻杆连接 Φ42 180 锥螺纹-矩形螺纹精锻而成与钻杆连接 Φ50 200 矩形螺纹精锻而成与钻杆连接 Φ63.5 160 矩形螺纹精锻而成与钻杆连接 Φ73 三棱插接钻杆连接 Φ76 120 矩形螺纹-锥型螺纹精锻而成与钻杆连接 钻杆接头·技术参数表 序号产品名称规格型号用途 1 锚索钻杆连接器T16*6/M14*1.5 钻杆与钻头连接 2 锚索钻杆连接套T16*6 钻杆与钻杆连接 3 钻杆接头42*220 钻杆与钻杆连接 4 钻杆接头50*220 钻杆与钻杆连接 5 钻杆接头63.5*220 钻杆与钻杆连接 6 钻杆接头73*220 钻杆与钻杆连接 7 变径接头73*150 岩芯管螺纹变换用 8 变径接头89*150 岩芯管螺纹变换用 9 变径接头63--73 岩芯管螺纹变换用 10 变径接头73-89 岩芯管螺纹变换用 连接器的基本性能 机械性能就连接功能而言,插拔力是重要的机械性能。插拔力分为插入力和拔出力(拔出力亦称分离力),两者的要求是不同的。在有关标准中有最大插入力和最小分离力规定,这表明,从使用角度来

打井技术要求

打井技术要求 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

打井技术要求:1)准确进行井位放线;2)钻井进入砂砾石层(含水层)时,应实测含水层厚度;3)管井施工完成后,通知监理人员验收;4)进管安装(含水层),应严格按照水利施工规范进行安装,确保漏水层厚度;5)洗井完成后,进行深度、出水量试验;6)每一眼井施工完毕后进行水泵和水泵管的安装; 机井的钻进 根据给定的永久控制坐标和水准点,按照钻井项目总平面图的要求,引至各施工现场,在施工区域设置测量控制网,控制网要避开建筑物、构筑物,土方机械操作及运输线路并有保护标志,打井前应设50m×50m的方格网,在各方格点上设控制桩并测出各控制桩处的自然地表、标高,作为计算挖、填方工程量和施工控制的依据,根据施工总平面图进行建筑平面轴线定位的测量和校核,设置控制定位轴线桩和水平桩,放出基坑边线,边线、标高、轴线应进行复核,无误后,方可进行下步工作。安装钻井前,应将钻井的基础整好,夯实。按照选用的钻井,依次安装钻,泥浆机,搅拌机等各种机械设备必须安装的水平、周正、牢固。 设备安装完毕,要检查钻孔中心、转盘中心,在钻进过程中不得转移,钻塔应与高压电线保持安全距离,一般为塔高的2倍,必要时采取安全措施。安装护孔管,护孔管的内径一般比开孔钻头大50-100mm,下入浓度尽量减少岩层与护孔管的间隙用粘土或粘土球填好夯实。 管井施工所需管材,屡料、粘土(球)及其它物料按设计要求准备好,及时运到井场。

注意事项仔细检查绞车、钢丝绳、进管、手盘销钉、中心钢丝绳的质量,使之合乎要求,下管时要保持井管位于井孔中心,并缓缓降下,四根钢丝绳的下降速度必须一致,井管在井孔内应注意避免倾斜,每个接头必须接好,检查合格后始得下入,下入井孔的全部井管,必须经过敲击鉴定,将最好的井管放在下部,绝不允许井管的全部重量超过井管的抗压强度。操作绞车人员,必须精力集中听从指挥,在停止下降井管时,必须紧紧刹住车带,不得离开刹车把,否则容易发生事故,井管接口,必须严密、牢固,防止不符合取水要求的地下水流入井内污染井水。 砼井管钻杆托盘下管法 a.所需主要设备:钻杆、特制钻杆接头,托盘等必须满足施工安全要求。 b.操作方法 下管时,将第一根井管插入托盘,于钻杆的一端连接钻杆特制反扣接头,在托盘反扣接箍处涂以润滑油,将带有特制钻杆接头的钻杆与托盘连接。 慢慢下降钻杆,井管亦随之下入井孔。 停止下降钻杆,于安装第二根井管。 进管的接口,必须以竹、木条用铅丝绑牢,每隔20m安装一个找中器,直至将全部井管下入,将钻杆拧出。 c.注意事项 检查托盘及下入井管的一切设备,特点注意特制钻杆接头的丝扣,须松紧适度,下入井管,须使井管居于井孔正中,避免倾斜,每个接头必须

