浅谈旧加重钻杆耐磨带堆焊的必要性

浅谈旧加重钻杆耐磨带堆焊的必要性
浅谈旧加重钻杆耐磨带堆焊的必要性

加重钻杆耐磨带堆焊的必要性及其应用

论文摘要:在深井超深井勘探过程中,由于径向力、涡动、横向振动等因素的存在,随着钻井时间的增长,钻柱作用于套管内壁的侧向力增大,导致套管和钻具接头磨损的问题越来越严重。造成钻具耐磨带失效的主要原因有地层研磨性、钻杆的井下工况、耐磨材料选择与敷焊工艺的影响。选择合理的耐磨材料与敷焊工艺对解决钻具耐磨带失效问题非常重要。

论文关键词:耐磨带钻具铁基合金粉焊丝

一、加重钻杆的作用

加重钻杆通常应用于水平井、定向井以及深井等难度较大的井位中,可以部分代替钻铤以提高钻机的钻深能力,由于它的弹性比普通钻铤高,在弯曲井眼中用它来代替钻铤时,可以降低旋转扭矩和提升负荷。另外在弯曲井段用加重钻杆代替钻杆时,由于加重钻杆于井壁接触面积较小,能减少旋转扭矩和上提阻力以及压差卡钻的可能性。更重要的是有利于保持定向井的方向。

二、钻井过程中的磨损种类

在油气田勘探开发钻井中,尤其是在深井、大位移井、水平井、大斜度井中,钻杆和套管的磨损严重,给油气田带来重大损失。因此,钻井过程中钻杆和套管的磨损及防磨问题,已引起钻井界的密切关注。

套管磨损———套管磨损的主要形式为偏磨,偏磨后的套管横截面呈月牙型。一方面套管圆周上呈月牙型部位壁厚最薄,导致抗挤强度大大降低。在高地层压力作用下,假如设计的套管安全系数没有足够大,轻易导致套管挤毁,造成钻井报废或局部井段报废。另一方面,偏磨套管在抗挤强度降低的同时其抗内压强度也随着降低。在井控及中途测试时,假如没有充分考虑到套管磨损的影响,可能造成严重后果,即气井完井井控和测试时,要么冒套管破裂地面窜气的风险,要么提前入套管或下套管后再测试。这不仅造成重大经济损失,而且给加深钻井造成困难或钻不到设计深度。

钻杆磨损———由于钻杆接头的外径大于杆体的外径,因此钻杆的磨损主要表现在钻杆接头的磨损。当井眼曲率较大时,钻杆杆体也会受到磨损。在钻井过程中旋转的钻杆接头和井壁或套管壁不断地摩擦,造成接头的严重磨损,尤其在硬地层或研磨性地层,井段钻杆接头磨损加剧。钻杆接头磨损后其接头壁厚变小,加快了钻杆的降级和报废速度。同时由于接头外径磨损变小,钻杆丝扣强度降低,在钻井过程中轻易导致钻杆胀扣、脱扣或钻柱掉入井内,造成井下事故。所有这些都将带来严重的经济损失,从而增加了钻井成本。

三、加重钻杆磨损分析

由于加重钻杆自身的重量,在斜井段工作时,在重力的作用下,不可避免的于井壁进行偏磨,由于接头直径大于管体直径,首先接头进行偏磨,因此加重钻杆生产厂家在加重钻杆出厂前,都要对接头及加厚部位进行耐磨带敷焊,来保护加重钻杆的接头,从而延长其使用寿命。旧加重钻杆由于多次在井下工作,接头不断地与井壁摩擦,随着在井下使用次数的增多,原有的耐磨带不断的偏磨,导致接头出现椭圆,无法进行连接,只能重新对焊新接头或报废。

四、钻杆耐磨带技术及其作用

防止钻杆和套管磨损的一个最基本的原理是避免钻杆和套管的直接接触,在钻杆接头上加焊耐磨带也是一项有效的防磨技术。通过耐磨带堆焊把钻杆与套管隔离,从而有效地保护套管和钻杆。

钻杆耐磨带的作用:

1.在钻杆接头上敷焊耐磨带,耐磨带代替钻杆接头与套管和井壁直接接触,保护

的钻杆接头。

2.在钻杆接头敷焊耐磨带,可以有效的防止接头表面直接与井壁或套管接触,显

著的减少摩擦热,从而有效降低钻杆街头热裂纹产生的几率。

3.没有敷焊耐磨带的光钻杆接头,或敷焊碳化硅等不具有保护套管类型得耐磨带

得钻杆街头,将会对套管产生严重的磨损,选择具有优良减磨性能的耐磨带,可以降低与套管壁或地层井壁之间的摩擦,实现及保护钻杆又保护套管得目

的。

五、耐磨材料的选择及敷焊工艺

钻具接头外表面的磨损机理以显微切削为主同时兼有腐蚀作用。对于这种磨损其基本对策是大幅度提高钻具接头工作面的硬度。一般接头寿命约为管体寿命的几分之一,如果在接头外径部分敷焊耐磨带,可大幅度提高钻具接头的耐磨性,延长使用寿命。为了提高钻具接头的使用寿命,其外表面喷涂耐磨合金带的方法在国内外已被广泛采用。目前我国的钻具耐磨带敷焊材料主要以美国安科公司的100XT、300XT和国产金达陵的2-55、3-60焊丝以及铁基自熔性合金粉Fe14、Fe90为主。

六、综合社会、经济、技术效益分析

对一根旧加重钻杆进行耐磨带的敷焊,成本价约400元,而对焊修复成本为7000元,其中接头费用3000元、加工费用4000元。

接头出现偏磨的加重钻杆,随着偏磨量的不断加大,与井壁的间隙就越大,钻具偏摆量增加,离心力加大,偏磨量也加大,导致井径不规则,钻头磨损加大,从而影响井深质量,增加钻井成本。

对旧加重钻杆进行耐磨带敷焊可延长使用寿命,即为公司节约成本。又节约钻井成本,还可以提高井身质量,减少井下事故的发生。因此对加重钻杆进行耐磨带敷焊具有重大经济和社会效益。

