高中数学排列与组合
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例6:(1)平面内有9个点,其中4个点在一条直线 上,此外没有3个点在一条直线上,过这9个点可确 定多少条直线?可以作多少个三角形?
(2)空间12个点,其中5个点共面,此外无任何4个 点共面,这12个点可确定多少个不同的平面?
例7、有翻译人员11名,其中5名仅通英语、4名仅通 法语,还有2名英、法语皆通。现欲从中选出8名,其 中4名译英语,另外4名译法语,一共可列多少张不同 的名单?
车票?
排列问题
有多少组种不合同是的选火车择票的价结? 果,排列组合问题
(3)10名同学是分选成择人数后相再同排的数序学的和结英语果两. 个学习小组,共有
多少种分法?
组合问题
(4)10人聚会,见面后每两人之间要握手相互问候,共需握手
多少次?
组合问题
(5)从4个风景点中选出2个游览,有多少种不同的方法?
A 第二步, 3 ( 6)个; 3
A C A 根据分步计数原理, 3 4
3
4
3 3.
A 从而 3 C A C 4
3
C43 34 3
P3 4
P3 3
如何计算:
m n
概念讲解 组合数公式
排列与组合是有区别的,但它们又有联系.
一般地,求从n 个不同元素中取出m 个元素的排
列数,可以分为以下2步:
变式练习
按下列条件,从12人中选出5人,有多少种不同选法?
(((((12345)))))甲甲甲甲甲、 、 必 、 、乙 须 乙乙 乙、 当 、、 、丙 选 丙丙 丙三 , 三三三人人乙人人必不、只至须能丙有多2当当不一人选选能人当;;当当选选选C;;;33CCC921131CC94943C613032C76985 126
abc bac cab acb bca cba
abd bad dab adb bda dba
acd cad dac
你发现a了dc cda dca 什么b?cd cbd dbc
bdc cdb dcb
不写出所有组合,怎样才能知道组合的种数?
A 求 3可分两步考虑: 求4P34 可分两步考虑:
C 第一步, 3 ( 4)个; 4
n
n
(4)求
C 38-n 3n
+ C231n+n的值.
例2.甲、乙、丙、丁4支足球队举行单循环赛,
(1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.
解:(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 (2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙
例3
求证
:
C
Cm1 n
2Cmn
C . m1 n2
( 2)
C
m1 n
C
m1 n
2C
m n
(1)
(C
mn C1 mn C1 mn )Cmn(1CmnCmnC11
) m1
n
C C C C m1 m1m
m
n1 n n1 n
C m1 n2
C. m n1
c c c m m m1
n1
n
n
注:1 公式特征:下标相同而上标差1的两个组合数 之和,等于下标比原下标多1而上标与原组合数上标
较大的相同的一个组合数.
2 此性质的作用:恒等变形,简化运算.在今后学 习“二项式定理”时,我们会看到它的主要应用.
例1 计算:
C C ( 1 )
3 2;
C.C83C72 C73C82
D.C83C72C111
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,
则甲、乙两人不都入选的不同选法种数共有( D)
A.C52 A33
B.2C53 A33
C.A53
D.2C52 A33 A53
课堂练习:
5、在如图7x4的方格纸上(每小方格均为正方形) (1)其中有多少个矩形? (2)其中有多少个正方形?
m n
m 1 nm
C
m1 n
.
证明:
Cm n
m(! nn!m)!,
m 1 nm
C m1 n
m 1 nm
(m
n! 1)!(n
m
1)!
m1
n!
(m 1)! (n m)(n m 1)!
n! m!(n m)!
Cm n
.
例1:一位教练的足球队共有17名初级学员,他们中以 前没有一人参加过比赛。按照足球比赛规则,比赛时 一个足球队的上场队员是11人。问:
组合定义: 一般地,从n个不同元素中取出m(m≤n)个 元素并成一组,叫做从n个不同元素中取出m个元素的一 个组合.
共同点: 都要“从n个不同元素中任取m个元素”
不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.
概念理解
思考一:ab与ba是相同的排列还是相同的组合?为什么? 思考二:两个相同的排列有什么特点?两个相同的组合呢?