钻杆接头技术规范

钻杆接头产品技术检验规范 (内控标准) 1、目的: 本标准中规定了钻杆对焊接头和钻柱转换接头在加工制造过程中所使用的钢材材质、钢级,加工参数、方法,产品标识、检验方法及包装储存、运输的具体要求,是保证钻杆接头产品质量的纲领性文件。 2、引用标准 下列标准所包含的条文,通过在本标准中引用而成为本标准的条文。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本标准。 GB/T 22512.2-2008 《石油天然气工业旋转钻井设备》 第2部分《旋转台肩式螺纹连接的加工与测量》ISO 9000 《质量管理体系基础和术语》 API Spec Q1 《石油、石化和天然气工业质量纲要规范》(第9版) API Spec 5DP《钻杆规范》(第1版) ASME第Ⅴ卷《无损检验》 3、钻杆接头毛坯的验收准则 3.1外观检测: 3.1.1工件毛坯外径不得有超过12.5%周长或深度超2.54mm(0.1in)的非线性缺陷存在; 3.1.2所有淬火裂纹均应被视为缺陷,不予接收。 3.2毛坯几何尺寸检测: 3.2.1几何图形(见图1) a外螺纹钻杆接头毛坯图

b内螺纹钻杆接头毛坯图 图1 3.2.2尺寸检测: 根据图1中所示的几何形状,再依据毛坯图纸所标定数据逐一进行检测;主要检测量具:游标卡尺、钢板尺; 3.2.3检测频次:100%。 3.3、化学成分分析: 3.3.1相关标准:ASTM A751; 3.3.2钢材成分含量范围:4137H(37CrMnMoA) (见表2) 成分C(碳) Si(硅)Mn(锰)P(磷)S(硫)Cr(鉻)Mo(钼)范围0.35~0.38 0.17~0.35 0.90~1.00 ≤0.020 ≤0.015 0.90~1.20 0.28~0.33 3.3.3主要检测项目及指标: P(磷)≤0.020%;S(硫)≤0.015%; 3.3.4检测频次:每200只为1炉/批次,做一组样件; 3.4、拉伸试验 3.4.1相关标准:ASTM A370; 3.4.2 试验范围(见表3): 屈服强度MPa 抗拉强度 MPa 伸长率 % 冲击功 J min max min min 试验温度试样尺寸冲击值828 1138 965 13 -20℃±3℃10*10(mm)54 3.4.3拉伸试样:试样尺寸应采取直径12.7mm(0.500in)的圆棒进行试验。如果外螺纹截面不足可采用直径8.9mm(0.350in)或6.4mm(0.250in)的试样。 3.4.4试样取样位置(见图2) 3.4.4 检测频次:每200只为1炉/批次,做一组样件; 3.4.5复检:如果初次拉伸试验不合格,则在同一工件上再另取两个试件测试。如果这两个试件都符合要求,即可认定该批产品合格。反之,则可认定该批

