部分预应力混凝土转换梁性能分析与实测

部分预应力混凝土转换梁性能分析与实测
部分预应力混凝土转换梁性能分析与实测

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

45李志飚-预应力混凝土转换梁的工程应用

中国预应力技术五十年暨第九届后张预应力学术交流会论文2006年 预应力混凝土转换梁的工程应用 李志飚1金烈胜2陈劲1 (1. 浙江省建筑设计研究院,浙江杭州 310006;2. 杭州六合房地产开发有限公司,浙江杭州 310007) 提要本文简要介绍了后张有粘结预应力混凝土转换梁在浙江工商大学行政办公楼工程中的应用,探讨了结构整体分析与构件设计中需注意的一些关键问题,提出了相应的解决办法,文中提出的对策和得到的结论对类似工程结构设计有参考意义。 关键词预应力混凝土,转换梁,结构分析 1 工程概况和结构平面布置 浙江工商大学下沙校区行政办公楼工程,地下一层,地上十二层,抗震设防烈度为六度,抗震设防重要性类别为丙类,结构安全等级为二级,采用独立承台桩基础,上部结构为框架—剪力墙结构。结构设计合理使用年限为50年。 根据使用功能和建筑效果要求,在六层平面标高19.450处16~18×A~D轴范围竖向构件不连续,需设置转换构件将上部框架柱传递的内力转换到16和18轴中部布置的钢筋混凝土柱,从而在该区域形成一通透空间,具有良好的视觉效果。图1、图2分别为六层和七层结构平面布置简图,六层楼面以下16~18轴间仅保留图1中16和18轴中部的钢筋混凝土柱。通过沿B轴、C轴布置弧型转换梁实现17×B轴和17×C轴框架柱的转换,传力较明确。16~18×A和D轴的框架柱的转换可采用两种方案,方案一在16、17和18轴布置悬挑梁,16和18轴处悬挑梁悬挑长度短且悬挑梁直接传力至六层楼面下在16和18轴中部布置的钢筋混凝土柱,而17轴处悬挑梁悬挑长度较长且传力不直接,悬挑梁先传力至沿B轴、C轴布置的弧型转换梁,再通过弧型转换梁传力至六层楼面下在16和18轴中部布置的钢筋混凝土柱;方案二是通过在六层、七层楼层结构形成横向空腹桁架实现16~18×A和D轴框架柱的转换,横向桁架的布置将影响六层平面的使用且构造较为复杂。经初步计算和比较,确定采用第一方案,即在16、17和18轴布置悬挑梁以实现16~18×A和D轴框架柱的转换。 2 转换构件的特点及其设计简介 李志飚,男,1969.6生,工学博士,教授级高工

高层建筑钢筋混凝土梁式转换层施工技术研究

高层建筑钢筋混凝土梁式转换层施工技术研究 摘要:随着城市建设的发展,很多高层建筑向多功能、多用途方向发展,由于 建筑物各部分使用功能和要求不同,对建筑物结构形式、柱网布置也就提出了不 同的要求。为了实现和适应这种结构型式的变化过渡,转换层应运而生。而在工 程设计和施工实践中,梁式转换层得到了广泛的采用和认可,它可以较好地解决 高层建筑中上下部结构在竖向不连续的问题。目前,梁式转换层的高层建筑在国 内应用虽然很多,也在施工方面作了一些探讨和研究,但总体来说,都不够深入 和全面。本文主要对高层建筑钢筋混凝土梁式转换层施工技术进行研究。 关键词:高层建筑;钢筋混凝土;梁式转换层;施工技术; 高层建筑的受力情况有这个一个特点:下部结构受到的力非常大,上部受力相对较小。所以在建设中往往采用下部柱网密集、强多上部柱网疏松、墙少的结构。满足建筑功能,往往需要在结构中设置转换结构构转换结构构件所在的楼层就是 转换层。 一、转换层概述 1.由于高层建筑下部结构受力较大,上部结构受力较小,正常合理的布置应 是下部柱网密、墙多,上部柱网疏、墙少。这样建筑功能要求就与常规结构布置 之间产生了矛盾。为了满足建筑多功能的要求,就必须在结构中设置转换结构构件,以实现自上而下结构形式,轴线布置的自然过渡。转换结构构件所在的楼层 就是转换层。 2.按转换层所实现的结构转换可分为三类。上、下层结构类型的转换:这种 转换层广泛应用于上部为剪力墙结构和框架剪力墙结构,它将上部剪力墙转化为 下部的框架,以创造一个较大的内部自由空间。上、下层柱网、轴线改变:转换 层上、下结构形式没有改变,但是通过转换层使下层的柱距扩大,形成大柱网。 同时转换结构形式和结构轴线位置:即上部楼层剪力墙结构通过转换层轴线错开,形成上、下结构不对齐的布置。 3.实际工程应用中转换层的结构形式有多种多样,转换层的结构形式主要有 梁式、柑架式、空腹析架式、箱式和板式。从跨数上,可分为单跨、双跨及多跨;从上部墙体形式上,可分为满跨和不满跨、开洞和不开洞、开门洞和开窗洞;从 转换梁功能上,可分为托墙和托柱;从转换梁结构采用材料上,可分为钢筋混凝 土和钢骨混凝土、钢结构等。 二、高层建筑钢筋混凝土梁式转换层施工技术 1.钢筋施工 (1)钢筋的翻样以及下料。高层建筑转换大梁采用大量的钢筋,主筋长,含钢 量大,布置密。因此,准确地翻样和下料是钢筋顺利施工的前提,其翻样和下料便尤 为重要。首先,要弄清楚设计意图,然后进行钢筋翻样。翻样中考虑好钢筋之间的 穿插避让关系,准确确定制作尺寸和合理的绑扎顺序并对就位顺序进行统一编号。 其次,安装钢筋前在大梁两侧搭设双排钢管搁架用作操作架,并保证重大钢筋骨架 不变形,主筋排放按次序对号入座。先就位上排钢筋,穿入箍筋形成支架,再就位下 排钢筋。向下弯曲转换大梁最上一排的面筋,然后锚固,一直到底筋以上;位于底 筋的主筋,选择其最下一排,将其上弯25°,其余的不再弯锚,也不弯锚负筋。节点空 间得到了增大,方便了混凝土的灌注以及振捣。第三,转换梁内含有大量的主筋,因 此主筋下料时,每根钢筋接头位置都需要调整好,这样才能保证其焊接接头能相互 错开满足施工要求。同时,对所有转换梁的主筋进行编号,编号的规则可以按照就

