三角形的中位线定理

三角形的中位线定理
三角形的中位线定理

三角形的中位线定理

教学目标

1.理解三角形中位线的概念,掌握三角形的中位线定理.

2.能较熟练地应用三角形中位线的性质进行有关的证明和计算.

在灵活运用三角形中位线定理进行有关证明和计算的过程中,经历探索、猜想、证明的过程,进一步发展推理论证的能力.

结合实际问题,进一步理解三角形中位线的概念及性质,培养创造性思维.

【重点】掌握三角形中位线的性质.

【难点】三角形中位线性质的证明.

【教师准备】教学中出示的教学插图和例题.

【学生准备】复习平行四边形的性质与判定方法,三角形纸板.

教学过程

导入

将任意一个三角形形状的蛋糕平均分给四个小朋友,要求每人分得的形状和大小必须完全相同,该如何切割?

学生思考,并尝试画出剪切线.

同学们,通过今天的学习,你会找到一种新的切割方法.今天将要学习的内容是三角形中重要的线段——中位线及其性质.

[设计意图] 通过操作实验导入新课,激发了学生学习本课的好奇心,为学习中位线及其性质做好铺垫.

新知构建

1.三角形的中位线的定义

思路一

[过渡语] 我们应用平行四边形的性质与判定来研究三角形的中位线的概念及其性质.

如图,D,E分别是AB,AC的中点,连接DE,像DE这样,连接三角形两边中点的线段叫做三角形的中位线.

教师讲解:三角形中位线的定义的两层含义:

①∵D,E分别为AB,AC的中点,∴DE为△ABC的中位线.

②∵DE为△ABC的中位线,∴D,E分别为AB,AC的中点.

提问:三角形有几条中位线?你能画出来吗?

学生尝试画图,教师巡视指正,引导学生观察总结:三角形有三条中位线.

教师画出三角形的一条中线和一条中位线,追问:说出三角形的中位线与中线有何相同点和不同点.

学生独立思考并回答,教师归纳总结:

相同之处:都是和边的中点有关的线段.

不同之处:三角形中位线的两个端点都是边的中点;三角形中线只有一个端点是边的中点,另一端点是三角形的顶点.

[设计意图]这两个概念容易混淆,通过画图比较,巩固学生对中位线概念的理解,培养学生严谨细致的学习习惯.

思路二

[过渡语] 下面,我们一起来动手实践探索.

请你做一做(让学生拿出自己预先准备好的三角形纸板):

(1)找出三边的中点.

(2)连接六点中的任意两点(边除外).

(3)找找哪些线是你已经学过的,哪些是未曾学过的?

学生根据老师要求画出图形,如图所示,并说出已经学过的线段有AF,BE,CD,未曾学过的

线段有DE,DF,EF.

提问:没有学过的线段有什么特点呢?

学生发现:线段DE,DF,EF的端点都是三角形的边的中点.

教师明确:连接三角形两边中点的线段,叫做三角形的中位线.如图,DE,EF,DF是三角形ABC的3条中位线.

跟踪训练:

①如果D,E分别为AB,AC的中点,那么DE为△ABC的;

②如果DE为△ABC的中位线,那么D,E分别为AB,AC的.

答案:①中位线②中点

师生总结:一个三角形有三条中位线.三角形的中位线和三角形的中线不一样,三角形的中位线是连接两边中点的线段,而三角形的中线是连接三角形的一个顶点与其对边中点的线段.

[设计意图] 在本环节,经过动手操作,学生会发现有3条是已经学过的中线,有3条是没有学过的.最终给出三角形中位线的定义,也引出了本节课的课题:三角形的中位线.这样做,既让学生得出三角形中位线的概念,又让学生在无形中区分了三角形的中线和三角形中位线.为了使学生加深对三角形中位线的概念的理解,为后面的探究打下基础,设立了以上两道简单的练习题,让学生学会从图中找出信息.

2.三角形的中位线的性质

思路一

提问:观察图形,猜想DE与BC有何位置关系,有何数量关系.

学生活动:(1)剪一个三角形,记为△ABC.

(2)分别取AB,AC的中点D,E,并连接DE.

(3)沿DE将△ABC剪成两部分,并将△ADE绕点E旋转180°到△CFE的位置,得四边形DBCF(如图).

思考:四边形DBCF是什么特殊的四边形?为什么?