目前加重钻杆的市场价格调查。

目前市场加重钻杆的需求量

目前加重钻杆生产量

磨损情况,速度,什么情况报废。

堆焊后的效果。

中部槽堆焊修复技术

中部槽堆焊修复技术 由于受工作条件的限制,刮板输送机中部槽使用中要承受拉、压、弯曲、冲击、摩擦和腐蚀等多种作用,所以局部磨损非常严重,造成中部槽中板过早失效,不能保证正常生产要求。出于降耗提效及提高中部槽使用寿命的目的,生产实际中多采用堆焊技术方法对中部槽进行修复利用。本文研究分析刮板输送机中部槽堆焊修复技术产品的的质量特性,对于提高堆焊技术的经济技术效果、延长中部槽使用寿命、促进实现安全生产以及矿井高产高效等都具有重要意义。 一、中部槽的结构及工况特点 目前国内所使用的中部槽在结构上多采用整体铸造铲板槽帮、挡板槽帮与K360超级耐磨钢中板及底板组焊而成。由于受复杂、交变应力作用,往往损坏最严重、损坏数量最多。 (1)沿双边链滑道处A处磨出凹坑,铲板槽帮与挡板槽帮1、4,同时出现严重磨损,这主要是刮板运动过程中的摩擦磨损; (2)中板磨透,有的甚至完全磨掉(图1中B处阴影部分)。运输煤炭等造成的磨损,尤其工作面煤层存在夹矸断层或硬过断层、中板上面运送的是白砂岩(f=9以上)时将更加严重; (3)封底板3严重变形,部分开焊。当采煤机截煤时卧底量不够、煤或岩底留得高时,由于推移阻力过大,加之中板因磨损而厚度减小、刚性降低,封底板变形会更严重。 图1中部槽损坏情况示意图 二、中部槽中板的磨损机理 刮板输送机的运输方式是物料和刮板链都在中部槽内滑行,当刮板和链条在中板上滑动时,煤和矸石便成为磨料,对中板造成磨损。在运输的过程中,刮板链和煤(或矸石、岩石)块与中部槽中板发生剧烈磨损,导致中部槽、甚至刮板输送机失效。 其失效形式是由于刮板圆环链与中板之间存在着煤块、煤矸石等磨料,除受圆环链的磨料磨损外,还受到黏着磨损,这种磨损形式为金属-金属间摩擦磨损,还有在腐蚀介质下的腐蚀磨损。显然,中部槽失效,其中板起着关键作用。中板因磨损而厚度减小直接造成:

浅谈旧加重钻杆耐磨带堆焊的必要性

加重钻杆耐磨带堆焊的必要性及其应用 论文摘要:在深井超深井勘探过程中,由于径向力、涡动、横向振动等因素的存在,随着钻井时间的增长,钻柱作用于套管内壁的侧向力增大,导致套管和钻具接头磨损的问题越来越严重。造成钻具耐磨带失效的主要原因有地层研磨性、钻杆的井下工况、耐磨材料选择与敷焊工艺的影响。选择合理的耐磨材料与敷焊工艺对解决钻具耐磨带失效问题非常重要。 论文关键词:耐磨带钻具铁基合金粉焊丝 一、加重钻杆的作用 加重钻杆通常应用于水平井、定向井以及深井等难度较大的井位中,可以部分代替钻铤以提高钻机的钻深能力,由于它的弹性比普通钻铤高,在弯曲井眼中用它来代替钻铤时,可以降低旋转扭矩和提升负荷。另外在弯曲井段用加重钻杆代替钻杆时,由于加重钻杆于井壁接触面积较小,能减少旋转扭矩和上提阻力以及压差卡钻的可能性。更重要的是有利于保持定向井的方向。 二、钻井过程中的磨损种类 在油气田勘探开发钻井中,尤其是在深井、大位移井、水平井、大斜度井中,钻杆和套管的磨损严重,给油气田带来重大损失。因此,钻井过程中钻杆和套管的磨损及防磨问题,已引起钻井界的密切关注。 套管磨损———套管磨损的主要形式为偏磨,偏磨后的套管横截面呈月牙型。一方面套管圆周上呈月牙型部位壁厚最薄,导致抗挤强度大大降低。在高地层压力作用下,假如设计的套管安全系数没有足够大,轻易导致套管挤毁,造成钻井报废或局部井段报废。另一方面,偏磨套管在抗挤强度降低的同时其抗内压强度也随着降低。在井控及中途测试时,假如没有充分考虑到套管磨损的影响,可能造成严重后果,即气井完井井控和测试时,要么冒套管破裂地面窜气的风险,要么提前入套管或下套管后再测试。这不仅造成重大经济损失,而且给加深钻井造成困难或钻不到设计深度。

石油钻具耐磨带敷焊技术

石油钻具耐磨带敷焊技术 (北京固本科技有限公司) 随着石油勘探开发的不断深人,越来越多的新工艺、新技术应用到生产实践中,很多特殊工艺并对钻具接头的耐磨性提出了更高要求,其中地层研磨性、敷焊工艺技术和耐磨材料的选择、钻具在井下的工况等是影响钻具耐磨带失效的主要原因,因此为了适应不同井型及特殊工艺井的钻井需求,必须使用高性能的钻具耐磨带焊丝。 1、钻具耐磨带焊丝的特征 (1)耐磨带表面无裂痕。 (2)在施工过程中,钻具对套管的磨损相对较低。 (3)在没有技术套管钻井工况下,钻杆耐磨带焊丝的耐磨性与碳化钨相对。 (4)与正常耐磨带相比,在同样工况下能够提高300%钻具使用寿命。 (5)在钻井生产应用中,能够同时保护套管和钻杆接头。 (6)实现废物利用,可在原碳化钨堆层上继续加焊。 2、钻具焊接工艺 对于常用钻具耐磨焊丝和堆焊设备,都有特殊的技术要求和参数设置,在实际堆焊施工中可以根据不同的堆焊厚度进行调整。 2.1、焊接设备 (1)根据钻具耐磨带和堆焊的特殊性,在设备选择上选用电压

为22V-28V、电流为240A-320A的自动气体保护直流焊机。 (2)在夹紧钻具接头装置选择上,选用转速可调,能在焊枪下面正、反旋转钻具接头的装置。 (3)夹紧焊枪并可以带动焊枪自由摆动,摆动幅度为15-40mm。 (4)焊枪在上、下、左、右范围内均可大幅度移动。 (5)选用速度可调、送丝结构平稳的焊机,压丝轮紧度可调,要适中。送丝速度要在6-12m/min范围内。 2.2、敷焊工艺技术 在敷焊过程中需要有一定的敷焊参数,其中焊机电流要在300A-350A范围内、焊机摆动频率在40-50min,焊机送丝速度在6-8m/min,敷焊速度保持在120-135mm/min,若按照以上参数进行施工,那么敷焊过程中可以达到以下技术效果。 (1)耐磨带尺寸能够达到标准要求,其高度在2.5mm,宽度在25-30mm之间。 (2)焊机操作过程送丝平稳、稳定。 (3)耐磨带表面形成的鱼鳞状花纹比如平整光滑,均匀细密。 (4)耐磨带表面无飞溅、残留,边缘平整。 (5)耐磨带与钻具本体融合好,无针孔和裂纹。 3、等离子喷焊工艺技术 电控操纵柜是等离子喷焊工艺不可缺少的机械设备,它主要有计数器控制原件、气路原件、参数调节原件和可编程PLC控制原件组成。