跨预应力转换大梁施工方案

第一章工程概况 本工程E3-Ⅱ区因商场及车库入口的功能要求在轴E-A轴E-16~E-27设置了跨度达41. 7m的转换梁,转换梁高从二层楼面梁底向上延伸到三层楼面,总高度达6.40m。采用箱形截面有粘结预应力钢筋砼梁,上翼缘厚200mm,下翼缘厚400mm,内侧腹板厚1250mm,外侧腹板厚800,箱形断面宽度为4875mm,砼等级C60,砼量为663.立方米,支承上方共6层结构的荷载。预应力筋共计采用42孔,每孔12束φj15.24的f pt=1860N/mm2的高强钢绞线。普通钢筋底筋为:最下一排49根直径40三级钢、第二排40根直径40三级钢;第三、四排筋设在内外腹板中10×2根直径40三级钢筋。面筋:二排上下各34Ф25。 一.要求: 梁的预应力孔道采用金属波纹管,金属波纹管应封闭严密防止漏浆;张拉分2批进行,采用双控方式(应力、应变——伸长率)进行控制,第一批张拉在四层楼面施工完成后进行;第二批张拉在六层楼面施工完成后进行,控制应力为75﹪的高强钢绞线强度标准值。张拉完毕即进行预应力孔道灌浆,采用纯水泥浆,42.5普通硅酸盐水泥,水灰比0.40左右。预应力梁端部的钢绞线、锚具、锚垫板在预应力施工完毕后马上浇筑C50砼封闭端部。预应力梁张拉完毕之前不能拆底支撑。 二.采用规范、标准 主要使用的规范目录

续上表:

第二章施工部署 一.施工特点 结构转换梁体积大、重量大,自重及施工荷载最大达370kN/m,模板的支撑与加固、梁主筋的穿插、砼的浇捣都具有相当的难度。 二.方案的分析和选择 依据常规,转换层有钢管架支撑、钢结构架支撑、分层浇筑三种施工方法:⑴钢管架支撑,一次支模一次浇筑的方法。若下层楼面在设计时已经考虑了足够大的施工荷载,则采用一次支模一次浇筑的方法施工进度较快;⑵钢结构架支撑。⑶分层浇筑(叠梁浇筑法施工)钢结构架支撑。的方法,在征得设计院同意的前提下,费用增加不多,施工效果好。 通过分析和比较,由于施工荷载过大,下层楼面的设计荷载远远小于施工荷载,所以采用一次支模一次浇筑方法(计算出钢管立杆间距25×25㎝)不可行;所以拟采用钢结构架支撑配合分层浇筑的方法施工。 我司拟采取分三次浇筑的方法进行。第一次先浇筑1.6米高的砼在达到70﹪强度后可以承担上部砼的施工荷载, 第二次浇筑到4.8米高的砼在达到100﹪强度后可以承担上部砼的施工荷载。本方案按此编制。 三.方案的选定 采用钢格构柱加钢管架支撑,一次钢筋成型(侧面腰筋及施工缝插筋可与浇筑层分次完成),一次支撑承重架体完成,底模一次成型,分三次支梁侧模,三次浇筑的方法。第一次浇筑到标高为+6.000米。第二次浇筑到标高为+9.200米。第三次腹板和第三层楼板一起浇

