各种碳酸钙生产工艺与晶型控制深入探讨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种碳酸钙生产工艺与晶型控制深入探讨
碳酸钙作为一种非常重要的无机化工填料广泛应用于橡胶、塑料、造纸、涂料、油墨、医药、食品、饲料、化妆品等的生产、加工和应用中。其主要作用是增加产品体积,降低生产成本,改善产品的加工性能等。纳米级超细碳酸钙是20世纪80年代发展起来的一种新型的超细固体材料。由于纳米级碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不能达到的量子效应、小尺寸效应和表面效应,它的一些物理化学性质也发生了变化。在作无机填料方面更显出了它的优越性能,将其填充在橡胶、塑料中能使制品的表面光艳、伸长度好、抗张力、抗撕力强,耐弯曲、抗龟裂性好,是优良的补强材料,用在纸张和高级涂料中具有良好的光泽、高白度等特点,是优良的颜料和遮盖剂。
纳米碳酸钙具有以下特点:①粒子细,平均粒径为40nm,是普通轻质碳酸钙粒径的数十分之一;②比表面积大,比普通轻质碳酸钙大近8倍;③粒子晶型为立方体状,部分连结成链状,与纺锤状的轻质碳酸钙和无规则状的重质碳酸钙不同;④纳米碳酸钙经过表面活化处理后,活化率较高,具有不同的功能和用途;
⑤白度较高,适宜作浅色制品。
碳酸钙工业作为非金属矿工业的一个分支,在我国发展迅猛,已成为非金属矿工业的重要产业。根据加工方法的不同,碳酸钙通常分为“轻质碳酸钙”和“重质碳酸钙”两种。据统计轻质碳酸钙年产量2003年全国总产量约为350万吨;2004年约400万吨;2006年约为500万吨,其中干法活性钙35万吨,湿法活性钙25万吨,超细钙12万吨,纳米钙25万吨。重质碳酸钙年产量为2003
年全国总产量约为350万吨,2004年约400~450万吨,2005年约550~650万吨。
2.碳酸钙的生产工艺
轻质碳酸钙的生产按照碳化工艺分,目前工业化的主要有间歇鼓泡碳化工艺,多级鼓泡碳化工艺,连续喷雾碳化工艺,超重力碳化工艺四种。
2.1 间歇鼓泡碳化法
利用塔内有效液面高度形成的静压,使压缩后的CO2气体由塔底部经过气体分布器后进入碳化塔,与悬浮液充分混合,由于气液密度差异使气泡自行由塔底上升至塔顶排出,CO2在上升过程中与悬浮液接触溶解并完成碳化吸收反应。该过程中气泡越小,分散越好,碳化速度也就越快,CO2吸收效率也就越高,由于气泡在上升过程中所受的压力逐渐减小,气泡逐渐膨胀,静压差越大(即塔内有效液面越高),气泡的体积变化也就越大,较大的气泡减小了气液接触面积,从而降低了碳化反应的速度和CO2的吸收效率。
鼓泡碳化反应器有三种形式:以罗茨鼓风机为打气装置的罐式碳化反应器;以压缩机为打气装置的碳化塔;带强制搅拌的碳化塔。
以罗茨鼓风机为打气装置的罐式碳化反应器,由于罗茨鼓风机可提供的气体压力较小,但打气量比较大,不能支持较高的悬浮液液面高度,因此,这种反应器设计成直径较大、高度较小的矮、粗、胖的罐式碳化反应器。由于液位较低,气体在碳化罐内的上升距离也就小,气液接触时间较短,CO2的吸收效率较低,使得碳化时间加长。
以压缩机为打气装置的碳化反应器为细高形的碳化塔。因为压缩机提供的压缩气体压力较高,打气量相对较小,能支持较高的液位而不能支持较大直径的碳化塔。故此设计成细高形的。这种碳化塔气液接触时间较长,CO2吸收比较充分,效率较高。
带搅拌鼓泡碳化塔主要靠搅拌器的叶片以及反应器内的多孔气体分配器对CO2气体进行分散剪切。气体在反应体系内分布均匀,并且气泡较小,利于吸收,故反应速度较快,由于受设备制造的限制,一般塔的高度较低,为达到一定的生产能力,必需将直径加大。一般的带强制搅拌碳化塔的直径比罐式碳化反应器小,高度比它高。直径和高度都介于罐式碳化反应器和细高形碳化塔之间。此种碳化所用的打气装置一般为压缩机。
从能耗方面讲,使用罗茨鼓风机的能耗要比压缩机的单位时间的能耗至少低1/3,但是如果是相同的气体浓度,压缩机支持的碳化塔CO2吸收效率高,在一定程度上能缩短碳化时间。选用那种设备应该综合考虑各种因素,以降低能耗,提高产品质量为原则,择优选用。
间歇碳化工艺,由于采用间歇反应,势必造成物料之间的差异,对产品的质量稳定造成影响。主要表现为,产品晶型不易控制,粒度分布不均匀,不同批次的产品重现性差等,但该工艺投资少、操作简单在整个碳酸钙行业还存在明显的优势。