阀门密封面修复方法

阀门密封面堆焊的修复方法 在所有阀门中,最数调节门的维修难度最大。石家庄忠诚阀门维修有限公司在二十多年的阀门密封面堆焊中积累了以下的经验下面详细介绍下调节阀的各项堆焊要求。还需要其他阀门技术支持的可以来电咨询。 高压调节阀开启失灵,严重影响机组安全稳定运行。对阀门进行解体检查,发现高压调速汽门阀座下沉10mm,导致阀碟导向凸肩脱离导向槽,无法对蒸汽进行正常调节。鉴于机组临修时间短,阀座下沉现场很难恢复,决定采用堆。 高压调节阀开启失灵,严重影响机组安全稳定运行。对阀门进行解体检查,发现高压调速汽门阀座下沉10 mm,导致阀碟导向凸肩脱离导向槽,无法对蒸汽进行正常调节。鉴于机组临修时间短,阀座下沉现场很难恢复,决定采用堆焊处理,增加导向凸肩的高度,达到恢复高压主汽调节阀原有的使用功能。 1、高压主汽调节阀修复方法 1.1阀碟导向凸肩工作机理2号机组为东方汽轮机厂制造的(N300-16.7/537/537-3型)汽轮机,它的高压主汽调节阀是由1个主汽阀和2个调节阀组成,高压调节阀是用于调节高压缸的进汽量。机组运行时,油动机作为机械提升装置,使阀碟导向凸肩沿导向槽上下移动,控制调节阀碟的开度。机组运行时,调节阀的高温蒸汽为16.7 MPa,537℃,导向凸肩主要承受热应力和一定的周向剪切应力作用。1号高压调节阀的阀碟与阀座配合直径为170 mm,其阀碟的结构如图1所示,导向凸肩尺寸为55 mm×30 mm×10 mm(高×宽×厚)。阀碟材料采用20Cr3MoWVA合金钢,为了提高阀碟耐汽蚀的性能,其表面进行过高温渗氮处理。 1.2堆焊材料和焊接设备的选择根据调节阀的工作条件,阀碟导向凸肩既要保证有足够高温强度,又要满足一定的耐磨性。鉴于机组抢修,无法采购到最佳匹配材料,参照堆焊材料的选用原则以及对各堆焊材料力学性能的分析,选用与母材材质相近的TIG-R34(12Cr2MoWVTIB,Φ 2.5 mm)焊丝。焊接设备采用Lincoln V300-1及氩弧焊接配套工具;温度监控使用美国MX2红外线测温仪。 2、焊接性能分析根据碳当量公式计算,材料20Cr3MoWVA的主要特点是含碳及合金元素较多,焊接时焊缝及热处理区容易出现淬硬组织,当焊件刚性及接头应力较大时,容易产生冷裂纹。经过渗氮处理的阀碟,其表面硬度高达HV900,焊接时极易产生裂纹。 3、堆焊工艺 3.1工艺路线焊前打磨清洗-预热-堆焊-焊后热处理-焊后车削。 3.2焊前准备首先用角向砂轮打磨彻底清理去除堆焊部位20 mm范围内的渗氮层,打磨深度应大于0.4 mm,测量打磨部位的硬度值,并保证施焊区域达到HB185~321的要求。按JB4730-94检测标准,检查打磨后的导向凸肩表面质量不得有裂纹、夹渣等缺陷,达到Ⅰ级标准为合格。然后用丙酮清洗阀碟焊接部位及其周围50 mm范围内,保证无水、油等;用砂纸清除氩弧焊丝表面的油污和锈斑等脏物。

钻杆接头扣型

钻杆接头的扣型 NC77 4 161.85 204.79 2 3/8"REG 5 47.62 68.20 231×230 2 7/8"REG 5 53.97 77.78 331×330 3 1/2"REG 5 65.07 90.48 431×430 4 1/2"REG 5 90.47 119.06 531×530 5 1/2"REG 4 110.06 141.68 631×630 6 5/8"REG 4 131.03 153.9 国内现场叫 法 API 名称 每英寸扣数 公扣小头端 面外径/mm 母扣台肩 端面内径 /mm 211×210 NC26=2 3/8"IF 4 60.3 5 74.61 NC31=2 7/8' 4 71.31 87.71 311×310 NC38=3 1/2"IF 4 85.06 103.58 NC40=4"FH 4 89.06 110.33 NC44 4 98.42 119.06 4A11×4A10 NC46=4"IF 4 103.73 124.61 411×410 NC50=4 1/2"IF 4 114.30 134.91 NC56 4 117.50 150.81 NC61 4 126.60 165.10 NC70 4 147.6 5 187.33

731×7307 5/8"REG4144.47180.18 831×8308 5/8"REG4167.84204.39 321×320 3 1/2"FH577.62102.79 4"FH=NC40489.66110.33 421×420 4 1/2"FH596.31123.83 521×520 5 1/2"FH4126.79150.02 621×620 6 5/8"FH4150.37173.83 211×210 2 3/8"IF=NC2 6 460.3574.61 2 7/8"IF=NC3 1 471.3187.71 311×310 3 1/2"IF=NC3 8 485.06103.58 4A11×4A104"IF=NC464103.73124.61 411×410 4 1/2"IF=NC5 4114.30134.91 511×510 5 1/2"IF4141.32163.91注:1>.IF是内平 2>.FH是贯眼 3>.REG是正规 套管外径mm壁厚mm 内径mm 千米容积m3/km 139.7 7.72 124.26 12.13 9.17 121.36 11.57

钻杆接头耐磨带材料研究进展

石油钻杆接头耐磨带材料发展现状 随着油气田勘探开发钻井技术的不断发展,深井、大位移井、水平井、多分支井、大斜度井等复杂井身结构的应用越来越广泛,石油钻井过程中地层结构也越来越复杂,其中强研磨性地层的数量急剧增加,这都对钻杆的防磨与减摩特性提出了更高的要求。 钻杆接头是钻杆的重要组成部分,采用较大壁厚,接头外径大于钻杆本体外径,用以连接钻杆形成管柱。在钻进过程中,当井斜角较大或钻柱受到侧向力作用时,钻杆接头与井壁或套管内壁接触摩擦,造成钻杆接头和套管壁的双向磨损。目前,钻杆接头防磨技术主要有:钻杆接头耐磨带、钻杆胶皮护箍、旋转钻柱接头、钻杆保护器等,其中钻杆接头耐磨带操作方便,效果最好,是减少钻杆、套管磨损的最有效措施。 在研磨性较强的地层中,常规材料钻杆接头的耐磨带磨损严重,使得钻杆的使用寿命显著降低,胀扣、脱扣、断钻杆等井下事故明显增加,钻杆接头的返修率急剧升高,维修费用和钻杆报废量急剧增加。在井身结构较复杂的井中,由于套管层次多、钻柱变形弯曲严重,常规材料钻杆接头耐磨带对套管的磨损比较大,起不到防磨保护的作用。 随着钻杆接头耐磨带材料在现场应用中出现的问题的逐步解决,新型耐磨带材料不断被推出,耐磨带的材料品种也越来越丰富。本文综合

评述钻杆接头耐磨带材料的发展及其应用,为推动钻杆接头耐磨带技术的进一步完善具有重要意义。 1 钻杆接头耐磨带对材料性能的要求 耐磨带是在钻杆接头、钻铤或加重钻杆上固定一层硬化层。该硬化层将钻杆接头与套管或井壁隔离,具有一定的硬度,可保护钻杆接头。摩擦因数低于钻杆接头,可减少对套管的磨损。耐磨带通常采用惰性气体保护焊工艺固定在钻杆母接头末端。 钻杆接头耐磨带早在20世纪30年代就已出现,早期主要用来保护钻杆和其他工具免受磨粒磨损,延长使用寿命。但是随着大位移井、水平井、高温高压井等复杂井的增加,钻杆接头耐磨带对套管磨损严重,套管失效事故增加,每年给油田造成上百万美元的维修、侧钻甚至全井报废成本。此后,新型耐磨带注重减轻钻柱在旋转钻进和起下钻过程中对套管的磨损,与此同时却牺牲掉了耐磨带对钻杆接头的保护作用。20世纪90年代中期,由于钻杆的价格、运输时间、运输成本增加,人们

