第二十一章曲线积分和曲面积分的计算

第二十一章曲线积分和曲面积分的计算
第二十一章曲线积分和曲面积分的计算

第二十一章 曲线积分和曲面积分的计算

§1. 第一类曲线积分的计算

1. 计算下列第一型曲线积分:

(1)

22()L x y ds +?,其中L 是以(0,0),(2,0),(0,1)为顶点的三角形;

(2)

?,其中L 是圆周22x y ax +=; (3)

L xyzds ?,其中L 为螺线cos ,sin x a t y a t ==,(0),02z bt a b t π=<<≤≤; (4)

222()L x y z ds ++?,其中L 与(3)相同; (5)

4433()L x y ds +?,其中L 为内摆线222333x y a +=; (6)

2L y ds ?,其中L 为摆线的一拱(sin ),(1cos ),02x a t t y a t t π=-=-≤≤; (7)

L xyds ?,其中L 为球面2222x y z a ++=与平面0x y z ++=的交线; (8)

()L xy yz zx ds ++?,其中L 同(7);

(9) L xyzds ?,其中L 是曲线21,(01)2x t y z t t ==

=≤≤;

(10) ?,其中L 是2222x y z a ++=与x y =相交的圆周.

2. 设曲线L 的方程为

cos ,sin ,t t t x e t y e t z e === 0(0)

t t ≤≤, 它在每一点的密度与该点的矢径平方成反比,且在点(1,0,1)处为1,求它的质量.

3. 若曲线以极坐标给出:()ρρθ=12()θθθ≤≤,试给出计算(,)L f x y ds ?的公式,并用此公式计算下列曲线积分:

(1)

L ?,其中L 是曲线(0)4a πρθ=≤≤;

(2) L xds ?,其中L 是对数螺线(0)k ae k θρ=>在圆r a =内的部分.

4. 求螺线的一支L :cos ,sin ,(02)2h x a t y a t z t t ππ===

≤≤对x 轴的转动惯量22()L

I y z ds =+?.设此螺线的线密度是均匀的.

5. 求抛物面壳221()2

z x y =

+,01z ≤≤的质量.设此壳的密度z ρ=. §2. 第一类曲面积分的计算

1. 计算下列第一型曲面积分:

(1) 22()S

x y dS +??,其中S

1z ≤≤的边界曲面; (2)

22S dS x y +??,其中S 为柱面222x y R +=被平面0z =和z H =所截取的部分; (3)

32||S x y z dS ??,其中S 为曲面22z x y =+被1z =割下的部分; (4) 2

S z dS ??,其中S 为螺旋面的一部分:

cos ,sin ,x u v y u v z v === (0,02)u a v π≤≤≤≤; (5)

22()S x y dS +??,S 是球面2222x y z R ++=. 2. 计算()(,,)S

F t f x y z dS =??,其中S 是一平面x y z t ++=,而

2222222221, 1,(,,) 0, 1.

x y z x y z f x y z x y z ?---++≤?=?++>??当当.

§3. 第二类曲线积分

1. 计算下列第二型曲线积分:

(1) (2)L

a y dx dy -+?,其中L 为摆线(sin ),(1cos ),(02)x a t t y a t t π=-=-≤≤沿t 增加的方向; (2) 22L xdx ydy ds x y -++?,其中L 为圆周222x y a +=依逆时针方向;

(3)

L xdx ydy zdz ++?,其中L 为从(1,1,1)到(2,3,4)的直线段; (4)

22(2)(2)L x xy dx y xy dy -+-?,L 为2y x =从(1,1)到(-1,1); (5) 22()L

ydx xdy x y dz -++?,L 为曲线,,t t x e y e z at -===从(1,1,0)到1(,,)e e a -;

(6) 2222()()L x y dx x y dy ++-?,L 为以(1,0),(2,0),(2,1),(1,1)A B C D 为顶点的正方

形沿逆时针方向.

2. 计算曲线积分

222222()()()L y z dx z x dy x y dz -+-+-?.