教师根据情况进行提示:要判定一个四边形是平行四边形,需具备什么条件?

结合题目中的条件,你选用哪一种判定方法?为什么?

学生发现:由操作(3)知△ADE≌△CFE,从而可知CF∥DB,CF=AD=DB,∴四边形BCFD是平行四边形.

教师进一步引导,得出:DE∥BC,DE=BC.

师生归纳总结:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.

[设计意图]通过对问题的逐层分析,把解决问题方案的范围逐渐缩小,最终确定一个合理的方案.能培养学生严密推理的能力和良好的思维习惯.

思路二

探索:如图,三角形的中位线DE与BC有什么样的关系?为什么?

思考:(1)你能直观感知它们之间的关系吗?用三角板验证;(2)你能用说理的方法来验证它们之间的这种关系吗?

学生在教师的指导下完成猜想,并证明.

已知:如图,点D,E分别为△ABC边AB,AC的中点.

求证:DE∥BC且DE=BC.

〔解析〕所证明的结论既有位置关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.

分小组讨论后,全班交流证明过程.

第一小组代表:如图,延长DE到F,使EF=DE,连接CF,由题意易得△ADE≌△CFE,从而可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,由作图知DE=DF,所以DE∥BC且DE=BC.(也可以过点C作CF∥AB,交DE的延长线于F点,证明方法与上面大体相同)

第二小组代表:如图,延长DE到F,使EF=DE,连接CF,CD和AF,因为AE=EC,所以四边形ADCF 是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形BCFD 是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

第三小组代表:如图,过E点作AB的平行线交BC于N,交过A点与BC平行的直线于M,由题意及作图易知△AEM≌△CEN,可得ME=EN,AM=CN,因为AM∥BC,AB∥MN,所以四边形AMNB是平行四边形,所以AB=MN,AM=BN.又因为BD=AB,EN=MN,所以BD=EN,所以四边形BDEN是平行四边形,则DE=BN,DE∥BC,所以DE=BN=AM=CN,即DE=BC.

第四小组代表:如图,过A,B,C三点分别作DE的垂线,分别交直线DE于点P,M,N.因为AP,BM,CN都垂直于DE,所以AP∥BM∥CN.可证明△APE≌△CNE,则AP=CN,PE=EN,△ADP≌△BDM,则AP=BM,MD=DP,所以BM=CN,DE=MN,所以四边形BMNC是平行四边形,所以DE∥

BC,DE=MN=BC.

教师明确:我们证明了以上结论的正确性,上述结论称为三角形中位线定理.

请同学们用不同的表达方式(文字语言,符号语言)表述这一定理.

师生归纳:三角形中位线的性质:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.

∵D,E分别是AB,AC的中点,

∴DE∥BC,DE=BC.

[设计意图] 先由直观的方法感知DE与BC在位置与数量上的关系,再用说理的方式来证明这一关系,此举既满足了学生探求新知的欲望,获得成功的体验,又刺激学生进行更深入的探求.

[知识拓展] (1)三角形的中位线所构成的三角形的周长是原三角形周长的一半.(2)三角形三条中位线可以把三角形分成三个平行四边形,分成的四个三角形全等.(3)三角形三条中位线所构成的三角形的面积等于原三角形面积的四分之一.

3.例题讲解

(补充)如图,△ABC的中位线DE=5 cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A,F两点间的距离是8 cm,求△ABC的面积.

学生独立寻找三角形的底边和高后,再进行交流.连接AF,由折叠可知AF⊥DE,再由中位线的性质,得到BC=2DE,DE∥BC,则AF是△ABC的BC边上的高,进而求得△ABC的面积.

解:连接AF,如图所示.

∵DE是△ABC的中位线,

∴BC=2DE=10 cm,

DE∥BC.

由折叠可知AF⊥DE,

∴AF⊥BC,

∴AF是△ABC的边BC上的高.

∵AF=8 cm,

∴S△ABC=BC·AF=×10×8=40(cm2).

[归纳拓展]本题还可以这样解:△ABC的面积是四边形ADFE面积的2倍,而四边形ADFE 的对角线互相垂直,因此它的面积等于对角线乘积的一半,所以△ABC的面积等于AF·DE.

(补充)如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证四边形EFGH是平行四边形.