钻杆接头粗细扣规范

钻杆接头粗细扣规范 类型公称 直径 数字 型 接头 外径 水 眼 螺纹 种类 每 寸 牙 数 锥 度 基面螺纹 均直径 公接头母接头 扣 型 螺纹小 端外径 螺纹大 端外径 扣 长 扣 型 螺纹始 端外径 扩孔 直径 扣 长英寸 D d 2tgФ C Ds Dl Lpc Qc Lbc 数字型NC23 4 1:6 59.817 52.400 65.100 76.2 59.83 66.7 92.1 NC35 89.687 79.096 94.971 95.2 89.69 96.8 111.11 NC44 112.192 98.425 117.475 114.3 112.2 119.1 130.2 NC56 1:4 142.646 117.500 149.250 127.0 143.98 150.8 142.9 NC61 156.921 128.600 163.525 139.7 158.25 165.1 155.6 NC70 179.146 147.650 185.750 152.4 180.48 187.3 168.3 NC77 196.621 161.950 203.200 165.1 197.93 204.8 181.0 正规2 3/880 25.4 甲种 5 1:4 7°7′30″ 60.080 2A31 47.625 66.675 76.2 2A30 61.423 68.3 92.1 2 7/895 32 69.605 231 53.975 76.200 88.9 230 70.948 77.8 104.8 3 1/2108 38 82.293 331 65.075 88.900 95.3 330 83.635 90.5 110.1 4 1/2140 58 113.800 431 90.47 5 117.475 108.0 430 112.211 119.1 123.8 5 1/2172 70 乙种 4 1:4 132.944 531 110.058 140.208 120.7 530 133.630 141.7 136.5 6 5/819 7 89 丙种1:6 146.24 8 631 131.030 152.197 127.0 630 145.601 154.0 142.9 7 5/8225 102 乙种1:4 170.549 731 144.475 177.800 133.4 730 171.235 180.2 149.2 8 5/8254 131 194.731 831 167.843 201.982 136.6 830 195.417 204.4 152.4 贯眼2 3/864 36.5 甲种 5 1:4 64.059 2A21 51.604 70.654 76.2 2A20 65.402 72.3 92.1 2 7/8108 54 85.480 221 69.850 92.075 88.9 220 86.82 3 94.5 104.8 3 1/2113 62 94.84 4 321 77.622 101.443 95.3 320 96.187 102.8 111.1 4 NC40 133 71 丁种 4 1:6 103.429 4A21 89.662 108.712 114.4 4A20 103.440 120.3 130.1 4 1/2146 80 甲种 5 1:4 115.113 421 96.317 121.717 101. 6 420 116.456 123.8 117.5 5 1/2178 101 丙种 4 1: 6 142.011 521 126.79 7 147.955 127.0 520 141.364 150.0 142.9 6 5/8203 12 7 165.59 8 621 150.368 171.526 127.0 620 164.950 173.8 142.9 内平2 3/8NC26 86 44.5 丁种 4 1:6 4°45′48″ 67.767 2A11 60.350 73.050 76.2 2A10 67.778 74.6 92.1 2 7/8NC31 105 54 80.848 211 71.32 3 86.131 88.9 210 80.860 87.7 140.8 3 1/2NC38 121 68.3 96.723 311 85.065 102.006 101.6 310 96.73 4 103.6 117.5 4 NC46 146 82.6 117.500 4A11 103.734 122.734 114.4 4A10 117.511 124.6 130.2 4 1/2NC50 15 5 95.3 128.059 411 114.300 133.350 114.4 410 128.070 134.9 130.2 5 1/2185 122 157.201 511 141.32 6 162.484 127.0 510 137.212 163.9 142.9 6 5/8212 145 184.173 611 168.260 189.456 127.0 610 184.186 192.0 142.9