99
99
C1300 100 99 98 161700
3 21
2C C C ( 2)
3 3 2 .
8
9
8
2C83 (C83 C82) C82 C83 56
例2 求证:
( 1)
C C C C ; m
m1
m
m1
n1
n
n1
n1
( 2)
Cm1 n
n1
n
n
证明:
Cmn
Cm1 n
n!
n!
m!(n m)! (m 1)![n (m 1)]!
n!(n m 1) n!m (n m 1 m)n!
m!(n m 1)!
m!(n 1 m)!
(n 1)! m![(n 1) m]!
Cmn1.
解:(1) C83 56 ⑵
⑶ C73 35
C72 21
我们发现:
C83
C
2 7
C
3 7
为什么呢
我们可以这样解释:从口袋内的 8个球中所取出的3个球,可以分为 两类:一类含有1个黑球,一类不含 有黑球.因此根据分类计数原理, 上述等式成立.
c c c 性质2 m m m1
数公式.
概念讲解
从 n 个不同元中取出m个元素的排列数
A C A m m m
n
n
m
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2)L m!
(n m 1)
Cnm
n! m!(n m)!
我们规定:Cn0
1.
例题分析
例1计算:⑴
C
4 7
⑵ C170
C A (3) 已知 3 2 ,求 n .
cd
ab , ac , ad , bc , bd , cd
d
(6个)
概念讲解
组合数:
从n个不同元素中取出m(m≤n)个元素的 所有组合的个数,叫做从n个不同元素中取出
m个元素的组合数,用符号 Cnm表示.
注意: Cnm 是一个数,应该把它与“组合”区别开来.
如:从 a , b , c三个不同的元素中取出两个元素的所
第1步,先求出从这n 个不同元素中取出m 个元素
的组合数Cnm .
第2步,求每一个组合中m 个元素的全排列数Anm . 根据分步计数原理,得到: Anm Cnm Amm
因此:Cnm
Anm Amm
这里m、n
nn 1n 2 n m 1
m! N,* 且 m n,这个公式叫做组合
.
一、等分组与不等分组问题
例3、6本不同的书,按下列条件,各有多少种不同的分法; (1)分给甲、乙、丙三人,每人两本; (2)分成三份,每份两本; (3)分成三份,一份1本,一份2本,一份3本; (4)分给甲、乙、丙3人,一人1本,一人2本,一人3本; (5)分给甲、乙、丙3人,每人至少一本; (6)分给5个人,每人至少一本; (7)6本相同的书,分给甲乙丙三人,每人至少一本。
情境创设
问题一:从甲、乙、丙3名同学中选出2名去参 加某天的一项活动,其中1名同学参加上午的 活动,1名同学参加下午的活动,有多少种不 同的选法?
A32 6
问题二:从甲、乙、丙3名同学中选出2名去参 加某天一项活动,有多少种不同的选法?
甲、乙;甲、丙;乙、丙 3
问题1
从已知的 3 个不同 元素中每 次取出2 个元素 , 按照一定 的顺序排 成一列.
(6)甲、乙、丙三人至少1人当选;
(5)方法一:C32C93 C31C94 C30C95 756
方法二:C152 C33C92 756
(6)方法一:C33C92 C32C93 C31C94 666
方法二:C152 C30C95 666
例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生参加,有多少种选法?
有
顺
序
排列
问题2
从已知的 3个不同 元素中每 次取出2 个元素 , 并成一组
无
顺
组合
序
概念讲解
组合定义:
一般地,从n个不同元素中取出m (m≤n)个元素并成一组,叫做从n个 不同元素中取出m个元素的一个组合.
排列与组合的 概念有什么共 同点与不同点?
概念讲解
排列定义: 一般地,从n个不同元素中取出m (m≤n) 个 元素,按照一定的顺序排成一列,叫做从 n 个不同元素 中取出 m 个元素的一个排列.
小结
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
组合的概念 组合数的概念
性质2
一个口袋内装有大小相同的7个白球和1个黑球. ⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球,有 多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少 种取法?
1)元素相同; 2)元素排列顺序相同.
元素相同
思考三:组合与排列有联系吗?