〔解析〕因为已知点E,F,G,H分别是线段的中点,所以可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的一条对角线可以把四边形分成两个三角形,所以考虑添加辅助线,连接AC或BD,构造含有三角形中位线的基本图形后,此题便可得证.

证明:连接AC,如图所示.

在△DAC中,∵AH=HD,CG=GD,

∴HG∥AC,HG=AC(三角形中位线性质).

同理可得EF∥AC,EF=AC.

∴HG∥EF,且HG=EF.

∴四边形EFGH是平行四边形.

[归纳总结]顺次连接四边形四条边的中点,所得的四边形是平行四边形.

课堂小结

师生共同归纳本节课所学知识:

三角形的中位线的定义:连接三角形两边中点的线段叫做三角形的中位线.

两层含义:如图,①∵D,E分别为AB,AC的中点,∴DE为△ABC的中位线;②∵DE为△ABC的中位线,∴D,E分别为AB,AC的中点.

三角形中位线的性质:

三角形的中位线平行于三角形的第三边,并且等于第三边的一半.

特点:在一个题设下,有两个结论.一个表示位置关系,另一个表示数量关系.

结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系.

三角形中位线的性质:三角形的中位线平行于第三边并且等于第三边的一半.∵D,E分别是AB,AC的中点,∴DE∥BC,DE=BC.

作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.

练习

1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20 m,那么A,B两点间的距离是m,理由是.

解析:因为M,N分别是AC和BC的中点,所以MN=AB,所以AB=2MN=40 m.理由是:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.

2如图,△ABC中,D,E,F分别是AB,AC,BC的中点.

(1)若EF=5 cm,则AB=cm;若BC=9 cm,则DE=cm.

(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想.

板书设计

1.三角形的中位线的定义

2.三角形的中位线的性质

3.例题讲解

例1例2

布置作业

【必做题】

教材第49页练习第1,3题;教材第50页习题18.1第5题.

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三线合一性质的逆定理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接 通过证明这两条线所在的三角形全等不行,那 就换种思路,在有中点的几何证明题中常用的 添辅助线的方法是“延长加倍”,即延长AD到E 点,使AD=ED,由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC ∴⊿ABD≌⊿ECD

∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突 出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的 全等,由此推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上的高,求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1

3. 三角形的中位线(1) 一、学生知识状况分析 本节课是在学生学习了全等三角形、平行四边形的性质与判定的基础上学习三角形中位线的概念和性质。三角形中位线是继三角形的角平分线、中线、高线后的第四种重要线段。三角形中位线定理为证明直线的平行和线段的倍分关系提供了新的方法和依据,也是后续研究梯形中位线的基础。三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述,在生活中有着广泛的应用。 二、教学任务分析 本节课以“问题情境——建立模型——巩固训练——拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。 利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。 教学目标 1、认知目标 (1)知道三角形中位线的概念,明确三角形中位线与中线的不同。 (2)理解三角形中位线定理,并能运用它进行有关的论证和计算。 (3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力. 2、能力目标 引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生 观察问题、分析问题和解决问题的能力。 3、德育目标 对学生进行事物之间相互转化的辩证的观点的教育。 4、情感目标 利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,

激活学生思维。 教学重难点 【重点】:三角形中位线定理 【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的灵活应用. 三、教学过程分析 本节课设计了七个教学环节:第一环节:创设情景,导入课题;第二环节:教师讲授、传授新知;第三环节:师生共析、证明定理;第四环节:灵活运用、自我检测;第五环节:回顾小结、共同提升;第六环节:分层作业,拓展延伸;第七环节:课后反思。 第一环节:创设情景,导入课题 1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形? 操作:(1)剪一个三角形,记为△ABC (2)分别取AB,AC中点D,E,连接DE (3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD. 2、思考:四边形ABCD是平行四边形吗? 3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位 置和数量关系呢?