关于预应力混凝土简支箱梁桥设计分析

关于预应力混凝土简支箱梁桥设计分析 [摘要]桥梁作为公路的重要组成部分之一,在工程项目中,设计方案的合理性与规划指标的正确性是衡量整个道路工程施工质量、成本控制和使用功能的关键。本文就预应力混凝土简支箱梁桥设计要点分析,结合工程实例进行了全面的探讨和阐述。 【关键词】桥梁;预应力混凝土;简支箱梁桥 伴随着时间的不断推移,国民经济发展不断加快,各类交通荷载也在逐年增加。我国现有运营的早期设计修建的预应力混凝土桥梁和钢筋混凝土桥梁,受到过去国情、经济水平和人类认识水平的限制,在投入使用之后经常出现无法满足使用要求,出现了较为严重的裂缝、耐久性不足等重要问题,同时桥梁老化、陈旧和荷载能力不足的现象也日益凸显。结合现有工程中存在的这些问题,我们在工作中应当注重对混凝土简支箱梁桥设计的相关重点探讨,结合先进科学技术水平合理提高设计方法和观念,进而确保工程项目的质量和耐久性,提高工程效益。 1、工程概况 本工程项目位于某高速公路中段,桥梁在建设中总体长度为35m,桥面宽9.5m。在设计的过程中是对桥梁采用C40的混凝土进行施工的,而桥栏杆和桥面在铺设中是通过采用C20的混凝土。预应力在控制和设计中分别采用的是ASTM270级1524的底松弛钢绞线,在这设计过程中钢绞线的选择为12mm和R235的热轧光圈钢筋。在桥梁桥面施工的过程中是采用5cm厚的C20钢筋混凝土进行铺设和施工的,而最后又铺设了5cm厚的沥青混凝土。在设计的过程中,对桥梁的等级和应力化进行计算和分配,桥梁等级设置为1级,而汽车等相关荷载要求为3.535kN/m2,梯度温度引起的效按照T1=20℃,T2=6.7℃进行考虑。这种设计方法和手段的应用有效的确保了桥梁的使用寿命和耐久性。 2、桥梁总体设计 在桥梁设计的过程中,应当以安全、经济、实用、美观和环保为基础原则进行总体规划,以可持续发展和功能的良好发挥为最终目标进行全面设计。在桥梁设计的过程中,其设计方案的选择要具备相应的合理性,并且对其中存在的相关环节要严肃处理,要做到在设计中毫厘不差的设计要求。对于桥梁结构构造的处理,应当遵循相关的设计规范和国家的法律制度来全面协调和规范,同时合理的控制桥梁各个细小部位的尺寸和构造细节,使得桥梁设计能够满足强度、刚度.稳定性和耐久性的要求。 2.1在桥梁设计的过程中对线条的选择一般都选选择直线和标准跨径,这样能够提高桥梁工程的施工效率和降低施工成本。 2.2桥面净空应确保保证车辆、行人安全通过桥梁上方的空间界限。在该净

高层建筑钢筋混凝土梁式转换层钢筋的连接和安装研究

高层建筑钢筋混凝土梁式转换层钢筋的连接和安装研究 摘要:目前,国内梁式转换层结构的工程设计与施工经验逐渐增多,但在施工方面并没有十分系统的经验总结,本文主要就高层建筑钢筋混凝土梁式转换层钢筋的连接和安装展开讨论。关键词:高层建筑;钢筋混凝土;梁式转换层;连接;安装 abstract: at present, the domestic transfer beam design and construction experience layer structure of the project increases gradually, but in the construction aspect is not very systematic summary of experience, this paper on the high-rise buildings of reinforced concrete beam reinforced connection and installation are discussed. key words: high-rise building; reinforced concrete; beam transfer layer connection; installation; 中图分类号:tu37文献标识码:a文章编号:2095-2104(2013)1.钢筋翻样与下料转换大梁的含钢量大,主筋长,布置密,在两梁相交的柱节点区上下共有几十层上百根主筋在此“相聚”,加上腰筋、柱筋等,主筋还须弯起锚固,众筋“抢位”现象十分突出。任何一根主筋的就位错误。均会造成大量的返工。因此,准确地翻样和下料是钢筋顺利施工的前提。 (1)钢筋翻样前必须弄清设计意图。审核、熟悉设计文件及有关说明;掌握现行规范的有关规定。翻样时要结合实际并考虑方便施工。 (2)一般设计转换大梁的主筋在柱节点区均弯起锚固,施工难度大。可与设计单位协商解决,如:

检测与转换

思考与练习

第1章信号检测与转换技术概述 1.自动检测与转换系统的基本组成是什么? 检测:通过各种科学的手段和方法获得客观事物的量值; 转换:通过各种技术手段把客观事物的大小转换成人们能够识别、存贮和传输的量值。 一个典型的检测与转换系统基本组成如下: 2.简述心电信号检测系统的基本组成及各部分功能。 通 道控制电路差动 放大 电路 滤波 限波 电路 光电 隔离 电路 通道 控制 电路 光电 隔离 电路 A/D 转换 电路 微机 接口 电路 信号地系统地 信号地系统地 控制 微机系 统(显 示、存 储、分 析) 远端数字系统有线或无线数字通信 信号地

3.简述工业检测技术涉及的主要物理量有哪些? 工业检测技术涉及主要内容包括: 热工量:温度、压力(压强)、压差、真空度、流量、流速、物位、液位等。 机械量:直线位移、角位移、速度、加速度、转速、应变、力矩、振动、噪声、质量(重量)等。 几何量:长度、厚度、角度、直径、间距、形状、粗糙度、硬度、材料缺陷等。 物体的性质和成分量:空气的湿度(绝对、相对);气体的化学成分、浓度;液体的粘度、浊度、透明度;物体的颜色等。 状态量:工作机械的运动状态(启停等)、生产设备的异常状态(超温、过载、泄漏、变形、磨损、堵塞、断裂等)。 电工量:电压、电流、电功率、电阻、电感、电容、频率、磁场强度、磁通密度等。 4.传感器的基本组成是什么?简述各部分主要功能。 敏感元件(如:弹簧管、波纹管、膜盒、膜片)能直接感受被测量,并将被测非电量信号按一定对应关系转换为易于转换为电信号的另一种非电量的元件。 传感元件能将敏感元件输出的非电信号或直接将被测非电量信号转换成电量信号的元件。 转换电路将传感元件输出的电量信号转换为便于显示、处理、传输的有用电信号的电路。 5.检测仪表和检测系统的技术性能有哪些?有什么含义?如何测量或计算? ①量程 max min B x x =- ②误差 绝对误差