堆焊技术修复轧辊

堆焊技术修复轧辊v 堆焊技术是利用焊接方法进行强化机械零件表面的一种维修技术.利用这一技术可以改变零件表面的化学成分和组织结构,完善其性能,延长零件的使用寿命,具有重要的经济价值. 目前在国内外冶金行业使用的堆焊技术有喷镀、气体保护焊、埋弧焊、电渣焊,其中轧辊埋弧焊是应用最广泛的工艺,具有生产效率高、质量好、经济效益较好的优点。 轧辊堆焊是指去除轧辊表面的疲劳层或缺陷后,用合适的堆焊材料、采用科学的工艺方法将其修复至原始辊径的过程,它的主要优点是轧辊使用前后的辊径不变,且堆焊后的轧辊具有良好的抗裂性、耐磨性、耐冷热疲劳性,使用寿命普遍能提高一倍以上,能够极大的降低吨钢成本,提高生产效率。 该项技术已是成熟技术,先后在宝钢、鞍钢、重钢、太钢、济钢等钢铁企业得到很好得推广应用,堆焊最大轧辊单重为58吨,堆焊层单面厚度最大达120mm,堆焊后使用效果得到客户认可。 严格执行正确的轧辊堆焊工艺,是保证轧辊堆焊质量的好坏及成功与否的决定性因素。轧辊堆焊过程包括以下步骤: 3.1.1 堆焊前采用机械加工方法,对堆焊孔型进行粗加工,去除轧辊表面的疲劳层及缺陷,特别是裂纹必须彻底清除,对多次堆焊的轧辊,应经超声波探伤,检查内部情况,在确认无裂纹的情况下方可进行焊接。 3.1.2 预热 由于轧辊及堆焊材料均为含炭量和合金元素较高的材料,加之轧辊辊径大、刚性大、冷却速度快,很容易在焊接时造成脆性区,并且由于温度不均形成很大的热应力造成裂纹。为了防止裂纹的发生,堆焊前必须对轧辊进行预热,预热温度由辊身及堆焊材料成分而定。为了使轧辊表面得到均匀的硬度,预热温度应在材料的Ms点以上。为了减少热应力,加热速度也应当控制,特别是大轧辊,升温速度开始100℃采用约20℃/h,之后可为40℃/h。要求均匀加热。 3.1.3 焊接 焊接是堆焊成败的关键环节,要获得理想的堆焊层必须综合考虑某些可变因素,如:焊接电压、焊接速度、轧辊转速、轧辊的保温、焊接电流、焊接材料等,对一些含碳及合金元素高的辊芯,为防止脆性区的裂纹,除一定的预热措施外,多采用低碳低合金过渡层进行预先堆焊过渡层。 3.1.4 焊后处理 这是轧辊堆焊的最后一道工序,为了减少由于表面和内部冷速不一造成体积应力而引起裂纹,要控制冷速。一般控制冷速和加热速度大致相同,冷至100℃时要保温一定时间,冷至50℃以下可不再控制冷速。为了消除焊接残余应力,必须进行回火处理,回火温度视轧辊使用条件,一般控制在450~600℃之间。回

焊接堆焊实训报告.doc

先进修复及再制造技术 综合实验报告 班级:成型三班姓名:徐杰 学号:指导老师:刘艳、马传平 2014年6月8日 先进修复及再制造技术 —堆焊工艺设计实验 班级:成型三班组员:徐杰陈振华蔡万青张洋李遥老师:刘艳马传平 一、实验目的 1.了解堆焊的基本原理; 2.观察堆焊焊接的过程,掌握简单的实验操作; 3.通过对实验结果的分析加深对理论知 识的理解。 二、实验内容 1.通过控制不同的工艺参数对平板进行堆焊; 2.对堆焊后的焊件进行切割,分析金相组织和硬度值分布; 2.分析堆焊工艺的优缺点及 应用范围。 三、实验仪器、设备及材料 1、nb-350igbt型逆变焊机; 2、送丝机控制箱1个; 3、轻型单丝埋 弧自动焊小车一台; 4、jdhs-38#药芯焊丝一盘; 5、钢板若干块。 四、实验原理及方案 堆焊方法是焊接技术的一个分支。就其物理本质、冶金过程和热过程的基本规律而言, 与一般焊接过程是相同的。但是,它的目的不一样,它不是为了联接工件,而是采用焊接的 方法,在零件的表面堆敷一层或几层具有一定性能材料的工艺过程,主要用于修复零件或者 增加其耐磨、耐热、耐蚀等方面的特殊性能。 通过查阅资料并在掌握理论知识的基础上,自主设定焊接工艺参数,进行堆焊的实验。 工艺参数如下表所示: 表1 自主设计的堆焊焊接工艺参数 工艺参数参数值 电压(v) 26.5 焊接速度(mm/s) 12 干伸长(mm) 14 五、实验步骤 1.选择合适的试板,用砂轮对试件表面进行打磨除锈; 2.按设计的方案对设置堆焊过程的工艺参数; 3.用焊渣将焊丝和要焊接的区域盖住,避免弧光污染; 4.开始堆焊,记录过程中的电流 和电压; 5.完成每一道堆焊后都需要进行敲渣处理并观察其宏观外貌,继续进行下一道堆焊,直 至完成10次堆焊。 6.用线切割方法将焊件切块,观察各堆焊道的显微组织,并测量硬度值。 六、实验注意事项 堆焊过程注意弧光灼伤眼睛。 七、实验结果与分析

石油钻杆接头耐磨带焊丝对比分析

石油钻杆接头耐磨带焊丝对比分析 石油钻杆接头耐磨带以其一定的耐磨性和减磨性,保护钻杆接头和套管免遭强烈的磨损,钻井工程中获得了广泛的应用。钻杆耐磨带主要是采用耐磨带焊丝通过二氧化碳气体保护焊的方式堆焊到钻杆接头部位的一种高合金耐磨材料。目前国内所使用的耐磨带焊丝大部分依赖进口,其中美国某公司的100XT型产品使用最为广泛、最具代表性。北京固本科技发展有限公司根据钻杆现场施焊特点,结合钻杆耐磨带的磨损情况,研制了一种替代进口耐磨带焊丝的国产钻杆耐磨带焊丝KB100,在提高钻杆接头的耐磨性能的基础上,为油田钻井服务和钻杆生产企业降低生产成本,增加企业效益作出了积极作用。本文从耐磨带焊丝堆焊层的化学成分、金相硬度、磨粒磨损等多个方面对国产KB150和进口100XT钻杆耐磨带焊丝的性能作了分析与对比。 一、钻杆接头耐磨带焊丝 1、美国安科100XT耐磨带焊丝 100XT耐磨带焊丝是一款金属芯焊丝。该耐磨带100%无裂纹,并且具有硬、坚韧、高耐磨、套管友好等特性。100XT耐磨带焊丝是美国安科技术公司自主研制,美国安科位于美国德克萨斯州的休斯顿市,属于美国TRITEN集团,是进行井下钻具保护和防磨研究的一个机构。 2、北京固本KB150耐磨带焊丝 KB150耐磨带焊丝为铁基药芯焊丝,是一种高级无裂纹、套管友好耐磨带。55以上的洛氏硬度,确保了钻杆接头和套管之间的理想