《3三角形的中位线》教案 教学目标 知识与技能: 1、理解和领会三角形中位线的概念. 2、理解并掌握三角形中位线定理及其应用. 过程与方法: 经过探索三角形中位线定理的过程,理解它与平行四边形的内在联系,感悟几何学的推理方法. 情感态度与价值观: 培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.教学重难点 重点:理解并应用三角形中位线定理. 难点:三角形中位线定理的探索与推导. 学习过程 一、复习引入 1、什么叫三角形的中线? 2、三角形的中线有几条? 二、合作交流,探究新知 1、问题引入: 接下来,我们就要来探究一个问题,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办? 连接三角形两边中点的线段叫做三角形的中位线. 2、用例题证明中位线的定理: 例:如图已知,在△ABC中,点D,E分别是△ABC的边AB、AC中线, 求证:DE∥BC,且DE=1/2BC. 证明:如图,延长DE到F,使EF=DE,连结CF. ∵DE=EF,AE=EC,∠AED=∠CEF,

∴△ADE ≌△CFE ∴AD=FC ,∠A=∠CEF ∴AB ∥FC 又AD=DB ∴BD //CF 所以,四边形BCFD 是平行四边形. ∴DE ∥BC 且DE=2 1BC . 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 3、解决引入问题: A 、 B 两点被池塘隔开,现在要测量出A 、B 两点间的距离,但又无法直接去测量,怎么办? 在A 、B 外选一点 C ,连结AC 和BC ,并分别找出AC 和BC 的中点 D 、 E ,如果能测量出DE 的长度,也就能知道AB 的距离了.(AB=2DE ) 三、应用迁移 已知:如图所示,在四边形ABCD 中,E 、F 、H 、M 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFHM 是平行四边形. 分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGM 对边的关系,从而证出四边形EFGH 是平行四边形. 证明:连结AC . ∵AM=MD ,CH=HD ∴HM //AC ,HM=1/2AC (三角形中位线定理). 同理,EF //AC ,EF=1/2AC ∴HM //EF ∴四边形EFGH 是平行四边形. 四、课堂检测,巩固提高: 1、△ABC 中,E 、F 分别为AB ,AC 的中点,若AB=8,AC=12,BC=18,那么EF=________. 2、顺次连结任意四边形各边中点所得的图形是______. 3、已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( ) A .3cm B .26cm C .24cm D .65cm

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

中位线 一、选择题 1.(2011?湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线EF=2cm,则BC边的长是() A、1cm B、2cm C、3cm D、4cm 考点:三角形中位线定理。 专题:计算题。 分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC. 解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=2cm, ∴EF是△ABC的中位线 ∴BC=2EF=2×2=4cm. 故选D. 点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半. 2.(2011江苏苏州,9,3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于() A.3 4B. 4 3C. 3 5D. 4 5 考点:锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理. 专题:几何图形问题. 分析:根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解. 解答:解:连接BD.

∵E、F分別是AB、AD的中点.∴BD=2EF=4 ∵BC=5,CD=3 ∴△BCD是直角三角形. ∴tanC= 4 3 故选B. 点评:本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键. 3.(2011?贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的() A、错误!未找到引用源。 B、错误!未找到引用源。 C、错误!未找到引用源。 D、错误!未找到引用源。 考点:梯形中位线定理;三角形中位线定理。 分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AD,BC的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比. 解答:解:过点D作DQ⊥AB,交EF于一点W, ∵EF是梯形的中位线, ∴EF∥CD∥AB,DW=WQ, ∴AM=CM,BN=DN. ∴EM=错误!未找到引用源。CD,NF=错误!未找到引用源。CD. ∴EM=NF, ∵AB=3CD,设CD=x,∴AB=3x,EF=2x, ∴MN=EF﹣(EM+FN)=x, ∴S△AME+S△BFN=错误!未找到引用源。×EM×WQ+错误!未找到引用源。×FN×WQ=错误!未找到引用源。(EM+FN)QW=错误!未找到引用源。x?QW, S梯形ABFE=错误!未找到引用源。(EF+AB)×WQ=错误!未找到引用源。QW, S△DOC+S△OMN=错误!未找到引用源。CD×DW=错误!未找到引用源。xQW,

鲁教版2020八年级数学上册5.3三角形的中位线培优练习题1(附答案)一.选择题(共10小题) 1.将一个面积为4的正方形按下列顺序折叠,然后将最后折叠的纸片沿虚线(中位线)剪去上方的小三角形,将剩下部分展开所得图形的面积是() A.B.1C.2D.3 2.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是() A.邻边不等的矩形B.等腰梯形 C.有一个角是锐角的菱形D.正方形 3.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则S△DMN:S四边形ANME等于() A.1:5B.1:4C.2:5D.2:7 4.如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为() A.B.C.D.1 5.已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是() A.1<MN<5B.1<MN≤5 C.<MN<D.<MN≤