构造排列分成两步完成,先取后排;而构造 组合就是其中一个步骤.
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有
多少个?
组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种
(1)这位教练从这17名学员中可以形成多少种学员上 场方案?
(2)如果在选出11名上场队员时,还要确定其中的守 门员,那么教练员有多少种方式做这件事情?
例2.(1)平面内有10个点,以其中每2个点为端点的线 段共有多少条?
(2)平面内有10个点,以其中每2个点为端点的有向 线段共有多少条?
例3.(1)凸五边形有多少条对角线? (2)凸n( n>3)边形有多少条对角线?
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1 件,另一份4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每 人二件有多少种分法?
解:
(1)
C160
1 2
C64
C21
C11
3150
(2) C160 C62 C42 C22 18900
Hale Waihona Puke Baidu
2、从6位同学中选出4位参加一个座谈会,要求张、王两人中
至多有一个人参加,则有不同的选法种数为 9
。
3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果
其中至少有2名男医生和至少有2名女医生,则不同的选法种数
为( C )
A.(C83 C72 )(C73 C82 )
B.(C83 C72 ) (C73 C82 )
组合问题
(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,
有多少种不同的方法?
排列问题
概念理解
1.从 a , b , c三个不同的元素中取出两个元素的所有组
合分别是:
ab , ac , bc (3个)
2.已知4个元素a , b , c , d ,写出每次取出两个元素的
所有组合.
a
b
c
b cd
例8、8双互不相同的鞋子混装在一只口袋中,从中任 意取出4只,试求满足如下条件各有多少种情况:
(1)4只鞋子恰有两双;
(2) 4只鞋子没有成双的;
(3) 4只鞋子只有一双。
课堂练习:
1、把6个学生分到一个工厂的三个车间实习,每个车间2人, 若甲必须分到一车间,乙和丙不能分到二车间,则不同的分
法有 9 种 。
例4:在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法? (2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?
说明:“至少”“至多”的问题,通常用分类 法或间接法求解。
有组合个数是: C32 3
如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个
元素的所有组合个数是:C42 6
练一练
1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。
c
bd
ac
d abc , abd , acd , bcd .
b
cd
组合
abc abd acd bcd
排列
(2)空间12个点,其中5个点共面,此外无任何4个 点共面,这12个点可确定多少个不同的平面?
例7、有翻译人员11名,其中5名仅通英语、4名仅通 法语,还有2名英、法语皆通。现欲从中选出8名,其 中4名译英语,另外4名译法语,一共可列多少张不同 的名单?
车票?
排列问题
有多少组种不合同是的选火车择票的价结? 果,排列组合问题
(3)10名同学是分选成择人数后相再同排的数序学的和结英语果两. 个学习小组,共有
多少种分法?
组合问题
(4)10人聚会,见面后每两人之间要握手相互问候,共需握手
多少次?
组合问题
(5)从4个风景点中选出2个游览,有多少种不同的方法?
A 第二步, 3 ( 6)个; 3
A C A 根据分步计数原理, 3 4
3
4
3 3.
A 从而 3 C A C 4
3
C43 34 3
P3 4
P3 3
如何计算:
m n
概念讲解 组合数公式
排列与组合是有区别的,但它们又有联系.
一般地,求从n 个不同元素中取出m 个元素的排
列数,可以分为以下2步:
变式练习
按下列条件,从12人中选出5人,有多少种不同选法?
(((((12345)))))甲甲甲甲甲、 、 必 、 、乙 须 乙乙 乙、 当 、、 、丙 选 丙丙 丙三 , 三三三人人乙人人必不、只至须能丙有多2当当不一人选选能人当;;当当选选选C;;;33CCC921131CC94943C613032C76985 126
abc bac cab acb bca cba
abd bad dab adb bda dba
acd cad dac
你发现a了dc cda dca 什么b?cd cbd dbc
bdc cdb dcb
不写出所有组合,怎样才能知道组合的种数?
A 求 3可分两步考虑: 求4P34 可分两步考虑:
C 第一步, 3 ( 4)个; 4
n
n
(4)求
C 38-n 3n
+ C231n+n的值.
例2.甲、乙、丙、丁4支足球队举行单循环赛,
(1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.