型钢混凝土转换层施工技术【最新版】

型钢混凝土转换层施工技术 摘要:型钢混凝土组合结构作为一种极具魅力的组合结构形式,具有其他结构所不具有的独特优点,并且日益广泛地应用于各类建筑与桥梁结构中。本文介绍了某大型商城住宅楼型钢混凝土转换层施工技术,阐述了内型钢柱在吊装、焊接及模板、钢筋、砼浇筑等工序施工技术措施,为类似工程提供借鉴。 关键词:转换层箱型柱箱型粱型钢混凝土结构自密实混凝土 1、工程概况 某大型商城位于市中心城区,由一栋32层写字楼、一栋8层商业楼、一栋29层住宅楼,共3栋楼组成,总建筑面积为312164.9m2。本项目为大型公共建筑工程,包括甲级写字楼、住宅、大型商场、超市、地下停车场等多种功能。 本工程住宅楼转换层位于5层顶板(6层楼面),6层及以上为住宅,6层以下为商场及车库。住宅楼地下4层,地上29层。转换层位于27.1 m标高处,屋面最高为105.7m。转换层结构由型钢混凝土梁、型钢混凝土柱组成,主要位于24轴~36轴/K轴~F轴。

转换层梁截面为1700mm×2000mm,梁跨度分别为11.6 m(K轴~H轴)、10.4 m(H轴~F轴)。钢梁截面形式为1650 mmx 1300 mm×50 mmx 50mm,单根构件质量约25.1t,共有25支,总质量约610t。 K轴线钢柱在27.1m以下为箱型柱,27.1m以上变为十字钢柱:H 轴、F轴钢柱在27.1m以下为箱型柱,27.1m以上无柱子。J轴、G轴为梁上柱,在27.1m处开始出现。 该转换层所有型钢梁、型钢柱外侧均绑扎钢筋骨架,浇筑于混凝土内。箱型钢柱、箱型钢梁内部通过外部的浇筑孔用混凝土灌满。 2、转换层施工技术 2.1 梁底部钢筋、箍筋施工 转换梁的箍筋φ16 mm且钢梁截面尺寸较大,按传统施工方法先安装钢梁再套箍筋,施工难度极大,φ16 mm的钢筋靠工人手力无法扳开;如果先安装箍筋则钢梁无法吊装。项目部经与设计单位沟通后对箍筋形式进行优化,将箍筋分成上下2个U形部分,分别在钢梁吊装前后安装,2个U形箍筋搭接焊接连接成一个封闭箍筋,上下2个箍筋搭接lOd,单面焊接形成1个封闭箍筋。下料时注意相邻箍筋接头相互错开。具体施工程序为:

浅谈预应力混凝土连续箱梁桥设计中的问题

浅谈预应力混凝土连续箱梁桥设计中的问题 摘要桥梁设计是一项综合的工程,设计过程中会遇到一些问题,如桥位选择、桥面标高的确定、确定桥梁分孔、主梁截面选择、确定墩台基础形式、墩台基础埋置深度、结构尺寸的拟定,以及有关桥梁的其他问题,如主梁截面普通钢筋及预应力钢筋的布置、桥墩、桥台和桩基的配筋设计、桥面系的布置等。 关键词桥梁设计,预应力结构,连续箱梁桥,总体布置,结构计算 相对于简支梁桥,连续梁桥结构体系和受力特点具有明显的优势,其跨中正弯矩降低很多,同时支点出现负弯矩。混凝土材料耐久性较好,能够适应桥梁结构后期运营使用过程中产生的磨损,钢结构在使用过程中,应做好防腐措施,工程造价过高。在桥梁结构形式选择过程中,大多数设计单位会优先考虑混凝土连续箱梁桥,设计过程中遇到的问题,可以通过查阅桥梁规范,或者借鉴相似工程在设计过程中的经验取值,能够对设计具有指导作用。 1.桥梁总体布置 1.1 桥位设计 桥位的选择常与桥梁结构体系、原有或新建道路线形及周围环境等众多方面。桥位设计应能够保证原有或既定交通的正常运营,能够通过设计的洪水流量,满足通航要求,并与桥址周围的工农业、自然环境等相协调。桥位选择需要注意保护文物、保护生态环境,同时要注意尽量少占用耕地和农田,尽量做到对有意义及有价值的建筑物的保护。 桥位确定后,应进行桥孔布置。桥孔的大小和长度,应与天然状态桥下河槽或河滩流量分配相协调,并能满足泄洪排沙的要求。桥孔的布置,应该针对不同桥位进行不同的设计,河槽稳定不会扩宽或河槽不稳定时,桥孔布置需考虑以上因素。桥孔布置后桥墩的选择也应满足一定的要求,尽可能小的减小对河流的影响,充分考虑桥墩阻水的影响。 桥面标高的确定,应该根据该桥的使用要求进行选择,注意与既定道路之间的衔接。若桥面标高与既定道路高差过大,可以考虑设置引桥以克服高差。且河流通过设计水位时,须保证支座不受水流侵袭,同时还需要考虑桥墩阻水等各种因素引起的各类升高值,若桥梁结构有通航要求,还应该满足通航净空的要求。 1.2结构形式