(1) L 为球面三角形2221x y z ++=,0,0,0x y z ≥≥≥的边界线,从球的外测看去,L 的方向为逆时针方向;

(2) L 是球面2222x y z a ++=和柱面22x y ax +=(0)a >的交线位于Oxy 平面上方的部分,从x 轴上(,0,0)b ()b a >点看去,L 是顺时针方向.

3. 求闭曲线L 上的第二型曲线积分 22L ydx xdy x y

-+?, (1) L 为圆222x y a +=,逆时针方向;

(2) L 为椭圆22

221x y a b

+=,顺时针方向; (3) L 为以(0,0)为中心,边长为a ,对边平行于坐标轴的正方形,顺时针方向;

(4) L 是以(-1,-1),(1,-1),(0,1)为顶点的三角形,顺时针方向.

4. 求力场F 对运动的单位质点所作的功,此质点沿曲线L 从A 点运动到B 点:

(1) 22(2,2)F x xy y x y =--,L 为平面曲线2y x =,(0,0),(1,1)A B ;

(2) (,)F x y xy =+,L 为平面曲线1|1|y x =--,(0,0),(2,0)A B ;

(3) (,,)F x y y z z x =---,L 的矢量形式为23()r t ti t j t k =++,(0,0,0),(1,1,1)A B ;

(4) 222(,,)F y z x =,L 的参数式为cos ,sin ,x t y t z t αβγ===(,,αβγ为正数),

(,0,0),(,0,2)A B ααπγ.

5. 设,,P Q R 在L 上连续,L 为光滑弧段,弧长为l ,证明:

||L

Pdx Qdy Rdz Ml ++≤?.

其中(,,)max x y z L M ∈=. 6. 设光滑闭曲线L 在光滑曲面S 上,S 的方程为(,)z f x y =,曲线L 在Oxy 平面上

的投影曲线为l ,函数(,,)P x y z 在L 上连续,证明:

(,,)(,,(,))L l

P x y z dx P x y f x y dx =?? . 7. 计算L I xyzdz =?,其中L :2221x y z ++=与y z =相交的圆,其方向按曲线依次

经过1,2,7,8卦限.

§4. 第二类曲面积分

1. 计算下列第二型曲面积分:

(1) 22()()S

y x z dydz x dzdx y xz dxdy -+++??,其中S 为0x y z ===,x y z a === 六个平面所围的正立方体的外测;

(2) ()()()S

x y dydz y z dzdx z x dxdy +++++??,其中S 是以原点为中心,边长为2的正立方体表面的外测;

(3) S

yzdzdx ??,S 为222

2221x y z a b c ++=的上半部分的上测; (4) S

zdxdy xdydz ydzdx ++??,S 为柱面221x y +=被平面0z =及3z =所截部分的外测;

(5) S

xydydz yzdzdx xzdxdy ++??,S 是由平面0x y z ===和1x y z ++=所围的四面体表面的外测; (6)

333S x dydz y dzdx z dxdy ++??,S 为球面2222x y z a ++=的外测; (7) 222S x dydz y dzdx z dxdy ++??,S 是球面2222()

()()x a y b z c R -+-+-=的外测.

2. 设某流体的流速为(,,0)v k y =,求单位时间内从球面2224x y z ++=的内部流过球面的流量.

3. 设流体的流速为55(,0,)x v xy z x =,求穿过柱面222()x y a h z h +=-≤≤外测的流量.

格林公式及其在曲线积分求解中的应用

南昌工程学院 《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用 课程名称数分选讲 系院理学院 专业信息与计算科学 班级2012级1班 学生姓名魏志辉 学号2012101316 指导教师禹海雄 设计起止时间:2015年6月11日至2015年6月15日

什么是曲线积分?? 1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插 入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分) 对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx; 或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对 坐标轴的曲线积分了。

