Simulink中连续与离散模型的区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Simulink中连续与离散模型的区别
matlab/simulink/simpowersystem中连续vs离散!
本文中的一些具体数学推导见下面链接:计算机仿真技术
1.连续系统vs离散系统
连续系统是指系统状态的改变在时间上是连续的,从数学建模的角度来看,可以分为连续时间模型、离散时间模型、混合时间模型。其实在simpowersystem的库中基本所有模型都属于连续系统,因为其对应的物理世界一般是电机、电源、电力电子器件等等。
离散系统是指系统状态的改变只发生在某些时间点上,而且往往是随机的,比如说某一路口一天的人流量,对离散模型的计算机仿真没有实际意义,只有统计学上的意义,所以在simpowersystem中是没有模型属于离散系统的。但是在选取模型,以及仿真算法的选择时,常常提到的discrete model、discrete solver、discrete simulate type等等中的离散到底是指什么呢其实它是指时间上的离散,也就是指离散时间模型。
下文中提到的连续就是指时间上的连续,连续模型就是指连续时间模型。离散就是指时间上的离散,离散模型就是指离散时间模型,而在物理世界中他们都同属于连续系统。为什么要将一个连续模型离散化呢主要是是从系统的数学模型来考虑的,前者是用微分方程来建模的,而后者是用差分方程来建模的,并且差分方程更适合计算机计算,并且前者的仿真算法(simulationsolver)用的是数值积分的方法,而后者则是采用差分方程的状态更新离散算法。
在simpowersystem库中,对某些物理器件,既给出的它的连续模型,也给出了它的离散模型,例如:
离散模型一个很重要的参数就是采样时间sampletime,如何从数学建模的角度将一个连续模型离散化,后面会有介绍。在simpowersystem中常用powergui这个工具来将系统中的连续模型离散以便采用discrete算法便于计算机计算。
下载附件保存到相册
2013-9-14 19:09 上传
2.连续模型的数学建模vs离散模型的数学建模
Note:这里的连续和离散都是指时间上的连续和离散,无关乎现实世界的连续系统和离散系统。所谓数学建模就是用什么样的数学语言来描述模型,连续系统的数学模型通常可以用以下几种形式表示:微分方程、传递函数、状态空间表达式,这三中形式是可以相互转换的,其中又以状态空间表达式最有利于计算机计算。
①微分方程:
一个连续系统可以表示成高阶微分方程,即
下载附件保存到相册
2013-9-14 19:10 上传
②传递函数
上式两边取拉普拉斯变换,假设 y 及 u 的各阶导数(包括零阶)的初值均为零,则有
下载附件保存到相册
2013-9-14 19:10 上传
于是便得微分方程的传递函数描述形式如下:
下载附件保存到相册
2013-9-14 19:11 上传
③状态空间表达式
线性定常系统的状态空间表达式包括下列两个矩阵方程:
下载附件保存到相册
2013-9-14 19:11 上传
(7-1)
下载附件保存到相册
2013-9-14 19:11 上传
(7-2)
式(7-1)由n 个一阶微分方程组成,称为状态方程;式(7-2)由l个线性代方程组称为输出方程
因此获得如下的状态方程与输出方程(令a0=1 ):
下载附件保存到相册
2013-9-14 19:12 上传
离散模型假定一个系统的输入量、输出量及其内部状态量是时间的离散函数,即为一个时间序列:
捕获.JPG KB, 下载次数: 6)
下载附件保存到相册
2013-9-14 17:50 上传
,其中T为离散时间间隔,其实T也就是上文中的sample time。
Note:再强调一次,这里的离散模型是指离散时间模型,与现实世界中的离散事件模型没有任何关系,在simpowersystem中所讲的离散都是指时间上的离散,与
我们在信号中学的那个离散概念没有关系。
离散时间模型有差分方程、离散传递函数、权序列、离散状态空间模型等形式。
①差分方程
差分方程的一般表达式为:
下载附件保存到相册
2013-9-14 19:13 上传
同样差分方程可以转换成后面那些表达形式。
3.连续模型的离散化
正如.连续系统vs离散系统中截图所示的那样,如何由一个连续模型得到它的离散模型,(RMSdiscrete RMS value),以及powergui是通过什么方法将连续模型离散化的,即simulator是如何将微分方程转换成差分方程的。
假设连续系统的状态方程为
捕获.JPG KB, 下载次数: 6)
下载附件保存到相册
2013-9-14 17:52 上传
现在人为地在系统的输入及输出端加上采样开关,同时为了使输入信号复员为原来的信号,在输入端还要加一个保持器,如图所示。现假定它为零阶保持器,即假定输入向量的所有分量在任意两个依次相连的采样瞬时为常值,比如,对第n 个采样周期u(t)=u(nt),其中 T 为采样间隔。
下载附件保存到相册
2013-9-14 19:13 上传
由采样定理可知,当采样频率ws和信号最大频率wmax满足ws>2wmax的条件时,
可由采样后的信号唯一地确定原始信号。把采样后的离散信号通过一个低通滤波器,即可实现信号的重构。值得注意的是,图所示的采样器和保持器实际上是不存在的,而是为了将式离散化而虚构的。
下面对上式进行求解,对方程式两边进行拉普拉斯变换,得
即
下载附件保存到相册
2013-9-14 17:55 上传
通过一系列的拉斯反变换和卷积,最终得到其差分方程(具体过程不用关心)下载附件保存到相册
2013-9-14 17:56 上传
下载附件保存到相册
2013-9-14 19:15 上传
统称为系统的离散系数矩阵。
在转换过程中引入了一个重要参数T,即采样间隔,也就是采样时间,不管是powergui还是其他离散模型,只要涉及到离散,都必然会涉及到sampletime,如下图
下载附件保存到相册
2013-9-14 19:15 上传
那么sample time 一般取多大呢,一直满足采样定理即可,即信号的采样频率大于信号本身最大频率的2倍即可。
4. simulator连续模型的仿真算法(simulatesolver,也可译成仿真解算器)和