摩擦和均衡保护。KB150耐磨带焊丝由北京固本科技有限公司自主研制,公司有近10年的钻杆耐磨带焊丝研制、开发、生产、销售和服务经验。北京固本是国内唯一一家专业研发耐磨堆焊金属材料的高新技术企业,公司是国家级大学科技园企业,并获政府相关部门专项资助。 二、金相硬度对比 在单层焊的情况下,不同位置上分别测试7个点的硬度,100XT 耐磨带焊丝平均硬度值为55.7HRC,KB150耐磨带焊丝平均硬度值为 61.3HRC。 三、磨粒磨损对比 通过这2种型号耐磨带焊丝磨损量测试结果可知,KB150耐磨带焊丝磨损量明显小于100XT。在相同载荷下,北京固本KB150耐磨带焊丝堆焊后的耐磨带与美国安科100XT型相比,相对耐磨性提高1.75倍。 四、两种耐磨带实际使用结果

四辊破碎机辊皮的修复堆焊技术

四辊破碎机辊皮的修复堆焊技术 摘要:针对目前很多冶金企业四辊破碎中存在辊皮使用周期短的问题,在辊皮表面堆焊一层耐磨层,使其达到理想效果。文章中介绍了其辊皮的具体堆焊工艺及方法。 关键词:周期短耐磨层堆焊工艺 四辊破碎机是钢厂烧结系统中煤和焦炭破碎的主要设备,利用两组(四只)高强度耐磨合金碾辊,相对旋转产生的高挤压压力和剪切力来破碎物料。一般上辊间隙10mm,下辊间隙3mm,通过调整辊子间隙来达到所需物料粒度要求,由输送设备送出。 辊子由轴、轮辐、推力环、拉杆和辊皮等组成,其中辊皮是易损件,经磨损和腐蚀,正常使用时间为3~5个月。一般辊皮材质为:本体材质ZG35SiMn+堆焊耐磨合金,选择的合金硬度软辊皮不耐用;选择的合金太硬辊皮耐用,但辊子打滑不吃料、物料外溢,辊子的旋转速度降低,不能满足生产要求。故在生产过程中选择正确耐磨 层合金是非常重要的。四辊示意图 一、焊前准备 1.在修补堆焊前将需修复的四辊进行拆卸,清洗。将辊皮的表层找平。(车除疲劳层) 2.将辊皮整体置于热处理炉中进行预热,温升速度50℃/小时,升温至250℃左右,保温2小时出炉堆焊,堆焊过程中注意保证层间温度150~200℃。 3.和焊丝配对焊剂按焊剂生产厂家要求在烘干箱中烘干并保温2小时。 二、焊接将经过加热的辊皮装夹在堆焊机上进行堆焊。加工后的旧辊皮尺寸为Φ1170×1000mm,堆焊后的尺寸为Φ1205×1000mm,耐磨层堆焊道次3道以上,每道厚度1.8~2.5mm,单边留2~2.5mm以上的加工余量,连续焊接,焊缝搭接严密。 1.焊材的选择 打底堆焊采用实心焊丝SN1180(Φ4.0mm)+HJ260焊剂,由Φ1170mm堆焊至Φ1185mm.耐磨层用实心焊丝SN3106(Φ4.0mm)+HJ260焊剂,由Φ1185mm 堆焊至Φ1205mm。

42CrMo合金钢轧辊的堆焊

二冷辊的堆焊修复工艺 摘要:通过对转炉二冷辊的焊接性分析,提出了对磨损的二冷辊表面进行合金堆焊修复工艺,使修复辊表面具有更耐磨、耐高温、耐疲劳性能。关键词:二冷辊堆焊合金工艺刖言 转炉二冷辊是板坯连铸机的夹送辊,母材质是42CrMo合金钢,一组辊由三节组成,直径在?100??300之间,表面堆焊合金层后要求在过红钢和受水冷的工况条件下具有较强的抗热、耐磨和抗裂性能,辊面硬度要求为HRC42?45。图(1)为一节水平段?250自由辊。 图(1) ?285自由辊 1、焊接性分析 1.1二冷辊母材及化学成份。二冷辊母材为42CrMo,为中碳合金钢,其化学成份见下表 1.2合金钢42CrMo的综合碳当量为0.76% ,碳当量较高,淬硬倾向较强,属于较难焊材料,其成分中的Mn、Mo等元素增加了白点的敏感性,容易产生裂纹。 1.3二冷辊母材属于低合金结构钢,焊接时容易产生延迟性冷裂纹,堆焊修复是在其表面堆焊5?6mm的高强度耐磨材料,焊接过程中由于

工件局部受热不均匀,如果冷却速度过快,焊缝会产生巨大的内应 力而产生冷裂纹。 1.4合金42CrMo属中碳材料,当P、S含量也较高时容易形成热裂 纹。为了防止热裂纹的产生,在选用焊丝时,C、P、S含量要低点, Mn含量高点以加强脱S。 2、焊接材料的选择 2.1焊丝的选择 对于二冷辊的特性要求,选用耐磨耐热性好的Cr-Mo-Ni马氏体不 锈钢堆焊材料,由于母材的含碳量或合金含量相对较高,为确保母材和堆焊金属之间的良好冶金结合,在工作层材料堆焊前,先使用低碳抗压强度较高的焊丝材料进行过渡层堆焊。我们选用H0Cr17药芯焊丝?2.4为过度层焊丝,H2Cr13药芯焊丝?2.4作为堆焊工作层焊丝。 2.2焊剂的选择 选用熔炼型焊剂HJ260,是低锰刘硅中氟焊剂,焊缝成形美观, 且成本较低,产生的烟尘少,不容易受潮的优点。但用于二冷辊堆 焊,高温脱渣性比烧结型焊剂差。通过与生产厂家合作,降低它的化学活性,并加强脱氧,生产出一种改进型HJ260,较好地改善了高温脱 渣性能, 同时控制好层间温度, 就能达到使用要求。 3、堆焊工艺