6.(体验探究题)下列说法正确的是() ①顺次连接四边形的中点,所围成的四边形是平行四边形 ②顺次连接矩形四条边的中点,所围成的四边形是菱形 ③顺次连接梯形四边的中点,所围成的四边形是矩形 ④顺次连接对角线互相垂直的四边形各边中点所围成的四边形是矩形 A.1个B.2个C.3个D.4个 7.在Rt△ABC中,∠ACB=90°,AB=13,AC=5,点D是AB上一动点,作DE∥AC,且DE=2,连结BE、CD,P、Q分别是BE、DC的中点,连结PQ,则PQ长为() A.6B.2C.D.6.5 8.如图,D,E,F分别为△ABC三边的中点,且AB=AC≠BC,那么△DEF为() A.等边三角形B.等腰直角三角形 C.等腰三角形D.不等边三角形 9.如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC 的周长为30,BC=12.则MN的长是() A.15B.9C.6D.3

《三角形的中位线》教学设计 [设计思路] (一)教材分析 本课时在教学中注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生经历“探索—发现—猜想—证明”这一过程,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线性质,不但能指出了三角形的中位线与第三边的位置关系和数量关系,而且还为证明线段之间的位置关系和数量关系提供了新的思路。 (二)学情分析 针对本班学生基础知识不够扎实,新知识接受能力不强,数学思想方法运用不够灵活的现状,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识渗透转化、类比、归纳的数学思想方法,使学生能充分参与到教学过程中去,从而提高本节课的教学效果。 (三)教学目标 1.知识目标 (1)理解三角形中位线的概念。 (2)掌握三角形中位线的性质。 (3)会运用性质进行论证和计算。 2.能力目标

通过性质证明,培养学生思维的广阔性,渗透对比转化的思想。 3.情感目标 通过学生动手操作、观察、实验、推理、猜想、论证等过程,让学生体验知识的发生和发展过程,培养学生的创新意识。 (四)教学重点与难点 教学重点:三角形中位线的概念与三角形中位线的性质. 教学难点:三角形中位线性质的证明。 (五)教学方法与学法指导 对于三角形中位线定义的引入采用类比法,在此基础上,教师引导学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,而对于定理的证明过程,则运用多媒体的优势,给予演示增强直观性,使学生易于理解和接受。 (六)教具和学具的准备 教具:多媒体、刻度尺、教学三角板。 学具:三角板、刻度尺。 [教学过程] 一、引入 谈话:同学们好,今天这节课我将与大家一起来学习三角形中位线的概念与性质。 二、新授 (1)对照图片,回顾三角形中线的概念及 特点:

、定理 1.三角形的中位线平行于第三边(不与中位线接触),并且等于 第三边的一半。 2.连接三角形两边中点的线段,叫做三角形的中位线。 逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线。 (微课精讲) 三角形中的三条重要线段: 中线、角平分线、高线 概念 中线

在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线(median)。三角形的三条中线交于一点,这点称为三角形的重心。 如图,AD是边BC上的中线,BE是边AC上的中线,CF是边AB上的中线 三条中线交于点O,点O称为△A BC的重心 角平分线 在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

如图,AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,三角形三条角平分线交于点O 点O称为△ABC的内心 高线 从三角形的一个顶点向它的对边所在直线作垂线,定点和垂足之间的线段叫做三角形的高线,简称三角形的高。

如图,AD⊥BC,BE⊥AC,CF⊥AB 三角形三条高线交于点O 点O称为△ABC的垂心 以上是我们在初一时所学的三角形三条重要线段,今天,我们将学习三角形中第四条重要的线段——中位线

(知识点精讲) 中位线 概念:连接三角形两边中点的线段叫做三角形的中位线 性质:三角形的中位线平行于第三边,且等于第三边的一半。 如图,E、F分别是三角形AB、AC边上的中点,所以,EF是三角形BC 边所对的中位线,则EF∥BC且EF=1/2BC 三角形的中位线衍生出很多重要的图形,其中最重要的就是中点四边形(微课堂精讲)