高层建筑钢筋混凝土梁式转换层施工技术研究

高层建筑钢筋混凝土梁式转换层施工技术研究摘要:本文系统的研究了高层建筑钢筋混凝土梁式转换层的施工技术,重点对梁式转换层施工的三大分项:模板和支撑体系、钢筋的连接和绑扎、大体积混凝土的浇筑进行了分析和研究。 关键词:高层建筑;梁式转换层;施工技术 abstract: this paper studies the high-rise building reinforced concrete beam type conversion layers of construction technology, focusing on beam conversion layers of construction of three sub-accounts: template and the support system, reinforced the connection and assembling, the construction of mass concrete are analyzed and studied. keywords: high building; beam type conversion layers; construction technology 中图分类号:[tu208.3]文献标识码:a 文章编号: 随着城市建设的发展,很多高层建筑向多功能、多用途方向发展,由于建筑物各部分使用功能和要求不同,对建筑物结构形式、柱网布置也就提出了不同的要求。为了实现和适应这种结构型式的变化过渡,转换层应运而生。 1 转换层概述 由于高层建筑下部结构受力较大,上部结构受力较小,正常合理的布置应是下部柱网密、墙多,上部柱网疏、墙少。这样建筑功

预应力混凝土连续梁桥及例子

4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

条件腹板宽度Bmin(cm) 腹板内无纵向或竖向后张预应力钢筋时20 腹板内有纵向或竖向后张预应力钢筋之一时30 腹板同时有纵向和竖向后张预应力钢筋时38 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m 抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于

自动检测与转换技术题库(含答案)

自动检测与转换技术题库 (含答案) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章检测技术的基础知识 (本文档适合电气工程类专业同学朋友们,希望能帮到你们) 一、填空题 1.检测技术是一门以研究自动检测系统中的信息提取、信息转换以及信息处理的理论和技术为主要内容的应用技术学科。 2.一个完整的检测系统或检测装置通常由传感器、测量电路和输出单元及显示装置等部分组成。 3.传感器一般由敏感元件、转换元件和转换电路三部分组成,其中敏感元件是必不可少的。 4.在选用仪表时,最好能使其工作在不小于满刻度值 2/3 的区域。 5.准确度表征系统误差的大小程度,精密度表征随机误差的大小程度,而精确度则指准确度和精密度的综合结果。 6.仪表准确度等级是由系统误差中的基本误差决定的,而精密度是由随机误差和系统误差中的附加误差决定的。 7、若已知某直流电压的大致范围,选择测量仪表时,应尽可能选用那些其量程大于被 测电压而又小于被测电压1.5倍的电压表。(因为U≥2/3Umax) 8、有一温度计,它的量程范围为0~200℃,精度等级为0.5级。该表可能出现的最 大误差为 1℃,当测量100℃时的示值相对误差为 1% 。 9、传感器是实现自动检测和自动控制的首要环节,它的作用是将非电量转换成 与之具有一定关系的电量。 10、传感器一般由敏感元件和转换元件两部分组成。 11、某位移传感器,当输入量变化5mm时,输出电压变化300mv,其灵敏度为 60 mv/mm 。 二、选择题 1.在一个完整的检测系统中,完成信息采集和信息转换主要依靠 A 。 A.传感器 B. 测量电路 C. 输出单元 2.构成一个传感受器必不可少的部分是 B 。 A.转换元件 B.敏感元件 C.转换电路 D.嵌入式微处理器

30m预应力混凝土简支箱型梁桥设计

30m预应力混凝土简支箱型梁桥设计 1.1上部结构计算设计资料及构造布置 1.1.1 设计资料 1.桥梁跨径及桥宽 标准跨径:30m;主梁全长:29.96m;计算跨径:28.66m;桥面净宽:净—9+2× 1.5m。 2.设计荷载 车道荷载:公路—I级;人群荷载:3kN/㎡;每侧人行道栏杆的作用力:1.52kN/㎡;每侧人行道重:3.75kN/㎡。 3.桥梁处河道防洪标准为20年一遇设计,50年一遇校核,桥下通过流量1000/s时,落差不超过0.1m。 4.桥下净空取50年一遇洪水位以上0.3m。 5.材料及工艺 混凝土:主梁采用C50混凝土;钢绞线:预应力钢束采用Φ15.2钢绞线,每束6根,全梁配5束;钢筋:直径大于等于12mm的采用HRB335钢筋,直径小于12mm的采用R235钢筋。 采用后张法施工工艺制作主梁。预制时,预留孔道采用内径70mm、外径77mm的预埋金属波纹管成型,钢绞线采用T双作用千斤顶两端同时张拉,锚具采用夹片式群锚。主梁安装就位后现浇600mm宽的湿接缝,最后施工混凝土桥面铺装层。 6.基本计算数据 基本计算数据见表5-1 表5-1 材料及特性 名称项目符号单 位 数据 C40 混凝土立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉标准强度 f cu,k E c f ck f tk f cd f td MP a MP a MP a MP a MP a 40.00 3.45 ×104 32.40 2.65 22.40 1.83