加重钻杆耐磨带焊接实例

加重钻杆耐磨带焊接实例 (北京固本科技有限公司) 随着石油钻探开采的发展,各类加重钻杆在石油钻探开采中的需求越来越大,用户对产品使用性能的要求也越来越高。如何采取合理的焊接工艺方法,以实现低成本高效率且又能满足产品技术要求的耐磨带焊接研究成为需要解决的课题之一。 某石油公司研发的材料牌号为AISI4145H钢的114.3mm(4.5in)加重钻杆有4段工作面需要增加耐磨带,4段焊缝分别为币φ158.8mmx101mm、φ127mmx76mm、φ127mmx76mm、φ158.8mmx101mm,焊缝需堆焊3mm厚,加重钻杆内孔为币φ71.41mm,钻杆内螺纹接头与钻杆吊卡扣合处制成18°锥形台肩,焊前经过285~341HBW调质处理。按石油天然气行业颁布的标准SY/5T146-1997规定:堆焊后,耐磨环外表面应平整过渡,基体不得有裂纹和焊层剥落等缺陷,表面硬度不低于50HRC,为使钻杆焊接后性能满足技术要求,需对原材料的焊接工艺、焊接质量进行分析和试验,以便制定合理可行的焊接工艺。 一、焊接性分析 钻杆的材料牌号为AISI4145H,其化学成分符合表1的规定。 表1 AISI4145H的化学成分(质量分数)(%) 按照国际焊接学会所推荐的碳当量计算公式,可计算出碳当量Ceq为0.725%~1%。据大量试验得知:当碳当量Ceq大于等于0.60%时,属于高淬透性的钢,冷裂纹倾向较为严重,焊接性较差,这是因为材料中的含碳量较高,加人的合金元素也较多,在500℃以下的温度区间过冷奥氏体具有更大的稳定性所致其含碳量越高,淬硬倾向越大,冷裂纹倾向也越大,而且由于M点较低,在低温下形成的马氏体一般难以产生“自回火”效应,并且马氏体中的含碳量较高,有很大的过饱和度,点阵的畸变就更严重,因而硬度和脆性就更大,对冷裂纹的敏感性也就更大另外,由于原材料的含碳量及合金元素的含量都较高,因此液一固相区间较大,偏析也更严重,这就促使其具有较大的热裂纹倾向。 二、焊接工艺特点 加重钻杆是在调质状态下进行焊接的,除了裂纹外,热影响区的主要问题是高温回火区软化引起的强度下降。从焊接方法考虑应采用热量集中、能量密度大,而且焊接热输人越小越好;同时,为防止延迟裂纹的产生,必须选择正确的预热温度。

钻杆接头

钻杆接头 连接器、钻杆接头产品,采用优质低碳合金钢为原料,经高压成型,真空调质处理,机械性能高。主要分为锚索钻杆连接器,地质钻杆接头,手持式气动钻机接头,各种钻杆变径接头和岩芯套管变径接头等系列产品。 【型号】Φ24 Φ28 Φ36 Φ42 Φ50 Φ63.5 Φ73 Φ76 F12 F18 F26 【材质】采用优质低碳合金钢为原料。 【工艺】经高压成型,真空调质处理,机械性能高。 【分类】主要分为锚索钻杆连接器,地质钻杆接头,手持式气动钻机接头,各种钻杆变径接头和岩芯套管变径接头等系列产品。

钻杆接头·规格型号 规格型号 生产工艺链接形式直径(mm) 长度(mm)螺纹形式 F12 100 四方连接精锻而成四方连接 Φ24 30 矩形螺纹高压成型与钻杆连接 Φ28 80 矩形螺纹高压成型与钻杆连接 Φ36 120 矩形螺纹精锻而成与钻杆连接 Φ42 120 锥螺纹精锻而成与钻杆连接 Φ42 180 锥螺纹-矩形螺纹精锻而成与钻杆连接 Φ50 200 矩形螺纹精锻而成与钻杆连接 Φ63.5 160 矩形螺纹精锻而成与钻杆连接 Φ73 三棱插接钻杆连接 Φ76 120 矩形螺纹-锥型螺纹精锻而成与钻杆连接 钻杆接头·技术参数表 序号产品名称规格型号用途 1 锚索钻杆连接器T16*6/M14*1.5 钻杆与钻头连接 2 锚索钻杆连接套T16*6 钻杆与钻杆连接 3 钻杆接头42*220 钻杆与钻杆连接 4 钻杆接头50*220 钻杆与钻杆连接 5 钻杆接头63.5*220 钻杆与钻杆连接 6 钻杆接头73*220 钻杆与钻杆连接 7 变径接头73*150 岩芯管螺纹变换用 8 变径接头89*150 岩芯管螺纹变换用 9 变径接头63--73 岩芯管螺纹变换用 10 变径接头73-89 岩芯管螺纹变换用 连接器的基本性能 机械性能就连接功能而言,插拔力是重要的机械性能。插拔力分为插入力和拔出力(拔出力亦称分离力),两者的要求是不同的。在有关标准中有最大插入力和最小分离力规定,这表明,从使用角度来

单齿辊修复方案及堆焊工艺流程

单齿辊修复方案及堆焊工艺流程 (北京固本科技有限公司) 单齿辊,主要用于烧结机尾部,破碎700~800℃的热烧结矿。由于直接与高温烧结矿接触,其相关部位在高温作用下磨损十分严重。为了延长单齿辊的使用寿命,使用单齿辊堆焊耐磨焊丝,采用堆焊修复的办法,在磨损的部位焊接耐磨层。 一、修复前准备 1.1清理油污、尘泥、裂碎块、铁锈。 1.2检测主要工作部位及装配部位的形位尺寸,并做好记录。 1.3对辊轴装置通水打压(0.7MPa),保压15min,检查主轴及辊齿各部位的漏水或渗水情况,把掉落的齿的部位进行临时封堵。 二、修复方案 2.1辊齿部位磨损较轻,且水压试验不漏水处可直接实践与探索对辊齿进行堆焊。 2.2磨损严重或水压试验出现渗漏的,可将整个辊齿用碳弧创割除,重新制作后再与主轴焊接。 三、单齿辊堆焊修复 3.1 焊前准备 为了保证良好的堆焊修复效果,应当进行下列焊前准备工作。 3.1.1 焊前清理 焊前需对零件进行打磨,去除零件表面的油污、铁锈、水分等杂质,直至露出金属光泽为止。如果堆焊部位还存有原有堆焊层,必须用气刨将原有堆焊层打掉,露出齿冠基体,方可在其表面堆焊。 3.1.2 工装准备 为保证焊接质量,便于操作,需制作专用工装,使焊接位置尽量保持在平焊位置施焊。 3.2 焊机 单齿辊堆焊设备选用气保焊机,焊机应具备以下要求: 3.2.1 焊接电流可输出矩形脉冲波形,达到喷射过渡,易于全位置焊接。 3.2.2 对电网电压波动具有自动补偿功能。 3.2.3 设有过压、欠压、过流、过热等自动保护功能。 3.2.4 根据电缆长度自动补偿,确保不同电缆长度均有良好的焊接性能。

