不定积分 公式大全
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 x
3
说明:冪函数的积分结果可以这样求,先将被积函数
的指数加1,再把指数的倒数放在前面做系数。
例6
求
1 dx
1x2
解:
1 dxarcsixnC 1x2
又
1 1x2
dx(
1 )dxarccoxsC 1x2
两式都是本题的解
[注意] 不能认为 arcsinx=-arccosx,他们之间
1
⑸ ∫exdx=ex+C
⑹ ∫sinxdx=-cosx+C ⑺ ∫cosxdx=sinx+C
⑻ ∫sec2xdx=tanx+C ⑼ ∫csc2xdx=-cotx+C
⑽ a2 1x2dxarca txaC n
⑾
1 dxarcsxinC
a2x2
a
例5 求 1 dx
解 : 1 d x2 xxx5 2d x2x2 3C
二、 不定积分的几何意义
设F(x)是函数f(x)的一个原函数,则曲线y=F(x) 称为f(x)的一条积分曲线,曲线y=F(x)+C表示把曲 线y=F(x)上下平移所得到的曲线族。因此,不定积分 的几何意义是指由f(x)的全体积分曲线组成的积分曲 线族。 例4 求斜率为2x且经过点(1,0)的曲线。 解:设所求曲线为y=f(x),则f’(x)=2x,
例1 求下列函数的一个原函数:
⑴ f(x)=2x
⑵ f(x)=cosx
解:⑴∵(x2)'=2x
∴x2是函数2x的一个原函数
⑵∵(sinx)'=cosx
∴sinx是函数cosx的一个原函数
这里为什么要强调是一个原函数呢?因为一个函数
的原函数不是唯一的。
例如在上面的⑴中,还有(x2+1)'=2x,
(x2-1)'=2x
第5章 不定积分
5.1 原函数与不定积分的概念
一、原函数与不定积分
通过对求导和微分的学习,我们可以从一个函数 y=f(x)出发,去求它的导数f'(x)
那么,我们能不能从一个函数的导数f’(x)出发, 反过来去求它是哪一个函数(原函数)的导数呢? [定义]
已知f(x)是定义在某区间上的一个函数,如果存 在函数F(x),使得在该区间上的任何一点x处都有 F'(x)=f(x),那么称函数F(x)为函数f(x)在该区 间上的一个原函数。
⑴∵百度文库F(X)+C]'=F'(x)+(C)'=f(x) ∴F(x)+C也是f(x)的原函数
⑵略
这说明函数f(x)如果有一个原函数F(x),那么它
就有无穷多个原函数,它们都可以表示为F(x)+C的
形式。
[定义5.2]
函数f(x)的全体原函数叫做函数f(x)的不定积分, 记作∫f(x)dx,
其中∫叫做积分号,f(x)叫做被积函数,x叫做积 分变量。
1x3x2xC 3
再如 求(x13)x(x223)dx
解: (x13)x(x223)dx
x3x23x3
3x2
dx
(1 3x1 31xx12)dx1 6x23 xln|x|1xC
一、第一换元法(凑微分法)
如果被积函数的自变量与积分变量不相同, 就不能用直接积分法。
故y=x2+C, ∵曲线过点(1,0)∴以x=1、y=0代入得0=12+C, 解得C=-1, 因此,所求曲线为y=x2-1。
三、 基本积分公式
由于积分运算是求导运算的逆运算,所以由基本
求导公式反推,可得基本积分公式
⑴ ∫dx=x+C
⑵ ∫xαdx= 1 x1 C (α≠-1)
⑶ ⑷
1axxddxxlna| xx |CC lna
提到积分号的前面 ⑷ ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
该性质表明,两个函数的和或差的不定积分等于 这两个函数的不定积分的和或差
五、 基本积分公式的应用 例7 求∫(9x2+8x)dx 解:∫(9x2+8x)dx=∫9x2dx+∫8xdx
=3∫3x2dx+4∫2xdx=3x3+4x2+C
所以 x2、x2+1、x2-1、x2+C (C为任意常数)
都是函数f(x)=2x的原函数。
[定理5.1] 设F(x)是函数f(x)在区间I上的一个原函数,
C是一个任意常数,那么, ⑴ F(x)+C也是f(x) 在该区间I上的原函数 ⑵ f(x)该在区间I上的全体原函数可以表示
为F(x)+C 证明:
的关系是 arcsinx=π/2-arccosx
四、 不定积分的性质 ⑴ [∫f(x)dx]'=f(x) 该性质表明,如果函数f(x)先求不定积分再求导,
所得结果仍为f(x) ⑵ ∫F'(x)dx=F(x)+C 该性质表明,如果函数F(x)先求导再求不定积分,
所得结果与F(x)相差一个常数C ⑶ ∫kf(x)dx=k∫f(x)dx (k为常数) 该性质表明,被积函数中不为零的常数因子可以
例如求∫cos2xdx,被积函数的自变量是2x, 积分变量是x。
这时,我们可以设被积函数的自变量为u, 如果能从被积式中分离出一个因子u’(x)来, 那么根据∫f(u)u'(x)dx=∫f(u)du=F(u)+C 就可以求出不定积分。
例10
求
x4 1x2
dx
解 : 1 x4x2d
x
1x 4 x1 211x2d x
(x21)d x
1 1x2dx
1x3xarcxt aC n 3
例11 求∫3xexdx
解 : 3 xe xd x(3 e )xd x(3 e )x C 3 xe x C
求函数f(x)的不定积分就是求它的全体原函数, 因此,∫f(x)dx=F(x)+C
其中C是任意常数,叫做积分常数。
例2 求下列不定积分 ⑴ ∫x5dx ⑵ ∫sinxdx
解: ⑴∵ 1 x 6 是x5的一个原函数
6
∴ x5dx1x6 C
6
⑵∵-cosx是sinx的一个原函数
∴ sixnd xcox sC
ln 3 e )( 1 ln 3
5.2 不定积分的计算 一、 直接积分法
对被积函数进行简单的恒等变形后直接用 不定积分的性质和基本积分公式即可求出不定 积分的方法称为直接积分法。
运用直接积分法可以求出一些简单函数的 不定积分。
例 1 求 x12dx
解 :x12d x(x22x1)d xx2d x2xdxd x