MP a 短暂状态容许压应力0.7f'ck MP a 20.72 容许拉应力0.7f'tk MP a 1.76 持久状态 标 准荷载 组合 容许压应 力 0.5f ck MP a 16.20 容许主压 应力 0.6f ck MP a 19.44 短 期效益 组合 容许拉应 力 σst - 0.85σpc MP a 0.00 容许主拉 应力 0.6f tk MP a 1.59 名称项目符号单 位 数据 Φ s15.2 钢绞线 标准强度f pk MP a 1860 弹性模量E p MP a 1.95 ×105抗拉设计强度f pd MP a 1260 最大控制应力σcon0.75f pk MP a 1395 持久状态应 力 标准荷载组合0.65f pk MP a 1209 普通钢筋HRB335 抗拉标准强度f sk MP a 335 抗拉设计强度f sd MP a 280 R235 抗拉标准强度f sk MP a 235 抗拉设计强度f sd MP a 195

第六章 曲线梁桥

6 曲线梁桥 6.1一般规定 6.1.1本章适用于平面曲线钢筋混凝土、预应力混凝土、钢-混凝土联合梁式桥。 6.1.2本章仅就曲线梁桥特有的问题做出规定,其它有关问题参照相关规定执行。 6.1.3在选择曲线梁桥的结构形式及截面形状时,必须考虑有足够的抗扭刚度以适应扭转效应的影响。 6.1.4在保证结构体系受力合理的前提下兼顾桥梁美观的要求,分联处公用墩和桥梁宽度大于10m的曲线梁桥中墩宜设置为双柱;不应设置隐盖梁结构形式;箱梁的悬臂不宜过大,特别是多跨连续曲线匝道桥梁。 6.2结构体系 6.2.1曲线梁桥更需选择合理跨径,以有利于控制扭矩峰值,控制负反力的发生。 1

6.2.2曲线梁桥支座设置原则 (1)梁端支座宜设置橡胶支座,以保证适当的垂直方向的弹性约束; 沿弯梁径向应设置水平方向约束,以防止过大的径向水平位移; (2)结构中墩在满足结构受力的情况下,尽可能与主梁固结或设置固定支座、抗震型盆式支座。当采用沿曲线切线的滑动支座时, 必须保证支座具有可靠的滑动能力。中墩不应设置球形支座、球 冠支座或双向滑动支座。 6.2.3曲线梁桥中墩应设置适当的偏心值,以调整全梁的扭矩分布。其偏心值应与中墩支座选用形式相适应。 2

6.2.4曲线梁桥中墩不采用墩、梁固结时,应设置适当的径向水平限位措施,其强度应满足水平力强度要求。 6.3结构分析 6.3.1曲线梁桥结构静力分析模型的建立应满足以下要求: (1)当扭跨所对应的圆心角φ<5o时,可作为以曲线长为跨径的直线桥进行分析。 (2)当5o<φ≤30o时,弯矩及剪力可按直线桥进行分析,反力及扭矩需按空间程序进行分析,并且应考虑由于预应力、混凝土收 缩、徐变及温度作用所产生的效应。 (3)当30o<φ≤45o时,所有截面内力均应按空间程序进行分析。 (4)当φ>45o时,除按空间程序分析外,还应考虑翘曲约束扭转的影响。 (5)当采用具有相当抗扭刚度的闭口截面曲线梁桥,其扭转跨径所对应的(曲跨梁段)圆心角小于12o时,可以按直线桥进行分 3