2.2 多级鼓泡碳化工艺
多级鼓泡碳化法如图1所示,气液逆流操作,一般采用两级或三级串联碳化工艺,即精制石灰乳经第一级碳化塔进行部分碳化或得到反应混合液,在浆液槽中加入适当的添加剂后进入第二级碳化塔碳化制得最终产品。该法由于碳化过程分步进行,对晶型的成核、生长过程和表面处理可以分段控制,从而可得到较小的粒径、较好的晶型和粒径分布。现在,国内有些碳酸钙生产厂家可以根据用户的需求,通过严格控制石灰乳浓度、碳化温度、添加剂的类型和配比等来生产所需晶型和粒径的产品。
该工艺所用的碳化反应器一般是细高形的碳化塔,以压缩机为打气装置。并且液体停留时间、气体流量和气液比等都可以根据需要方便的调节,便于优化工艺条件;同时,气液传质效果好,CO2吸收效率高,物料反混率低,可以实现“碳化—陈化”连续操作,显著降低包裹返碱现象的发生。该工艺产品的质量稳定,晶型规整,粒度分布较窄,不同批次的产品质量稳定性好。
从日本、意大利等引进的纳米碳酸钙生产技术大多采用此工艺。日本的工艺在石灰乳精制工段强调精浆的陈化对产品质量的影响。在碳化工段采用两级鼓泡碳化工艺,采用中间陈化的操作方式,在第一级用大气液比碳化到一定的程度后,进行较长时间的陈化,再到第二级碳化塔完成整个碳化过程,得到最终产品。产
品粒径一般在 100nm 左右,非常适合做塑料和橡胶的填料。
意大利的多级碳化工艺没有强调精浆的陈化过程,碳化工段也是采用两级鼓泡碳化。第一级采用大气液比进行较短时间的碳化,使碳酸钙晶核初步生成。二级碳化采用大容积的带搅拌碳化塔进行鼓泡碳化至终点。所得产品粒径在 60nm 以下。适合做高档油墨钙和胶粘剂专用的纳米钙。
2.3 连续喷雾碳化工艺
连续喷雾碳化工艺是由日本人提出的,最初是一级操作,目前已经发展为多级串联的方式进行连续喷雾碳化操作。将 Ca(OH)2悬浮液调到一定浓度和温度,一般要加入一定量的分散剂,然后控制适当的喷入雾滴,并经在碳化塔的顶部向以一定空塔速度上升的二氧化碳气体喷雾,接触碳化,使部分氢氧化钙转变为碳酸钙,成为晶核,然后放入到中间槽,经过换热调节温度,或加入一些添加剂,用泵打入第二级喷雾碳化塔。在以后的碳化塔中晶核逐渐长大,成为具有一定粒度和晶型的碳酸钙产品。
该工艺可控因素有浆液浓度、雾滴大小、CO2的空塔气速和添加剂等。由于雾化的雾滴细小,比表面积很大,气液接触充分、均匀,使反应中心很多,形成多个晶核;气液接触时间相近,使得各晶核的成长速度基本相同,因而可以保证产品粒径均匀,分布较窄。同时在各级碳化塔之间可以实现浆液的陈化,减少包覆现象,使得晶型规整,避免产品返碱。
该方法具有效率高,能实现自动连续大规模生产,并能获得纳米级不同晶型的碳酸钙产品。但也存在一定问题,如设备投资较高,管路复杂,喷嘴易堵塞,管理难度大等,虽然已经工业化,但目前应用较少。
2.4 超重力碳化反应工艺
超重力碳化工艺是专门用来生产纳米碳酸钙的。其工艺复杂,设备投资和操作成本较高,不适合生产附加值较低的普通碳酸钙。
超重力碳化工艺是北京化工大学超重力工程技术研究中心近年来开发的一种制备纳米碳酸钙的新工艺。该方法采用了能极大强化传递与反应过程的旋转填充床新型反应器,从根本上强化反应器的传递过程和微观混合过程。具体工艺流程如下:精制石灰乳经过调浓后进入板式换热器降温至10~25℃,打入超重力反应器中,碳化液体不断从反应器中抽出进行冷却,以取走反应热,再打入反应器循环进行碳化。进入反应器的 CO2气体在超重力的作用下,迅速同石灰乳混合并进行碳酸化反应生成纳米碳酸钙,尾气从超重力反应器上部进入气液分离器后,根据工艺要求放空或返回气体压缩机入口。当碳化到达终点后,停止打气,将浆料放入放浆槽中,在进行以后的活化等工序。为保证超重力碳化反应器正常运转,根据需要,在反应进行若干批次后,反应器要用稀酸进行清洗,然后再用清水进行清洗。此工艺也是间歇生产。
该技术利用离心力使气液、液液、液固两相在比地球重力场大百倍至上千倍的超重力场条件下的多孔介质中产生流动接触,巨大的剪切力使液体撕裂成极薄的膜和极细小的丝和滴,产生巨大的速度和快速更新的相界面,使相间传质的体积传质速率比传统塔器中大1~3个数量级,使微观混合速率得到极大强化。