齿轮类零件堆焊修复实例

齿轮类零件堆焊修复实例 齿轮类传动零件如齿轮、链轮、齿圈、齿条等是各类设备中常用的零件,其损坏的主要形式是齿面磨损和断齿。磨损或断齿后可用手工电弧堆焊的方法进行修复,这不仅能及时地保证设备正常运行,而且可节约大量备件费,具有显著的经济效益。本文介绍部分齿轮类传动零件堆焊修复成功的实例,供同行参考。 一、齿轮轴断齿的堆焊修复 某厂中板轧机减速机的重型人字齿轮轴材料为50SiMnMoB钢,模数m=30mm,齿数z=24,齿宽b=300mm,外圆最大直径为φ914mm,总长为,单重。该齿轮轴的平均使用寿命为1~年,其损坏形式是磨损、剥伤、断齿等。当前国内只有少数厂家能生产制造。该厂曾采用堆焊方法修复了一个断齿多处,最大折断尺寸为200mm×40mm×45mm的报废齿轮轴,具体的修复过程如下: (1) 用手持砂轮将断齿处底面修磨好,不允许有任何裂纹存在。焊前加热工件,用远红外线辐射电热器24片均匀装于所有齿顶面上,并用石棉布包裹好。加热约6h,工件温度控制在300℃左右。 (2) 选用φ4mm的E308-16(A102)焊条和φ4mm的E8515-G(J857)焊条交替堆焊,焊前焊条应仔细烘干。 (3) 先用E308-16焊条打底焊,厚约4mm,再用E8515-G焊条堆焊16~20mm厚,接着用E308-16焊条堆焊厚约3mm的缓冲层,最后用E8515-G焊条将齿部堆焊完。堆焊过程中要使工件始终处于加热状态,并放于避风处,层间温度保持在300℃左右,每焊一层,要(趁热)用手锤用力击打各堆焊处30余次。整个堆焊过程要连续进行,一次完成。(4) 堆焊后要保温4h,再缓冷。 (5) 为了得到较好的齿形精度,应利用砂轮仔细进行人工打磨。 对堆焊修复的齿轮轴进行了超声波探伤和硬度检验,均符合质量要求。 二、内齿圈的堆焊修复 50t履带吊车的行走部分与上部平台的连接采用回转支承,其内齿圈外径φ1400mm,厚135mm。在制齿时,由于机床的误动作,将其中一个齿的齿厚铣去了一半,需要进行堆焊修复。内齿圈的材料为5CrMnMo 钢,焊接性较差。内齿圈是经过调质处理的,而缺陷齿堆焊后不允许再进行相应的热处理,因此需要选择硬度与其相当的焊条和采用使热影响区不出现裂纹的堆焊工艺。具体堆焊过程如下:

钻杆接头粗细扣规范

钻杆接头粗细扣规范 类型公称 直径 数字 型 接头 外径 水 眼 螺纹 种类 每 寸 牙 数 锥 度 基面螺纹 均直径 公接头母接头 扣 型 螺纹小 端外径 螺纹大 端外径 扣 长 扣 型 螺纹始 端外径 扩孔 直径 扣 长英寸 D d 2tgФ C Ds Dl Lpc Qc Lbc 数字型NC23 4 1:6 59.817 52.400 65.100 76.2 59.83 66.7 92.1 NC35 89.687 79.096 94.971 95.2 89.69 96.8 111.11 NC44 112.192 98.425 117.475 114.3 112.2 119.1 130.2 NC56 1:4 142.646 117.500 149.250 127.0 143.98 150.8 142.9 NC61 156.921 128.600 163.525 139.7 158.25 165.1 155.6 NC70 179.146 147.650 185.750 152.4 180.48 187.3 168.3 NC77 196.621 161.950 203.200 165.1 197.93 204.8 181.0 正规2 3/880 25.4 甲种 5 1:4 7°7′30″ 60.080 2A31 47.625 66.675 76.2 2A30 61.423 68.3 92.1 2 7/895 32 69.605 231 53.975 76.200 88.9 230 70.948 77.8 104.8 3 1/2108 38 82.293 331 65.075 88.900 95.3 330 83.635 90.5 110.1 4 1/2140 58 113.800 431 90.47 5 117.475 108.0 430 112.211 119.1 123.8 5 1/2172 70 乙种 4 1:4 132.944 531 110.058 140.208 120.7 530 133.630 141.7 136.5 6 5/819 7 89 丙种1:6 146.24 8 631 131.030 152.197 127.0 630 145.601 154.0 142.9 7 5/8225 102 乙种1:4 170.549 731 144.475 177.800 133.4 730 171.235 180.2 149.2 8 5/8254 131 194.731 831 167.843 201.982 136.6 830 195.417 204.4 152.4 贯眼2 3/864 36.5 甲种 5 1:4 64.059 2A21 51.604 70.654 76.2 2A20 65.402 72.3 92.1 2 7/8108 54 85.480 221 69.850 92.075 88.9 220 86.82 3 94.5 104.8 3 1/2113 62 94.84 4 321 77.622 101.443 95.3 320 96.187 102.8 111.1 4 NC40 133 71 丁种 4 1:6 103.429 4A21 89.662 108.712 114.4 4A20 103.440 120.3 130.1 4 1/2146 80 甲种 5 1:4 115.113 421 96.317 121.717 101. 6 420 116.456 123.8 117.5 5 1/2178 101 丙种 4 1: 6 142.011 521 126.79 7 147.955 127.0 520 141.364 150.0 142.9 6 5/8203 12 7 165.59 8 621 150.368 171.526 127.0 620 164.950 173.8 142.9 内平2 3/8NC26 86 44.5 丁种 4 1:6 4°45′48″ 67.767 2A11 60.350 73.050 76.2 2A10 67.778 74.6 92.1 2 7/8NC31 105 54 80.848 211 71.32 3 86.131 88.9 210 80.860 87.7 140.8 3 1/2NC38 121 68.3 96.723 311 85.065 102.006 101.6 310 96.73 4 103.6 117.5 4 NC46 146 82.6 117.500 4A11 103.734 122.734 114.4 4A10 117.511 124.6 130.2 4 1/2NC50 15 5 95.3 128.059 411 114.300 133.350 114.4 410 128.070 134.9 130.2 5 1/2185 122 157.201 511 141.32 6 162.484 127.0 510 137.212 163.9 142.9 6 5/8212 145 184.173 611 168.260 189.456 127.0 610 184.186 192.0 142.9

辊压机堆焊修复

辊压机堆焊修复

辊压机堆焊修复 一、辊压机介绍 辊压机,又名挤压磨、辊压磨、滚压机,是国际80年代中期发展起来的新型水泥节能粉磨设备,具有替代能耗高、效率低球磨机预粉磨系统,并且降低钢材消耗及噪声的功能,适用于新厂建设,也可用于老厂技术改造。 图一:水泥厂辊压机 辊压机由两个相向同步转动的挤压辊组成,一个为固定辊,一个为活动辊。物料从两辊上方给入,被挤压辊连续带入辊间,受到50-100MPa的高压作用后,变成密实的料饼从机下排出。辊压机是根据料床粉磨原理设计而成,其主要特征是:高压、满速、满料、料床粉碎。辊压机的辊面一般采用热堆焊,耐磨层维修更为方便。由于辊面需要承受高压等原因,辊面磨损是该设备使用过程中的常见现象,辊面损坏包括:辊面产生裂纹,辊面凹坑或辊面硬质耐磨层剥落。辊压机辊面磨损后,表面凹凸不平,对物料形不成有效的挤压,出料中颗粒料多,料饼少,磨机产量下降,辊压机系统内的循环量大大增加,粉料越来越多,造成称重仓频繁“冲料”,回料皮带及入称重仓斗提压死,系统跳停。要求在生产使用时,千万不要把硬质铁器掉进辊压机,在打散机回料粗粉处加装除铁器,防止铁器在辊压机中循环挤压,辊面损坏后,应及时请专业人士现场堆焊修复。