解:(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 (2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙
例3
求证
:
C
Cm1 n
2Cmn
C . m1 n2
( 2)
C
m1 n
C
m1 n
2C
m n
(1)
(C
mn C1 mn C1 mn )Cmn(1CmnCmnC11
) m1
n
C C C C m1 m1m
m
n1 n n1 n
C m1 n2
C. m n1
c c c m m m1
n1
n
n
注:1 公式特征:下标相同而上标差1的两个组合数 之和,等于下标比原下标多1而上标与原组合数上标
较大的相同的一个组合数.
2 此性质的作用:恒等变形,简化运算.在今后学 习“二项式定理”时,我们会看到它的主要应用.
例1 计算:
C C ( 1 )
3 2;
C.C83C72 C73C82
D.C83C72C111
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,
则甲、乙两人不都入选的不同选法种数共有( D)
A.C52 A33
B.2C53 A33
C.A53
D.2C52 A33 A53
课堂练习:
5、在如图7x4的方格纸上(每小方格均为正方形) (1)其中有多少个矩形? (2)其中有多少个正方形?
m n
m 1 nm
C
m1 n
.
证明:
Cm n
m(! nn!m)!,
m 1 nm
C m1 n
m 1 nm
(m
n! 1)!(n
m
1)!
m1
n!
(m 1)! (n m)(n m 1)!
n! m!(n m)!
Cm n
.
例1:一位教练的足球队共有17名初级学员,他们中以 前没有一人参加过比赛。按照足球比赛规则,比赛时 一个足球队的上场队员是11人。问:
组合定义: 一般地,从n个不同元素中取出m(m≤n)个 元素并成一组,叫做从n个不同元素中取出m个元素的一 个组合.
共同点: 都要“从n个不同元素中任取m个元素”
不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.
概念理解
思考一:ab与ba是相同的排列还是相同的组合?为什么? 思考二:两个相同的排列有什么特点?两个相同的组合呢?
99
99
C1300 100 99 98 161700
3 21
2C C C ( 2)
3 3 2 .
8
9
8
2C83 (C83 C82) C82 C83 56
例2 求证:
( 1)
C C C C ; m
m1
m
m1
n1
n
n1
n1
( 2)
Cm1 n
n1
n
n
证明:
Cmn
Cm1 n
n!
n!
m!(n m)! (m 1)![n (m 1)]!
n!(n m 1) n!m (n m 1 m)n!
m!(n m 1)!
m!(n 1 m)!
(n 1)! m![(n 1) m]!
Cmn1.
解:(1) C83 56 ⑵
⑶ C73 35
C72 21
我们发现:
C83
C
2 7
C
3 7
为什么呢
我们可以这样解释:从口袋内的 8个球中所取出的3个球,可以分为 两类:一类含有1个黑球,一类不含 有黑球.因此根据分类计数原理, 上述等式成立.
c c c 性质2 m m m1
数公式.
概念讲解
从 n 个不同元中取出m个元素的排列数
A C A m m m
n
n
m
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2)L m!
(n m 1)
Cnm
n! m!(n m)!
我们规定:Cn0
1.
例题分析
例1计算:⑴
C
4 7
⑵ C170
C A (3) 已知 3 2 ,求 n .
cd
ab , ac , ad , bc , bd , cd
d
(6个)
概念讲解
组合数:
从n个不同元素中取出m(m≤n)个元素的 所有组合的个数,叫做从n个不同元素中取出
m个元素的组合数,用符号 Cnm表示.
注意: Cnm 是一个数,应该把它与“组合”区别开来.
如:从 a , b , c三个不同的元素中取出两个元素的所
第1步,先求出从这n 个不同元素中取出m 个元素
的组合数Cnm .
第2步,求每一个组合中m 个元素的全排列数Anm . 根据分步计数原理,得到: Anm Cnm Amm
因此:Cnm
Anm Amm
这里m、n
nn 1n 2 n m 1
m! N,* 且 m n,这个公式叫做组合
.