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

第一类曲线积分的计算

第一类曲线积分的计算

第一类曲线积分的计算 1、定义 定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i n i 1s max T ,在i L 上任取一点 (i ,).n ,,2,1i )(i 若存在极限J s ),(f lim i i n 1 i i 0T 且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为 J s ),,(f lim i i i n 1 i i 0T ,(此处i s 为i L 的弧长,i n i 1s max T , J 为一常 数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义 (1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i 由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i ) i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和 式

空间曲线积分的计算方法

空间曲线积分的计算方法 (1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得: .所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分 公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来. 解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式 .用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

曲线积分与曲面积分

第十章 曲线积分与曲面积分 一、 基本内容要求 1. 理解线、面积分的概念,了解线、面积分的几何意义及物理意义,能用线、 面积分表达一些几何量和物理量; 2. 掌握线、面积分的计算法; 3. 知道两类曲线积分及两类曲面积分的联系; 4. 掌握格林公式,并能将沿闭曲线正向的积分化为该曲线所围闭区域上的二重 积分; 5. 掌握曲线积分与路径无关的充要条件,并能求全微分为已知的某个原函数, 注意此时所讨论问题单连通域的条件不可缺少; 6. 掌握高斯公式,并能将闭曲面Σ外侧上的一个曲面积分化为由其所围空间闭 区间Ω上的三重积分。 二、 选择 1.设OM 是从O (0,0)到点M (1,1)的直线段,则与曲线积分I=ds e om y x ? +2 2不相等的积分是:( ) A)dx e x 21 2? B) dy e y 21 02? C) dt e t ? 2 D) dr e r 21 ? 2.设L 是从点O(0,0)沿折线y=1-|x-1| 至点A(2,0) 的折线段,则曲线积分I= ? +-L xdy ydx 等于( ) A)0 B)-1 C)2 D)-2 3.设L 为下半圆周)0(222≤=+y R y x ,将曲线积分I= ds y x L ? +)2(化为定

积分的正确结果是:( ) A) dt t t R )sin 2(cos 0 2+? -π B) dt t t R )sin 2(cos 0 2 +?π C) dt t t R )cos 2sin (0 2+-?- π D) dt t t R )cos 2sin (232 2+-?π π 4.设L 是以A(-1,0) ,B(-3,2) ,C(3,0) 为顶点的三角形域的周界沿ABCA 方向, 则 ? -+-L dy y x dx y x )2()3(等于:( ) A) -8 B) 0 C) 8 D) 20 5.设AEB 是由点A(-1,0) 沿上半圆 21x y -=经点E(0,1)到点B(1,0), 则曲线积分I= dx y AEB ? 3等于:( ) A) 0 B)dx y BE ? 32 C) dx y EB ? 32 D) dx y EA ? 32 三、 填空 1.γβαcos ,cos ,cos 是光滑闭曲面Σ的外法向量的方向余弦,又Σ所围的空间闭区域为Ω;设函数P(x,y,z),Q(x,y,z)和R(x,y,z)在Ω上具有二阶连续偏导数,则由高斯公式,有 ds y P x Q x R z P z Q y R ]cos )(cos )(cos )[( γβα??-??+??-??+??-???? ∑ = 。 2.设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,且

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

最新曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中, 必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二 型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌 握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题 型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说 明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第 一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系, 让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的 应用. 2 预备知识 2.1第二型曲面积分的概念

2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++v v v v , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++v v v v 则 若∑为曲面,流速v v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =v v 和单位法向量i n v 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 2.1.2 定义

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分 定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分. 第一节 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ. 如图13-1我们可以将物体分为n 段,分点为 n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ???.取其中的一小段弧i i M M 1-来分 析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点 (),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于 (),i i i s ρξη?.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即 ()∑=?≈n i i i i s y x M 1,ρ. 用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到 1 lim (,).n i i i i M s λρξη→∞ ==?∑ 即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到. 上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义: 定义13.1 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入 图13-1

第二类曲面积分的计算方法

第二类曲面积分的计算 方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过 程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧. 由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知 识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在 求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种 方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分, 并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重 积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第 二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为