三角形的中位线 石棉县城北中学吴国平1、知识状况 本节课是在学生学习了全等三角形、平行四边形的性质与判定的基础上学习三角形中位线的概念和性质。三角形中位线是继三角形的角平分线、中线、高线后的第四种重要线段。三角形中位线定理为证明直线的平行和线段的倍分关系提供了新的方法和依据,也是后续研究梯形中位线的基础。三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述,在生活中有着广泛的应用。 2、教学任务 本节课以“问题情境——建立模型——巩固训练——拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。 利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。 3、教学目标 认知目标 (1)知道三角形中位线的概念,明确三角形中位线与中线的不同。 (2)理解三角形中位线定理,并能运用它进行有关的论证和计算。 (3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力. 能力目标 引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生 观察问题、分析问题和解决问题的能力。 德育目标

对学生进行事物之间相互转化的辩证的观点的教育。 情感目标 利用制作的Powerpoint 课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。 4、教学重难点 【重点】:三角形中位线定理 【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用. 5、教学过程 本节课设计了七个教学环节:第一环节:创设情景,导入课题;第二环节:教师讲授,传授新知;第三环节:师生共析,证明定理;第四环节:知识扩展,理解加固;第五环节:灵活运用,自我检测;第六环节:运用新知,攻克难关;第七环节:回顾小结,课后作业;第八环节:课后反思。 第一环节:创设情景,导入课题 1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形? 操作:(1)剪一个三角形,记为△ABC (2)分别取AB,AC 中点D,E ,连接DE (3) 沿DE 将△ABC 剪成两部分,并将△ABC 绕点E 旋转180°,得四边形BCFD. 2、思考:四边形ABCD 是平行四边形吗? 3、探索新结论:若四边形ABCD 是平行四边形,那么DE与BC有什么位置和数量关系呢? 目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:DE∥BC,DE=2 1BC. 由此引出课题.。 效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。 第二环节:教师讲授,传授新知 内容: 引入三角形中位线的定义和性质

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

三角形的中位线 教学目标: 1.理解三角形中位线的概念,掌握它的性质. 2.能较熟练地应用三角形中位线性质进行有关的证明和计算. 3.经历探索、猜想、证明的过程,进一步发展推理论证的能力. 4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法. 重点、难点 1.重点:掌握和运用三角形中位线的性质. 2.难点:三角形中位线性质的证明(辅助线的添加方法). 3.难点的突破方法: (1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法. (2)强调三角形的中位线与中线的区别: 中位线:中点与中点的连线; 中线:顶点与对边中点的连线. (3)要把三角形中位线性质的特点、条件、结论及作用交代清楚: 特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系;条件(题设):连接两边中点得到中位线; 结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论); 作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系. (4)可通过题组练习,让学生掌握其性质. 三、例题的意图分析 例1是三角形中位线性质的证明题,一是要练习巩固平行四边形的性质与判定,二是为了降

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接通过证明这两条线所在的三角形全等不行,那就换种思路,在有中点的几何证明题中常用的添辅助线 的方法是“延长加倍”,即延长AD到E点,使AD=ED, 由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC BD=CD ∴⊿ABD≌⊿ECD ∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线,AD是BC边 上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的全等,由此 推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上 的高,

求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来 证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,CD⊥AD,D 为垂足,AB>AC。 求证:∠2=∠1+∠B 分析:由“AD平分∠BAC,CD⊥AD”推出AD所在的 三角形是等腰三角形,所以延长CD交AB于点E, 由逆定理②得出⊿AEC是等腰三角形由此就可得出 ∠2=∠AEC,又∠AEC=∠1+∠B,所以结论得证。 (2)逆定理②与中位线综合应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,交BC于点D,过点C作AD的垂线,交AD的延长线于点E,F为BC的中点,连结EF。 求证: EF∥AB, EF=(AC-AB) 分析:由已知可知,线段AE既是∠BAC的角平分 线又是EC边上的高,就想到把AE所在的等腰三角形构造出 来,因而就可添辅助线“分别延长CE、AB交于点G”。 简单证明:由逆定理②得出⊿AGC是等腰三角形, ∴点E是GC的中点 ∴EF是⊿BGC的中位线 ∴得证。 例题2 如图,已知:在⊿ABC中,BD、CE分别平分∠ABC, ∠ACB,AG⊥BD于G,AF⊥CE于F,AB=14cm,AC=9cm,BC=18cm. 求: FG的长。 分析:通过已知条件可以知道线段CF和BG满足逆 定理②的条件,因此就想到了分别延长AG、A F来构造等腰三角形。 简单证明:分别延长AG、AF交BC于点K、H由逆定理②得出⊿ABK是等腰三角形 ∴点G是AK的中点 同理可得点F是AH的中点 ∴FG是⊿AHK的中位线 由此就可解出FG的长。

知识点回顾(笔记) 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点. 1 .2 DE BC DE BC =求证:∥, 证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF , ∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD , ∴CF_____BD ,CF_____BD , ∴四边形BCFD 是____________ ∴DF_____BC ,DF_______BC , 12 DE DF =又∵, ∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC . ∵∠AED=∠CEF ,AE=CE , ∴△ADE_____△CFE .(全等) ∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF. ∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵, ∴DE_____BC ,DE=______BC.