API钻具接头螺纹特点1

API钻具接头螺纹的特点、类型、加工要求及技术参数随着牙轮钻进,空气潜孔锤钻进,气举反循环钻进等钻探工艺的推广使用。API系列井内钻柱构件和井下工具也得到了越来越广泛的应用。尤其是连接钻柱构件的API系列钻具接头螺纹,更是起着不可或缺的作用。因此,熟悉和掌握API系列钻具接头螺纹的相关技术规范和设计要求,采用合理的加工参数及检测方法,是保证API系列井内钻柱构件和井下工具正常使用的重要工作之一。本文拟在API SPEC7、GB/T9253. 1—1999、SY/T5144—2007及GB/T4749—2003等标准的基础上,并结合生产实践及使用过程中遇到的实际问题,分别就API系列钻具接头螺纹的特点、类型、规格、加工要求、检测方法、及螺纹的主要失效形式等方面进行论述,以帮助我们加深对API相关技术规范的理解和认识,正确掌握API系列钻具接头螺纹的生产加工和操作使用。 一、螺纹特点 API系列钻具接头螺纹主要用于钻杆、钻铤、钻具稳定器和转换器等钻井工具及钻柱构件的连接。目前生产和检验的主要依据标准为:API SPEC 7《旋转钻柱构件规范》(2001年11月第40版)和GB/T9253.1—1999《石油钻杆接头螺纹》。 API SPEC 7将钻具接头螺纹称为“旋转台肩连接”,这种带锥螺纹具有通过轴向位移来补偿连接部分直径误差的特点。因此互换程度高、结合紧密、装拆容易。其技术特点为:“英制锥管螺纹、有台肩连接、三角形螺纹”,因此在管材连接中应用极为广泛。 API系列钻具接头螺纹按螺纹形式分为四大类,分类情况见表一。 表一钻具接头螺纹类型 序号螺纹形式英文写法螺纹牙型规格与种类 1 数字型(NC)Number Style Connection Threads V-0.038R NC23~NC77 共计13种 2 内平型(IF)Internal Flush Style Connection Threads V-0.0658 5 2in~ 2 1 5in 共计6种 3 贯眼型(FH)Full Holo Style Connection Threads V-0.065 V-0.050 V-0.040 3 2 1 in~6 8 5 in 共计5种 4 正规型(REG)Regular Style Connection Threads V-0.050 V-0.040 2 8 3 in~8 8 5 in 共计8种 二、螺纹类型 1、数字型螺纹(NC) 这是以螺纹基面中径的英寸和十分之一英寸数值表示的螺纹。所有规格螺纹均采用V-0.038R 平顶圆底三角形牙型。牙型特点为:圆形牙底,牙底半径为0.038英寸(0.965毫米)。 数字形螺纹(NC)是API推荐优先使用的螺纹类型。该螺纹有1:6和1:4两种锥度标准,主要应用于钻杆、钻铤、钻具稳定器等钻柱构件的连接,NC50还可应用于在钻头螺纹的连接上。 2、内平型螺纹(IF) 该型螺纹主要用于连接外加厚或内外加厚的钻杆、接头内径、管端加厚处内径与钻杆内径有着相等或近似相等的通径。所有规格螺纹均采用V-0.065平顶平底三角形牙形。这种牙型的特点为:平牙顶、平牙底、牙顶宽度为0.065英寸(1.651毫米)。

钻杆接头耐磨带材料

国产石油钻杆接头耐磨带材料的蓬勃发展 钻杆接头耐磨带以其一定的耐磨性和减磨性,保护钻杆接头和套管免遭强烈的磨损,在深井钻井、大位移井钻井和大斜度井钻井工程中获得了推广应用,而且接头耐磨带技术已经成为国际重大石油工程项目招标中,投标方中标的必备技术条件之一。 钻杆接头耐磨带实质上是一个隔离带,用以保护钻杆接头和套管免遭强烈磨损,应当具有较高的耐磨性和适度的减磨性。材料特性是影响耐磨带性能的核心因素,耐磨带特性的改变取决于堆焊材料成分、组织性能的变化以及配套堆焊工艺的严格实施。耐磨带堆焊材料的重大突破是我国耐磨带技术发展的必要条件,而引进焊材的国产化则是耐磨带技术发展的 充分条件。“材料控制性能”理论,在钻杆接头耐磨带技术发展过程中起到了积极的推动作用。 1石油钻杆接头耐磨带工作原理与性能影响因素 1.1耐磨带工作原理 钻杆接头耐磨带实质上是一个沿接头圆周方向,具有一定宽度和一定厚度的隔离带。通过这个隔离带,使钻杆接头外壁和套管壁或井壁隔离,避免钻杆接头与套管壁或井壁直接接触,以保护钻杆接头和套管免遭强烈磨损。耐磨带的工况条件比较复杂,性能要求比较苛刻,应当具有良好的综合抗磨性能。所谓综合抗磨性能,是指具有较高耐磨性的同时还必须具有适度的减磨性。最佳的耐磨性与减磨性之间存在一定的匹配关系,上述技术指标之间以及与摩擦系数之间的函数关系的量化确立,可能对于耐磨带焊接材料性能的重大突破具有重要参考价值。 1.2耐磨带性能影响因素 接头耐磨带性能影响因素较多,总体上有三大因素: 1.2.1载荷力的影响 在钻井过程中,凡是增大钻杆接头与套管内壁(或井壁)接触力的因素,都会加剧磨损发生。如在“狗腿”度大的井段,接头与套管内壁接触压力相对增大,此时无论是耐磨带还是套管内壁(或井壁),其磨损现象就会加剧。 1.2.2摩擦系数的影响 在钻井过程中,凡是增大接头与套管内壁摩擦系数的因素,都会加剧磨损发生。如润滑剂品种或加入量不合适、转盘转速增大以及温度过高或过低时,其磨损现象也会加剧。

