球面距离的计算及其计算公式
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球面距离的计算及其计算公式
在球面上,不在同一直径上的两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣派的长度,我们把这段抓长叫做球面上这两点间的球面距离.(也叫球面上的短程线或测地线)
如图1,A、B为球面上不在同一直径上的两点,为圆心,⊙为过A、B的大圆,⊙为过A、B的任一个小圆,我们把这两个圆画在同一个平面内.(见图2)设,,球半径为,半径为.则有大圆弧长,小圆弧长
(1)
但,即
(2)
将(2)代入(1)得
(3)
∵ ,由(2)式知 .
由于,故只需证明函数在内为单调递减即可.
∴
(∵当时,有)
∴ 在单调递减
由(3)式不难得到
即 . 故大圆劣弧最短。
球面距离公式:设一个球面的半径为,球面上有两点、
. 其中,为点的经度数,、为点的纬度数,过、
两点的大圆劣弧所对的圆心角为,则有
(弧度)
A、B间的球面距离为:
证明:如图3,⊙与⊙分别为过A、B的纬度圈,过A、C的大圆,过、D的大圆分别为A、B的经度圈,而经度圈与纬度圈所在的平面互相垂直,作面,垂足位于上,连结、 . 则
在中,由余弦定理,得:
故
又
比较上述两式,化简整理得:
从而可证得关于与的两个式子.
例题北京在东经,北纬,上海在东经,北纬,求北京到上海的球面距离.
解:
∴(弧度)
∴所求球面距离为。