预应力混凝土转换梁结构施工控制技术研究

预应力混凝土转换梁结构施工控制技术研究 发表时间:2019-07-23T13:58:45.973Z 来源:《基层建设》2019年第13期作者:郭翠锐[导读] 摘要:转换梁结构施工的关键在于转换梁施工方案的确定,它直接影响到施工阶段的结构安全、工程质量和施工成本。 身份证号码:13013319880611XXXX 摘要:转换梁结构施工的关键在于转换梁施工方案的确定,它直接影响到施工阶段的结构安全、工程质量和施工成本。下面笔者将结合自己的时间经验,从支撑工程、混凝土工程、预应力及钢筋工程等几个方面来介绍大跨度预应力混凝土转换梁结构的施工技术。 关键词:转换梁结构;施工力学;施工技术 一、大跨度预应力混凝土转换梁结构施工技术 随着国内外高大建筑数量的不断增多,建筑结构向大跨度、大空间的方向发展,在转换层结构中应用较为广泛的预应力混凝土转换梁结构也相应具有结构构件跨度和截面大型化的趋势。大跨度预应力混凝土转换梁结构的施工是建筑施工工中的难点,其建造过程涉及力学、材料学、结构设计及工程管理学等多门学科,是一项极其复杂的系统工程。 1.1临时支撑施工 转换梁的自重、施工荷载以及所承受的上部结构荷载较大,因此确定其梁底模板的临时支撑方式是转换梁施工的关键。目前,实际工程中转换梁底模板的临时支撑体系施工多采用的方法有常规支撑法、叠合浇筑支撑法、荷载传递法、设立钢结构支撑法、埋设型钢及钢桁架法等,下面主要就其中的前两种方法做详细介绍。 (1)常规支撑法转换梁施工时,考虑采用常规的混凝土浇筑方法和模板支撑形式进行施工,即一次支模一次浇筑混凝土成形,使用目前应用较为普遍的钢管脚手架支撑体系来对粱体模板进行支撑。由于转换梁底模在一次浇筑混凝土成形的情况下施工荷载很大,其支撑往往需要从转换梁底一直撑到结构底层地面或地下室的底板。该方案需准备大量的模板支撑材料,材料的租赁费或一次购置费用较大。因此这种施工技术适用于施工现场可用的支撑材料较多,且转换梁在主体结构中位置较低的情况。 (2)叠合浇筑支撑法叠合浇筑法即应用叠合梁原理将转换梁分两次或三次浇筑叠合成型的施工方法。该方法利用第一次浇筑混凝土形成的梁支承第二次浇筑混凝土的自重及施工荷载,首次浇筑混凝土的高度多为梁高的1/4。再利用第二次浇筑混凝土与第一次浇筑混凝土形成的叠合梁支承第三次浇筑混凝土的自重及施工荷载(如图1.1所示)。采用这种施工技术时,转换梁的钢管支撑系统(脚手架)只需考虑承受第一次浇筑层的混凝土自重和施工荷载,因而可大为减小其下部钢管支撑的负荷,减少支撑材料的使用数量,同时混凝土分层浇筑可缓解由于大体积混凝土水化热较高从而引起温度应力过大等对裂缝控制的不利影响。 1.2 混凝土工程施工 大跨度预应力混凝土转换梁的混凝土工程施工中,其重点在于避免或减少各种有害裂缝的产生。裂缝根据成因可分为结构荷载产生的裂缝、结构次应力引起的裂缝、温度裂缝及收缩裂缝等。由于转换大梁的混凝土体量大,属于大体积混凝土构件,混凝土的温度变化和收缩变形产生的温度裂缝及收缩裂缝出现的几率较大,因此转换梁的混凝土工程施工主要对温度裂缝和收缩裂缝进行控制。 具体措施可从混凝土的配合比设计及材料选用、施工方法、构造措施、养护措施以及温度监测等五个方面来进行控制;同时为了做好混凝土施工的事前控制,并为混凝土施工方案的确定提供依据,可根据施工中的实际情况进行裂缝控制的相关计算。 1.3 预应力及钢筋工程施工 (1)预应力工程在预应力混凝土转换梁结构预应力工程施工中最具特色的是分阶段张拉技术,分阶段张拉预应力钢筋不仅仅是预应力施工的方法,还是优化转换结构设计的重要手段。转换梁上承受数层甚至数十层结构的荷载,预应力钢筋用量较多,须采取措施防止张拉阶段粱体预拉区开裂或反拱过大,可有以下几种方法:(1)采用择期张拉技术,即待转换结构上部施工数层之后再张拉预应力,在此之前必须加强转换梁下的临时支撑。 (2)在转换梁预拉区配置一定数量的预应力钢筋,以控制张拉阶段的粱体裂缝及过大的反拱。 (3)采用分阶段张拉技术。分阶段张拉可定义为预应力是逐渐施加以平衡各阶段结构荷载的预加应力技术。施加的荷载可以是外荷载,也可以是由于本身体积变化(弹性压缩、收缩和徐变)而产生的内部应力。分阶段张拉技术由于张拉次数较多,旌工费用略高,应根据具体情况决定采取何种方法。 (2)钢筋工程 ①附加钢筋的设置 如前所述,受混凝土施工方法的影响,在转换梁中易产生~定的附加内力,譬如在叠层浇筑混凝土施工中粱体于支座处产生的附加内力以及混凝土中的温度应力和收缩应力等等,结构设计中往往忽略了这些施工阶段所产生的内力对转换梁的影响。在附加内力较大,对转换梁安全性及可靠性会产生不利影响的情况下,有必要在转换梁内配置附加钢筋,以抵抗附加内力的作用。 ②钢筋的排布 预应力转换梁的含钢量大,主筋长而且布置较密。其中预应力筋是主要的受力钢筋,其就位是否准确将影响到转换大梁的整体受力性能,因此粱筋及波纹管的排布是钢筋工程中的重点。施工中波纹管和非预应力筋的排布应合理穿插进行,有时为了保证预应力筋矢高及端部锚垫板的位置正确,对梁柱非预应力筋的位置须作相应的调整。梁普通钢筋定位的原则是“普通钢筋服从波纹管,波纹管依靠普通钢筋”,即在绑扎普通钢筋时需事先让出波纹管孔道位置,而波纹管又通过普通钢筋的布置来进行准确定位和固定。 二、大跨度预应力混凝土转换梁结构施工技术控制要点 基于大跨度预应力混凝土转换梁结构的上述特点,在确定施工方案时应重点考虑以下几个方面的问题:(1)转换梁的自重、施工荷载以及所承受的上部结构荷载往往非常大,在未张拉预应力前,转换粱体下部的临时模板支撑将独自承受转换梁绝大部分自重、部分上部结构荷载以及施工荷载,所以应选择合理、可行的模板支撑方案,并根据转换粱的结构特点进行模板支撑体系的设计。