钻杆接头扣型介绍

石油专用管螺纹管材的类型及规格之一 ---------钻具接头螺纹 钻具接头螺纹用于如钻铤、钻杆、钻具稳定器及转换接头等钻井工具及钻柱构件的连接。目 前生产和检验依据的标准主要是API SPEC 7。 API SPEC 7称钻具接头螺纹为“旋转台肩连接”,是石油钻探行业连接钻柱构件最主要的机械机构。这种带锥螺纹具有通过轴向位移来补偿连结部分直径误差的特点,因此互换性程度高、结合紧密和装拆容易。其技术特点为英制锥管螺纹、有台肩连接、三角形螺纹,在管材连接中应 用极为广泛。其主要螺纹型式如表1所示。 表1:钻具接头螺纹类型 序号螺纹型式螺纹牙型规格与种类 1 数字型(NC) V-0.038R NC23-NC77共计13种 2 内平型(IF) V-0.065 23/8in-51/2in共计6种 3 贯眼型(FH) V-0.065V-0.050V-0.040 31/2in-65/8in共计5种 4 正规型(REG) V-0.050V-0.040 23/8in-85/8in共计8种 1. 内平型螺纹 该型钻具接头螺纹连接外加厚或内外加厚钻杆,形成钻杆接头内径、管体加厚内径与管体内径相等或近似的通径。所有规格螺纹均采用V-0.065平顶平底三角形牙型,这种牙型为平牙底,牙顶较宽度为0.065英寸(1.651mm)。除51/2IF外,其它规格螺纹的因结构尺寸与相应的数字型螺纹完全相同,故具有互换性。该型螺纹因其牙型结构易导致应力集中,API已将其淘汰,其中包括41/2IF和4IF,它们就是曾经在我油田被大量使用的410、411和4A10、4A11,取而代之 的是NC50和NC46数字型螺纹。 2. 贯眼型螺纹 该型钻杆接头螺纹连接内外加厚钻杆,形成钻杆接头内径和加厚端内径相等,而均小于钻杆管体内径的通径。该型螺纹的规格虽然为数不多,但却使用了V-0.065、V-0.050(牙底为圆弧,牙顶宽度为0.050英寸,1.27mm)和V-0.040(牙底为圆弧,牙顶宽度为0.040英寸,1.02mm)三种牙型,曾经被广泛用于水龙头、方钻杆、钻杆、钻铤和钻头。现在除51/2FH和65/8FH两种

怎么选钻杆耐磨带产品

怎么选钻杆耐磨带产品 耐磨带焊丝,作为石油钻具行业最有价值的材料之一,一直在随着时间的发展而进步。在最早期,耐磨带焊丝的技术方案,主要是在较软的碳钢基体上包含碳化钨耐磨颗粒。这种碳化钨耐磨带焊丝当时广泛地应用于钻杆接头,因为当时的钻井工作很多是浅井、直井而且没有套管保护。随着深井、斜井和套管保护越来越多,碳化钨耐磨带焊丝逐渐被淘汰,这是因为碳化钨耐磨带会很快磨穿套管。 随后,基于碳化铬的耐磨带材料取代了碳化钨,成为耐磨带合金的普遍技术方案。这些产品包括含铬的铁基喷焊粉末,以及碳化铬耐磨带焊丝。这些耐磨带材料堆焊后,表面会有明显的裂纹。多起钻井事故表明,这些裂纹可能导致耐磨带合金材料脱落和掉块,发生事故。此外,在碳化铬耐磨带上进行复焊也是非常困难的工作,复焊后容易产生气孔和脱落现象。为了保证良好的复焊效果,碳化铬耐磨带复焊时最好将旧的残留耐磨带完全去除,这极大地增加了施工单位的成本。为了节省成本,不完整地进行去除工作,又为以后的脱落和掉块埋下了隐患。从2016年开始,碳化铬耐磨带材料逐渐被无裂纹的耐磨带合金材料所取代,比如北京固本科技有限公司的KB150/350型耐磨带焊丝。通过控制碳化物的类型和数量,新一代的无裂纹耐磨带焊丝提供优秀的耐磨性能,同时对套管非常友好。 极具磨损性的地质条件,硫化氢的腐蚀,斜井,水平导