(,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 定义 .S S i i 的面积,他们的符号由的方向来确定若的法线正向与轴正向成锐角时, z .S xy i i i S xoy S z ?在平面的投影区域的面积为正反之,若法线正向与轴正向成钝角时, .S xy i i xoy S ?他在平面的投影区域的面积为负在各个小曲面上任取一点,(,) i i i ξηζ. 若 lim 1 T n i P →=∑,(,)i i i ξηζyz i S ?0 lim 1 T n i Q →=+ ∑,(,)i i i ξηζzx i S ?0 lim 1 T n i R →=+ ∑,(,)i i i ξηζxy i S ?存在, 或者

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

曲线积分与曲面积分总结

对弧长的曲线积分??+=L L y d x d y x f ds y x f 22),(),( ???==) ()(:t y y t x x L βα≤≤t dt t y t x t y t x f ?'+'βα)()())(),((22 (,,)((),(),(L L f x y z ds f x t y t z t =??():()()x x t L y y t z z t =??=??=? βα≤≤t ((),(),(f x t y t z t βα ? 22222.2x y L L L e ds e ds e ds e π+===? ?? 22=2(0)L x y y +≥为上半圆周 ?+L dy y x q dx y x p ),(),( ???==) ()(:t y y t x x L α=t β=t dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?βα (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++?

():()()x x t L y y t z z t =??=??=? α=t β =t ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++? 11 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+?? 1( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? ??=??-??D dxdy y p x q )( ?+L dy y x q dx y x p ),(),( y p x q ??=?? ???+=+2 1212211),(),(),(),(21) ,(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,)P x y dx Q x y dy dU x y +=Q P x y ??? =?? 1、 ?? ??++= =∑xy D y x dxdy f f y x f y x ds z y x y x f z 221)),(,,(),,(),(μμ 2、 (,)(,,)(,(,),xz D y f x z x y z ds x f x z z μμ∑==???? 3、 (,)(,,)((,),,yz D x f y z x y z ds f y z y z μμ∑==???? ds ∑ =∑??面积。

空间曲线积分的计算方法

空间曲线积分的计算方法. (1)曲线积分的计算 例1 计算222222()()()C I y z dx z x dy x y dz =-+-+-?,其中C 为平面 1=++z y x 被三个坐标平面所截三角形的边界,若从x 轴正向看去,定向为逆时针方向. 方法一 根据第二型曲线积分的定义化为定积分计算 根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数. 解法一:设(1,0,0),(0,1,0),(0,0,1)A B D ,则0,1:==+z y x ,:1,0BD y z x +==,:1,0DA x z y +==,则:C AB BD DA ++.由曲线积分的定义,有 dz y x dy x z dx z y AB )()()(222222-+-+-? 32])1[(0122-=+-= ?dx x x . 同理可得: 222222()()()BD y z dx z x dy x y dz -+-+-? 2222222()()()3 DA y z dx z x dy x y dz =-+-+-=-?. 所以 2AB BD DA I =++=-???. 方法二 将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系. 解法二:设)0,0,0(O ,OA BO AB L ++:1,则dy dx dz y x z --=--=,1,D 是1L 围成的区域.代入原积分由格林公式得 原式))((])1[(])1([2222221dy dx y x dy x y x dx y x y L ---+---+---=? ??-=-=D dxdy 24. 化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算. 方法三 根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮助.我们主要在讨论单轮换对称的情形. 解法三:由题目特征可知该积分及曲线C 都具有轮换对称性,因此由对称性知 原式dz y x dy x z dx z y )()()(3222222-+-+-=?