类型1 三角形中位线的定理及运用 例1如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长. 例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数. 类型2中位线辅助线的构造 例3如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE. 例4. 如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求 证:CD= CE。

八年级数学三角形中位线培优专题训练 一、内容提要 1. 三角形中位线平行于第三边,并且等于第三边的一半。 梯形中位线平行于两底,并且等于两底和的一半。 2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度, 确定线段的和、差、倍关系。 3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。 4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理 及推论, ①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半 ②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。 二、例题 例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中 点。求证:PM =PN 证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形 ∴AE =EB =ME ,AF =FC =NF , 根据三角形中位线性质 PE = 21AC =NF ,PF =2 1 AB =ME P

PE ∥AC ,PF ∥AB ∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN ∴△PEM ≌△PFN ∴PM =PN 例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。求MN 的长。 分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。 辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PN MP ∥AB ,MP = 21AB ,NP ∥AC ,NP =2 1 AC ∵BE =CF ,∴MP =NP ∴∠3=∠4=2 MPN -180∠ ∠MPN +∠BAC =180 (两边分平行的两个角相等或互补) ∴∠1=∠2=2 MPN -180∠ , ∠2=∠3 ∴NP ∥AC ∴MN ∥AD 证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG 则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG ∴AB ∥CG ,∠BAC +∠FCG =180 N C

三角形的中位线教学设计 教学目标: 1.能证明三角形中位线定理,能利用三角形中位线定理进行简单的证明. 2.逐步学会分析和综合的思考方法,发展合乎逻辑的思考能力. 3.经历对合情推理得到的结论的正确性的证明过程,感受探索活动中所体现的转化、类比的思想方法. 4.不断感受证明的必要性,感受合情推理和演绎推理都是人们正确认识事物的重要途径.教学重点:掌握三角形中位线定理及其应用. 教学难点::三角形中位线定理探索与证明. 教学方法:为使学生更好地构建新的认知体系,我采用的教法和学法是: 1.“动”——学生动口说,动手操做,动脑想,经历知识发生发展的过程. 2.“探”——引导学生自主学习、探索交流,突出重点、突破难点. 3.“渗”——在整个教学过程中,渗透用转化和特殊到一般的数学思想. 教具准备: 教师:计算机多媒体、PPT课件、几何画板课件. 学生课前准备:彩纸卡纸做成的任意三角形、剪刀 教学过程: 一、创设问题情境——认识三角形的中位线(9分钟) 由单元导入,让学生对本节知识在本章中的地位有所了解.

问题1:给你一个任意的三角形,能否只剪一下,就能将剪开的图形拼成一个平行四边形?请小组合作探究.(课前准备的彩色卡纸做的三角形) 问题2:尝试说明所拼成的图形,为什么是平行四边形? 学生动手操作,让完成拼图的学生到前面交流展示. 目的:在操作的过程,自然生成“三角形的中位线”的概念. 设计意图: 剪纸游戏的设计一是让学生对三角形的中位线有一个直观的认识,感受到数学就在身边,增强进一步探究的信心;二是通过剪切与拼接的过程,向学生渗透转化的思想方法,为后续的证明做准备. 第二环节:几何画板动画演示剪拼的过程.(2分钟) 目的:再次感受拼图中的剪痕,准备认识三角形的中位线. 设计意图: 让没有完成拼图的学生直观地看到剪拼的过程,同时改变三角形的形状,让学生清楚地看到所有的三角形都可以这样剪拼得到平行四边形,为后面的三角形中位线定理的证明埋下伏笔.第三环节:掌握三角形的中位线定义及与中线的相同点和不同点(3分钟) 教师点题:刚才我们的剪纸是沿着两边的中点得到的线段剪下的,这条线段就是三角形的中位线.定义:连接三角形两边中点的线段叫做三角形的中位线. 问题1:根据定义,你认为一个三角形会有几条中位线?另外两条怎么画?(图1) 问题2:图2中的线段AD是三角形的中位线吗?为什么不是?它是我们以前学过的什么线? 问题3:三角形的中位线与三角形的中线有什么相同点和不同点? 设计意图: 问题1,测评学生是否掌握了三角形中位线的定义,同时为后面的第3问做准备. 问题2,测评学生是否明确了三角形的中位线的定义,同时为第3问中的不同点的答案做了铺垫. 问题3,再次测评学生是否掌握了三角形中位线的定义,同时让学生明确区分中位线与中线.