一、等分组与不等分组问题
例3、6本不同的书,按下列条件,各有多少种不同的分法; (1)分给甲、乙、丙三人,每人两本; (2)分成三份,每份两本; (3)分成三份,一份1本,一份2本,一份3本; (4)分给甲、乙、丙3人,一人1本,一人2本,一人3本; (5)分给甲、乙、丙3人,每人至少一本; (6)分给5个人,每人至少一本; (7)6本相同的书,分给甲乙丙三人,每人至少一本。
情境创设
问题一:从甲、乙、丙3名同学中选出2名去参 加某天的一项活动,其中1名同学参加上午的 活动,1名同学参加下午的活动,有多少种不 同的选法?
A32 6
问题二:从甲、乙、丙3名同学中选出2名去参 加某天一项活动,有多少种不同的选法?
甲、乙;甲、丙;乙、丙 3
问题1
从已知的 3 个不同 元素中每 次取出2 个元素 , 按照一定 的顺序排 成一列.
(6)甲、乙、丙三人至少1人当选;
(5)方法一:C32C93 C31C94 C30C95 756
方法二:C152 C33C92 756
(6)方法一:C33C92 C32C93 C31C94 666
方法二:C152 C30C95 666
例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生参加,有多少种选法?
有
顺
序
排列
问题2
从已知的 3个不同 元素中每 次取出2 个元素 , 并成一组
无
顺
组合
序
概念讲解
组合定义:
一般地,从n个不同元素中取出m (m≤n)个元素并成一组,叫做从n个 不同元素中取出m个元素的一个组合.
排列与组合的 概念有什么共 同点与不同点?
概念讲解
排列定义: 一般地,从n个不同元素中取出m (m≤n) 个 元素,按照一定的顺序排成一列,叫做从 n 个不同元素 中取出 m 个元素的一个排列.
小结
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
组合的概念 组合数的概念
性质2
一个口袋内装有大小相同的7个白球和1个黑球. ⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球,有 多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少 种取法?
1)元素相同; 2)元素排列顺序相同.
元素相同
思考三:组合与排列有联系吗?
构造排列分成两步完成,先取后排;而构造 组合就是其中一个步骤.
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有
多少个?
组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种
(1)这位教练从这17名学员中可以形成多少种学员上 场方案?
(2)如果在选出11名上场队员时,还要确定其中的守 门员,那么教练员有多少种方式做这件事情?
例2.(1)平面内有10个点,以其中每2个点为端点的线 段共有多少条?
(2)平面内有10个点,以其中每2个点为端点的有向 线段共有多少条?
例3.(1)凸五边形有多少条对角线? (2)凸n( n>3)边形有多少条对角线?
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1 件,另一份4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每 人二件有多少种分法?
解:
(1)
C160
1 2
C64
C21
C11
3150
(2) C160 C62 C42 C22 18900
Hale Waihona Puke Baidu
2、从6位同学中选出4位参加一个座谈会,要求张、王两人中
至多有一个人参加,则有不同的选法种数为 9
。
3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果
其中至少有2名男医生和至少有2名女医生,则不同的选法种数
为( C )
A.(C83 C72 )(C73 C82 )
B.(C83 C72 ) (C73 C82 )
组合问题
(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,
有多少种不同的方法?
排列问题
概念理解
1.从 a , b , c三个不同的元素中取出两个元素的所有组
合分别是:
ab , ac , bc (3个)
2.已知4个元素a , b , c , d ,写出每次取出两个元素的
所有组合.
a
b
c
b cd
例8、8双互不相同的鞋子混装在一只口袋中,从中任 意取出4只,试求满足如下条件各有多少种情况:
(1)4只鞋子恰有两双;
(2) 4只鞋子没有成双的;
(3) 4只鞋子只有一双。
课堂练习:
1、把6个学生分到一个工厂的三个车间实习,每个车间2人, 若甲必须分到一车间,乙和丙不能分到二车间,则不同的分
法有 9 种 。
例4:在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法? (2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?
说明:“至少”“至多”的问题,通常用分类 法或间接法求解。
有组合个数是: C32 3
如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个
元素的所有组合个数是:C42 6
练一练
1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。
c
bd
ac
d abc , abd , acd , bcd .
b
cd
组合
abc abd acd bcd
排列