移动平均法、指数平滑法例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移动平均法例题
例1.某纺织品公司近年棉布销售量如下表,请用一次移动平均法预测1999年棉布销售量。(单位:万米)
销售量一次移动平均数
年份
1992 984
1993 1022
1994 1040
1995 1020 1015
1996 1032 1027
1997 1015 1031
1998 1010 1022
1999 1019
从表中可以发现,这是一个水平型变动的时间序列,除了1992年不足1000万米外,其余年份均在1020万米左右变动。我们用一次移动平均法预测,选择移动期数等于3,进行预测。
该纺织品公司1999年棉布销售量预测值为1019万米。
指数平滑预测法
指以某种指标的本期实际数和本期预测数为基础,引入一个简化的加权因子,即平滑系数,以求得平均数的一种指数平滑预测法。它是加权移动平均预测法一种变化。平滑系数必须呈大于0、小于1,例如0.1、0.4、0.6等其计算公式:下期预测数=本期实际数×平滑系数+本期预测数×(1-平滑系数)上列公式是从下列公式演变而成:
下期预测数=本期预测数+ 平滑系数(本期实际数- 本期预测数)这个公式的含义是:本期预测数上加上一部分用平滑系数调整过的本期实际数与本期预测数的差,就可求出下期预测数。一般说来,下期预测数常介乎本期实际数与本期预测数之间。平滑系数的大小,可根据过去的预测数与实际数比较而定。差额大,则平滑系数应取大一些;反之则取小一些。平滑系数愈大则近期倾向性变动影响愈大;反之,则近期的倾向性变动影响愈小,愈平滑种预测法简便易行,只要具备本期实际数、本期预测数和平滑系数三项资料,就可预测下期数。某种产品销售量的平滑系数为0.4 ,1996年实际销售量31万件,预测销售量33万件则1997年预测销售量:
1997年预测销售量= 31万件×0.4+33万件×(1-0.4)=32.2万件