18.1.2三角形的中位线 一、教学目标 1、知识与技能 理解三角形中位线的概念,会证明三角形中位线定理,理解三角形中位线定理。能较熟练地应用三角形中位线定理进行有关的证明和计算。 2、过程与方法 使学生经历三角形中位线性质的“探索-发现-猜想-证明”的过程,发展学生推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。从而培养学生分析问题、解决问题的能力。 3、情感态度价值观 通过情境引入,激发学生的求知欲,通过三角形中位线定理的证明,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。 二、教学重点难点 【重点】三角形中位线的定义和性质。 【难点】三角形中位线定理的证明。 三、教学方法 启发式教学法、谈话讨论法。 四、教具学具准备 电脑、投影仪和三角形卡片。 五、教学过程 (一)复习平行四边形的性质和判定 (二)情境引入 现有一块三角形的蛋糕,要把它分成4块大小、形状完全相同的三角形蛋糕,该怎么分?(三)新知探究,合作交流

1.三角形中位线的定义 连接三角形两边中点的线段叫做三角形的中位线. [问题1]一个三角形有几条中位线?(3条) [问题2]下列各图中的D、E是各边的中点,哪条是中线?哪条是中位线呢? [问题3]三角形中线与中位线有什么区别?(端点不同) 2.三角形的中位线的性质 (1).猜想:观察图形,猜想DE与BC有何位置关系,有何数量关系? (2).度量:度量一下你手中的三角形,看看是否有DE=1/2BC? (3).证明:(你是如何验证DE∥BC,DE=1/2BC?) 将△转化为(展示过程) (4).归纳总结:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.

三角形中位线定理 【教学目标】 1.本节课的认知目的是使学生了解三角形的中位线概念及其性质定理,重点是熟悉和掌握三角形中位线定理,并能正确地运用这个定理去解决一些简单的几何问题。 2.本节课利用几何画版平台,动态演示了例题几何图形的多种变化,使学生初步认识事物的动与静、变与不变这一矛盾的对立与统一的辩证唯物主义思想。 【教学重难点】 重点:掌握定理的实质和定理的应用。 难点:定理的证明。 【教学过程】 教 学 过 程 设计思路及应用分析 导读 1.概括这节课的学习内容和认知目标; 2.引入三角形的中位线概念。 连结三角形两边中点的线段叫三角形的中位线 注意:三角形的中位线和三角形的中线不同。 C B A E D C B A E D 对比:三角形有三条中位线,它们组成一个三角形; 三角形有三条中线,它们相交于一点。 C B A E D C B A E D F F 特别强调了本节课的制作特色是动态演示,学习方法是探索研究。 这里用动态连结并配上音 乐,以引起学生的注意。 这里的三条中位线和三条 中线使用闪烁的手法,加 强对比的效果。

三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半 定理表达式 证明:延长DE 到F ,使EF=DE ,连结CF 。 演示:打开几何画板 1.依次拖动三角形的三个顶点,注意DE 和 BC 长度的变化,观察它们的数量关系。 2.自点 D 作 BC 的平行线 FG ,再拖动三个顶点,观察 DE 与 BC 的位置关系。 定理表达式更能清楚地反 映定理的题设和结论。 中位线定理的证明方法较多,因为不作为本节课的重点,所以这里只选用了一种学生比较熟悉的直接证法。 也可以先演示再证明,通过 演示,使学生更直观地了解三角形的中位线和第三边的数量关系以及位置关系。 说明:关闭几何画板时,选择“不保存”。 本例题选自课本,证法一与课本相同。 引导学生分析为什么要连辅助线。 C B A E D A B C D E F

定理 三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG

又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法四:

延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEF、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理

相关文档
最新文档