大数据下的精准营销方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而浩如烟海的客户及市场、销售和服务信息,如果没有一个具有高度商业智能的数据分析和处理系统是不可想像的。大数据将是继云计算、物联网之后IT产业又一次颠覆性的技术变革。
大数据将是继云计算、物联网之后IT产业又一次颠覆性的技术变革。
电影《天下无贼》里有这样一句经典对白:“21世纪什么最贵?人才!”如今,选项可能还要加上一个:数据。
而这数据,已不是传统意义的一般数据,而是超大数据、海量数据,就是现在所谓的“大数据(Big Data)”。
如今大数据可谓是风起云涌,红红火火,俨然成为信息技术领域最时髦的词汇。IBM、微软、Oracle、SAP等IT巨鳄,像是寻找到了新的金矿,开始全力挖掘大数据,多方位推广大数据理念,而众多中小IT厂商也跟着蜂拥而至,以分得大数据市场一杯羹。
数据爆炸的冲击波
“大”字不仅意味着数据的数量庞大,还代表着数据种类繁多、结构复杂,变化的速度也极快。研究表明,大数据呈现三种特性:Volume(极多的数据量)、Velocity(极快的处理速度)、Variety(极繁的数据种类)。如今有许多企业已面临单日数据量以数十、数百TB(万亿字节)的速度增加,而近几年累加的总数据量也达到了PB(1000个TB)甚至EB(一百万个TB)等级,这样的数据量已让传统的数据库难以处理;而且企业数据增加的速度也越来越快,诸如移动化、社交网络的广泛应用,使得数据增加的速度比传统的企业应用程式来得快很多,一旦数据增生速度越快,数据处理、分析的速度也就得跟上;此外,数据更是呈现出多样性、复杂性的特征,一方面互联网不但产生文字资讯,同时也不断在产出与以往不同的数据:照片、视频、微博等,另一方面,IT遍及工作生活中的每个角落,各种各样的传感器、监控器也不断产生,各种机器资讯数据的形式日趋复杂、多样了,从结构化数据到非结构化数据不断转化。这就催生了大数据技术的强烈需求。
今天,从搜索引擎、社交网络的普及到人手一机的智能移动设备,全球互联网上的信息总量正以每年30%-50% 的增速不断暴涨,包括每天Facebook上分享的几亿条内容,每日15 TB的Twitter信息,每天淘宝上数十亿条店铺、商品浏览记录及上亿的成交、收藏记录以及3000多万条传感器资讯,等等。市场研究机构IDC的研究结果显示,去年全球创造的信息数量达到1800EB,并且还以每年50%的速度高速增长,到2020年,全球每年产生的数字信息将达到35ZB (1ZB=1024EB)。据IDC统计,2011年全球所产生的数据总量是1.8ZB,如果把这些数据刻录到CD碟片中,这些碟片可环绕地球30圈。
可以说,目前大部分企业经营决策面临的最大挑战不是缺少数据,而是数据太多,面对这些只是静态、孤立、无多大参考意义的“初级品”的信息数据,企业信息部门如何通过系统功能来有效利用和整合,发掘有价值的数据,给公司营销管理提供决策支持,已成为摆在企业信息部门及其他管理部门面前的难题。
而浩如烟海的客户及市场、销售和服务信息,如果没有一个具有高度商业智能的数据分析和处理系统是不可想像的。而用户想要从庞大海量的数据库中提取对自己有用的信息,就离不开大数据分析技术和工具。事实证明,传统基于过往事实的商业管理系统如BI(智能分析系统)、CRM(客户管理系统)也能够为企业带来价值,但是今天一个优秀的大数据系统更能将数据挖掘技术与现有技术很好地结合起来,将特殊领域的商业逻辑与数据仓库技术集成起来,找出对未来企业战略具有影响的因素,使数据挖掘的分析效果和效益尽可能达到峰值,让企业营销管理能“运筹帷幄,决胜千里”。
像Facebook、Twitter这样面临数据量大爆炸的国际社交网络公司,已开始用分布式程序系统基础架构、非关系型的数据库等新兴大数据技术来解决海量市场信息问题,并取得了成效。国内最大电子商务公司阿里巴巴也在利用大数据技术提供具体服务,如阿里信用贷款与淘宝数据魔方。以淘宝数据魔方为例,利用淘宝平台上的大数据应用方案,商家可以了解淘宝平台上的行业宏观情况、自己品牌的销售情况、市场排名、消费者行为情况等,并可以据此作出经营决策。
重构精确营销模式
大数据时代之前,企业多从哪些平台提取数据、利用哪些营销数据?一般是CRM或BI系统中的顾客信息、市场促销、广告活动、展览等结构化数据以及企
业官网一些数据。但这些信息只能达到企业正常营销管理需求的10%的量能,并不足够给出一个重要洞察和发现规律。
而其他85%的数据,诸如社交媒体数据、邮件数据、地理位置、音视频等这类不断增加的信息数据等等,更多以图片、视频等方式存在,几年前可能被置之度外,不会被运用,而今大数据能进一步提高算法和机器分析的作用,这类数据在竞争激烈的市场日显宝贵、作用突出。
包括沃尔玛、家乐福、麦当劳等知名企业的一些主要门店均安装了搜集运营数据的装置,用于跟踪客户互动、店内客流和预订情况,研究人员可以对菜单变化、餐厅设计以及顾客意见等是如何对物流和销售额的影响进行建模。这些企业可将这些数据与交易记录结合起来,并利用大数据工具展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助这些领先零售企业减少了17%的存货,同时增加了高利润率自有品牌商品的比例。
如果说以前的一些CRM系统,只能促使分析报告回答“发生了什么事”,现在一个优秀的大数据系统已可以被用来回答“为什么会发生这种事”,而且一些关联数据库还可以预言“将要发生什么事”,最终发展为非常活跃的数据仓库,从而能判断“用户想要什么事发生”。
比如当一个顾客进入店铺后,一个零售商利用大数据技术搜索他们的数据库,发现这位顾客是其希望留住的有价值顾客,之后他们通过将其过去的购物历史和Facebook主页获得的这位顾客的信息综合起来,来了解需要花多少钱来留住他,从而确定所售卖物品的合适价格和零售商可以退让的利润空间,并最终针对这位顾客给出最佳的优惠策略和个性化的沟通方式。
如今在美国的沃尔玛大卖场,当收银员扫描完顾客所选购的商品后,POS 机上会显示出一些附加信息,然后售货员会友好提醒顾客:“我们商场刚进两三种配酒佳料,并正在促销,位于D5货架上,您要购买吗?”这时,顾客也许会惊讶地说:“啊,谢谢你,我正想要,刚才一直没找到,那我现在再去买。”
这就是沃尔玛在大数据系统支持下实现的“顾问式营销”的一个实例。因为计算机系统早就算计好了,如果顾客的购物车中有不少啤酒、红酒和沙拉,则有8 0%的可能需要买配酒小菜、作料了。而提供这一决策分析支持的就是其位于美国一个庞大的、通过卫星与全球所有卖场实时连通的企业级数据仓库。