《自动检测与转换技术》教案集

绪论

本课介绍非电量的检测。 三、自动检测系统的组成 (1)系统框图:将系统中的主要功能或电路的名称画在方框内,按信号的流程,将几个方框用箭头联系起来,有时还可以在箭头上方标出信号的名称。在产品说明书、科技论文中,利用框图可以较简明、清晰地说明系统的构成及工作原理。 对具体的检测系统或传感器而言,必须将框图中的各项内容赋以具体的内容。 图0-1 自动检测系统原理框图 图0-6 人体信息接受过程框图与自动检测系统框图比较 通过PPT,介绍方框图的画法: 1.洗衣机;2.家用或中央空调;3.电饭煲;4.电冰箱5.电视机的框图举例。 (2)传感器(Transducer)指一个能将被测的非电量变换成电量的器件(演示教具,发散性课堂讨论)。 (3)信号调理电路信号调理电路包括放大(或衰减)电路、滤波电路、隔离电路等。其中的放大电路的作用是把传感器输出的电量变成具有一定驱动和传输能力的电压、电流或频率信号等,以推动后级的显示器、数据处理装置及执行机构。 (4)显示器目前常用的显示器有四类:模拟显示、数字显示、图象显示及记录仪等。模拟量是指连续变化量。模拟显示是利用指针对标尺的相对位置来表示读数的,常见的有毫伏表、微安表、模拟光柱等。 数字显示目前多采用发光二极管(LED)和液晶(LCD)等,以数字的形式来显示读数。前者亮度高、耐震动、可适应较宽的温度范围;后者耗电省、集成度高。目前还研制出了带背光板的LCD,便于在夜间观看LCD的内容。 图像显示是用CRT或点阵LCD来显示读数或被测参数的变化曲线、图表或彩色图等

第一章检测技术的基本概念

引用误差所不超过2.5%。 表1-1 仪表的准确度等级和基本误差 准确度等 0.1 0.2 0.5 1.0 1.5 2.5 5.0 级 基本误差±0.1% ±0.2% ±0.5% ±1.0% ±1.5% ±2.5% ±5.0% 例题: 1. 已知被测电压的准确值为220V,请观察并计算图1-4所示的电压表上的准确度等级S、满度值A m、最大绝对误差Δm、示值A x、与220V正确值的误差Δ、示值相对误差γx以及引用误差γm。 2. 示值相对误差有没有可能小于引用误差?在仪表绝对误差不变的情况下,被测电压降为22V,示值相对误差γx将变大了?还是变小了? 解: 1. 从图1-4可知,准确度等级S=5.0级,满度值A m=300V。 最大绝对误差Δm=300V×5.0÷100=15V,示值A x=230V。 用更高级别的检验仪表测得被测电压(220V)与示值值的误差Δ=10V,示值相对误差γx=4.3%。 引用误差γm=(10/300)×100%=3.3%,小于出厂时所标定的5.0%。 2. 若绝对误差?仍为10V,当示值A x为22V,示值相对误差 γx=(10/22)×100%=45% 。与测量220V时相比,示值相对误差大多啦

预应力混凝土连续梁桥

6.2 预应力混凝土连续梁桥 6.2.1力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 6.2.2立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图6.1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图6.1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小主要取决于经济分跨和

建筑钢筋混凝土梁式转换层施工技术

建筑钢筋混凝土梁式转换层施工技术 【摘要】本文结合转换层的受力性能,对钢筋混凝土梁式转换层的施工技术进行了系统的研究。系统的研究了高层建筑钢筋混凝土梁式转换层的施工技术,提出了支撑体系的设计原则,钢筋的连接要点和大体积混凝土裂缝的控制措施。 【关键词】高层建筑梁式转换层混凝土施工技术 1 梁式转换层在荷载作用下的受力分析 转换层梁与梁柱框架共同受力,在竖向荷载作用下的计算简图可分为施工阶段和使用阶段两种情况: (1)施工阶段:结构的荷载以及结构的计算简图由于施工过程中楼层的增加,计算简图及荷载也随之变化,并且还与施工方案有密切关系。自转换层梁本身组成的梁柱框架起,然后逐渐增层,就演变成转换层梁作为下弦刚性梁的特殊框架式析架。 (2)使用阶段:转换层梁承受的竖向荷载,主要是结构的二期恒载和活载,结构的计算简图是施工阶段自重的逐步叠加,以及相应的使用荷载。在竖向荷载作用下转换层梁与梁柱框架共同受力的结构体系经过结构力学的原理进行等效受力的转换之后,与框架一剪力墙结构在水平荷载作用下是相同的。 2 模板和背愣的承载力与挠度验算 模板和背愣(包括作为模板的构造部分、固定于面板背面的背肋和用于搁置、支承模板的格栅、背愣与梁件)一般都属于受弯构件,承受竖向或水平荷载的作用。大多可按简支梁(板)或连续梁计算,当超过3跨时,按3跨连续梁计算。荷载端部(一端或两端)固定条件达到固定支座的要求时,则可采用两端固定、一端固定一端简支梁或悬臂梁进行计算。 模板、背愣和支架都属于临时结构,且在一般情况下,多数难以完全达到相应正规(永久性)工程结构的构造、设置和工作条件要求,而一旦出现问题,其后果又有可能是“严重”和“很严重”的,因此,在计算时应采用适当的系数,以加强其安全保证。为此,在使用正规工程结构的计算式时,应采取适合的系数取值,并根据需要增加新的调整系数。 3 钢筋连接及安装技术 放样时考虑好钢筋之间的穿插避让关系,确定制作尺寸和绑扎顺序,钢筋工程安装顺序如下:

相关文档
最新文档