二、辊压机常见磨损情况 辊压机正常工作半年时间后应检查辊体形成的料垫是否连续,高度是否于花纹层基本一致(距辊体端面 50~80mm 范围内外) 。发现料垫形成不理想,需要及时对辊缝做调整,避免辊体异常磨损。注意观察辊体是否有局部掉块,沟槽等缺陷,辊体端面是否磨损。如果辊体已出现局部掉块,沿辊面环向出现沟槽等缺陷(辊面花纹局部有掉块但料垫形成良好且不影响辊压机产量时不需修复);辊体端面出现磨损且调整下侧挡板无效,侧面有大块原料漏料现象。需要对辊面进行局部日常堆焊检修,否则辊面花纹哦磨损会加剧,不仅浪费资源,严重的可以造成更大的损失。 三、辊压机堆焊修复准备工作 辊面在堆焊修复前首先将辊压机上罩体检查门拆掉,将挤压辊辊面需要修复的地方清理干净,不得有灰尘及其它影响焊接质量的杂质存在。第二确定修复部位的材质,可通过与周围辊面对比高度确定修补部位的材质。辊压机辊面通常有花纹层、硬化层、过渡层、底层几部分,其余为辊体。确定修补部位的材质后分别选用挤压辊堆焊材料。 图二:辊压机辊子结构图 辊压机的辊面是由几层复合金属堆焊而成,包括花纹层、硬层高层、过渡层。辊压机修复厂家统计,花纹层、硬层高层、过渡层的模式相对严重,在进行辊压机的日常检修时,在过渡层上堆焊洛氏硬度>50的合金硬化层,在硬化层上再堆焊更硬的耐磨花纹。为了使辊面寿命>8000~10000h,最表面的耐磨花纹硬度可达60~65HRC,以提高耐磨性能。我们维修部使用的是北京固本耐

钻杆接头耐磨带材料

国产石油钻杆接头耐磨带材料的蓬勃发展 钻杆接头耐磨带以其一定的耐磨性和减磨性,保护钻杆接头和套管免遭强烈的磨损,在深井钻井、大位移井钻井和大斜度井钻井工程中获得了推广应用,而且接头耐磨带技术已经成为国际重大石油工程项目招标中,投标方中标的必备技术条件之一。 钻杆接头耐磨带实质上是一个隔离带,用以保护钻杆接头和套管免遭强烈磨损,应当具有较高的耐磨性和适度的减磨性。材料特性是影响耐磨带性能的核心因素,耐磨带特性的改变取决于堆焊材料成分、组织性能的变化以及配套堆焊工艺的严格实施。耐磨带堆焊材料的重大突破是我国耐磨带技术发展的必要条件,而引进焊材的国产化则是耐磨带技术发展的 充分条件。“材料控制性能”理论,在钻杆接头耐磨带技术发展过程中起到了积极的推动作用。 1石油钻杆接头耐磨带工作原理与性能影响因素 1.1耐磨带工作原理 钻杆接头耐磨带实质上是一个沿接头圆周方向,具有一定宽度和一定厚度的隔离带。通过这个隔离带,使钻杆接头外壁和套管壁或井壁隔离,避免钻杆接头与套管壁或井壁直接接触,以保护钻杆接头和套管免遭强烈磨损。耐磨带的工况条件比较复杂,性能要求比较苛刻,应当具有良好的综合抗磨性能。所谓综合抗磨性能,是指具有较高耐磨性的同时还必须具有适度的减磨性。最佳的耐磨性与减磨性之间存在一定的匹配关系,上述技术指标之间以及与摩擦系数之间的函数关系的量化确立,可能对于耐磨带焊接材料性能的重大突破具有重要参考价值。 1.2耐磨带性能影响因素 接头耐磨带性能影响因素较多,总体上有三大因素: 1.2.1载荷力的影响 在钻井过程中,凡是增大钻杆接头与套管内壁(或井壁)接触力的因素,都会加剧磨损发生。如在“狗腿”度大的井段,接头与套管内壁接触压力相对增大,此时无论是耐磨带还是套管内壁(或井壁),其磨损现象就会加剧。 1.2.2摩擦系数的影响 在钻井过程中,凡是增大接头与套管内壁摩擦系数的因素,都会加剧磨损发生。如润滑剂品种或加入量不合适、转盘转速增大以及温度过高或过低时,其磨损现象也会加剧。

辊压机堆焊修复

辊压机堆焊修复 一、辊压机介绍 辊压机,又名挤压磨、辊压磨、滚压机,是国际80年代中期发展起来的新型水泥节能粉磨设备,具有替代能耗高、效率低球磨机预粉磨系统,并且降低钢材消耗及噪声的功能,适用于新厂建设,也可用于老厂技术改造。 图一:水泥厂辊压机 辊压机由两个相向同步转动的挤压辊组成,一个为固定辊,一个为活动辊。物料从两辊上方给入,被挤压辊连续带入辊间,受到50-100MPa的高压作用后,变成密实的料饼从机下排出。辊压机是根据料床粉磨原理设计而成,其主要特征是:高压、满速、满料、料床粉碎。辊压机的辊面一般采用热堆焊,耐磨层维修更为方便。由于辊面需要承受高压等原因,辊面磨损是该设备使用过程中的常见现象,辊面损坏包括:辊面产生裂纹,辊面凹坑或辊面硬质耐磨层剥落。辊压机辊面磨损后,表面凹凸不平,对物料形不成有效的挤压,出料中颗粒料多,料饼少,磨机产量下降,辊压机系统内的循环量大大增加,粉料越来越多,造成称重仓频繁“冲料”,回料皮带及入称重仓斗提压死,系统跳停。要求在生产使用时,千万不要把硬质铁器掉进辊压机,在打散机回料粗粉处加装除铁器,防止铁器在辊压机中循环挤压,辊面损坏后,应及时请专业人士现场堆焊修复。 二、辊压机常见磨损情况

辊压机正常工作半年时间后应检查辊体形成的料垫是否连续,高度是否于花纹层基本一致(距辊体端面 50~80mm 范围内外) 。发现料垫形成不理想,需要及时对辊缝做调整,避免辊体异常磨损。注意观察辊体是否有局部掉块,沟槽等缺陷,辊体端面是否磨损。如果辊体已出现局部掉块,沿辊面环向出现沟槽等缺陷(辊面花纹局部有掉块但料垫形成良好且不影响辊压机产量时不需修复);辊体端面出现磨损且调整下侧挡板无效,侧面有大块原料漏料现象。需要对辊面进行局部日常堆焊检修,否则辊面花纹哦磨损会加剧,不仅浪费资源,严重的可以造成更大的损失。 三、辊压机堆焊修复准备工作 辊面在堆焊修复前首先将辊压机上罩体检查门拆掉,将挤压辊辊面需要修复的地方清理干净,不得有灰尘及其它影响焊接质量的杂质存在。第二确定修复部位的材质,可通过与周围辊面对比高度确定修补部位的材质。辊压机辊面通常有花纹层、硬化层、过渡层、底层几部分,其余为辊体。确定修补部位的材质后分别选用挤压辊堆焊材料。 图二:辊压机辊子结构图 辊压机的辊面是由几层复合金属堆焊而成,包括花纹层、硬层高层、过渡层。辊压机修复厂家统计,花纹层、硬层高层、过渡层的模式相对严重,在进行辊压机的日常检修时,在过渡层上堆焊洛氏硬度>50的合金硬化层,在硬化层上再堆焊更硬的耐磨花纹。为了使辊面寿命>8000~10000h,最表面的耐磨花纹硬度可达60~65HRC,以提高耐磨性能。我们维修部使用的是北京固本耐磨焊丝,高硬度不脱落的耐磨层花纹得到用户的肯定。

相关文档
最新文档