向井等越来越复杂的因素,都对钻杆耐磨带材料的选择提出了更多的挑战和要求。除了必须对套管友好(也就是耐磨带不能对套管造成太强的磨损),同时必须考虑到钻杆的工作要求:比如钻井速度,井深,斜井甚至水平钻井。所以,在耐磨带材料选择时,我们必须考虑以下3个关键因素: 1. 耐磨带合金的选择; 2. 堆焊工艺指南或手册; 3. 新技术、新工艺; 一、耐磨带合金的选择 市场上的耐磨带产品主要有喷焊铁基粉末、等离子喷焊镍基粉末、耐磨带焊丝,品牌和价位也各自不同。在刚开始选择耐磨带合金和产品时,除了既要保证产品达到设计上的要求,还同时需要尽可能地降低采购成本,以及后期复焊的综合成本。耐磨带的选型和采购工作,对于没有经验或者没有及时跟踪市场动态的用户来说,显得非常困难。 但是,秉持以下原则进行耐磨带的选择,将使工作变得容易: *选择无裂纹的耐磨带合金及产品; *生产厂商提供了产品的堆焊流程、工艺、检验等工作的详细说明。这些说明应该是专业的,清晰的,保持更新的。确保厂商提供的文档,覆盖了耐磨带堆焊和复焊的各个环节细节,其中的关键数据最好经过厂商实测或者由第三方检测得出; *耐磨带合金和产品的复焊兼容性有非常明确的说明;

石油钻杆耐磨带焊接工艺规程

石油钻杆耐磨带焊接工艺规程 (北京固本科技有限公司) 1.钻杆接头耐磨带 在油气田勘探开发钻井中,尤其是在深井、大位移井、水平井、大斜度井中,由于地层中页岩,石英砂的存在导致钻杆和套管的严重磨损,给钻井施工带来重大损失,因此钻井过程中钻杆和套管的磨损及防磨问题已引起钻井界的密切关注。从我国油田分布来看,大港、大庆、江苏油田由于地层较软,含岩石量相对较低,因此钻杆磨损相对较小,对于新疆塔里木油田、四川普光油气田,由于这里地层页岩含量大,对钻杆磨损十分严重。 钻杆接头耐磨带以其一定的耐磨性和减磨性,保护钻杆接头和套管免遭强烈的磨损,故在钻井工程中获得了广泛的应用。钻杆耐磨带主要是采用耐磨带焊丝通过CO2气体保护焊的方式堆焊到钻杆接头部位的一种高合金耐磨材料。目前进口耐磨带焊丝以美国某公司的100XT型产品使用最广泛,最具代表性;国产耐磨带焊丝以北京固本科技KB-100具代表性。但无论是那款耐磨带产品其设计都以保护钻杆接头,防止套管磨损为原则。本文以KB-100耐磨带焊丝为例,详细介绍耐磨带堆焊工艺。 2.耐磨带堆焊工艺 (1)耐磨带材料及设备 试验采用KB-100耐磨带焊丝,φ1.6mm,耐磨带堆焊设备为ZS2000。焊接电流285A,电弧电压28V,氩气保护。耐磨带宽度76mm,厚度3mm,钻杆直径为168.3mm。KB-100耐磨带焊丝熔敷金属化学成分如表1所示。 表1耐磨带合金成分(质量分数)(%) (2)耐磨带堆焊工艺 钻杆接头材质为35CrMoSi,为避免堆焊后产生裂纹,造成堆焊层脱落,堆焊前要对钻杆接头部位进行预热。高频感应加热升温到300℃,加热时间3min保证扶正器内外温度一致。 以接头φ168mm的钻杆为例,焊接速度为3min堆焊钻杆接头一周,每根钻杆接头连续堆焊三道,所以时间为约10min,每道焊缝约消耗0.25kg耐磨带焊丝。焊接过程中,要保持钻杆接头部位温度≥250℃,用红外测温计随时监测,若低于250℃,马上停止焊接,再次感应加热至350℃,再次进行堆焊,如此反复进行。 在堆焊过程中发现,耐磨带焊丝在纯氩气环境下,要比在CO2保护气环境下效果好,如图1所示。在Ar气保护环境下,相同电流、电压、焊接速度的情况下,堆焊的耐磨带表明平整光滑。而CO2保护气下堆焊的耐磨带表面会有明显的鱼鳞纹。

相关文档
最新文档