第八章 曲线积分与曲面积分

第八章曲线积分与曲面积分 本章是把定积分概念推广到定义在曲线是的函数和定义曲面上的函数上去,就得到曲线积分和曲面积分。 §1对弧长的曲线积分 问题:设有一曲线形构件占xOy 面上的一段曲线L ,设构件的质量分布函数为),(y x ρ,设),(y x ρ定义在L 上且在L 上连续,求构件的质量。 ∑=→=n i i i i S M 10 ),(lim ?ηξρλ 定义:设L 为xOy 平面上的一条光滑的简单曲线弧,),(y x f 在L 上有界,在L 上任意插入一点列1M ,2M ,…,1-n M 把L 分成n 个小弧段 i i i M M L 1-=?的长度为i S ?,又),(i i ηξ是i L ?上的任一点,作乘积 i i i S f ?ηξ),(,),,2,1(n i =,并求和∑=n i i i i S f 1 ),(?ηξ,记}max {i S ?λ=,若 ∑=→n i i i i S f 1 ),(lim ?ηξλ存在,且极限值与L 的分法及),(i i ηξ在i L ?的取法无关, 则称极限值为),(y x f 在L 上对弧长的曲线积分,记为:?L s y x f d ),(,即 ?L s y x f d ),(∑=→=n i i i i S f 1 ),(lim ?ηξλ 。 其中),(y x f 叫做被积函数,L 叫做积分曲线。 对弧长曲线积分的存在性: 设),(y x f 在光滑曲线L 上连续,则?L s y x f d ),(一定存在。 对弧长曲线积分的性质:

1、???±=±L L L s y x g s y x f s y x g y x f d ),(d ),(d )],(),([ 2、??=L L s y x f k s k y x kf d ),(d ),( 3、设21L L L +=,则???+=2 1 d ),(d ),(d ),(L L L s y x f s y x f s y x f 这里规定:若L 是封闭曲线,则曲线积分记为?L s y x f d ),( 有上述对弧长的曲线积分,则上面的问题就可以用对弧长的曲线积分表示为 ?=L s y x f M d ),( 对弧长的曲线积分的计算法: 在一定体积下化为定积分计算,首先要注意: 1、),(y x f 定义在曲线L 上, 2、s d 是弧长微分。 定理:设),(y x f 在光滑曲线L 上连续,L 由参数方程) ()() (βαψ?≤≤? ? ?==t t y t x 给出,其中)(t ?、)(t ψ在],[βα上具有连续导数且0)()(22≠'+'t t ψ?,则 ? L s y x f d ),(存在,且:??'+'=β α ψ?ψ?t t t t t f s y x f L d )()()](),([d ),(22。 若L 方程为:)(x y ψ=,b x a ≤≤,则??'+=b a L x x x x f s y x f d )(1)] (,[d ),(2ψψ。 若L 方程为:)(y x ?=,d y c ≤≤,则??'+=d c L y y y y f s y x f d )(1]),([d ),(2?? 例1、计算?L s y d ,其中L :)20()cos 1() sin (π≤≤? ? ?-=-=t t a y t t a x

第一类曲线积分

§1 第一类曲线积分的计算 设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为 ()()() ()0x x t y y t t t T z z t =?? =≤≤?? =? 则 ()()()() ,,,,T l t f x y z ds f x t y t z t =??? ?。 特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ?=,()a x b ≤≤,那么有 ((,) , ()b l a f x y ds f x x ?=? ?。 例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。求22 ()l x y ds +? 。 例:设l 是曲线x y 42 =上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分l yds ?。 例:计算积分2l x ds ? ,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。 例:求()l I x y ds =+?,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。 §2 第一类曲面积分的计算 一 曲面的面积 (1)设有一曲面块S ,它的方程为 (),z f x y =。 (),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则该 曲面块的面积为 xy S σ=。 (2)若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =?

令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则该曲面块的面积为 S ∑ =。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 二 化第一类曲面积分为二重积分 (1)设函数(),,x y z φ为定义在曲面S 上的连续函数。曲面S 的方程为(),z f x y =。(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则 ()( ),,,,,xy S x y z dS x y f x y σφφ=??????。 (2)设函数(),,x y z φ为定义在曲面S 上的连续函数。若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =? 令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则 ()()()( ),,,,,,,S x y z dS x u v y u v z u v φφ∑ =??????。 例:计算 ()S x y z dS ++?? ,S 是球面2222 x y z a ++=,0z ≥。 例:计算 S zdS ??,其中S 为螺旋面的一部分:

相关文档
最新文档