初中数学竞赛集锦(全面)

初中数学竞赛集锦(全面)
初中数学竞赛集锦(全面)

初三数学竞赛试题(中等以上)

说明:I 卷的答案必须答在II 卷前的答题卡上

第I 卷

一、单选题(每题3分,共48分)

1、与数轴上的点一一对应的数是( )

A 、整数

B 、有理数

C 、无理数

D 、实数

2、一块矩形木板,截去一块三角板后(只切一刀)余料上角的个数是( ) A 、5 B 、3 C 、3或5 D 、3;4或5

3、若m,n 为实数,则代数式n m n m ++-2)(+|n

m

|的值( )

A 、大于0

B 、不小于0

C 、小于0

D 、等于0

4、若两圆的半径分别为3和5,圆心距为x ,且2)3(-x =x-3,|x-4|=4-x,则两圆的公切线共有( )

A 、1条

B 、2条

C 、3条

D 、4条

5、已知关于x 的不等式(1-a )x>2的解集为x

-12

,则a 的取值范围是( )

A 、a>0

B 、a>1

C 、a<0

D 、a<1

6、若α,β都是锐角,且COS α>COS β,则下列各式中正确的是( ) A 、 α>β B 、Sin α>Sin β C 、tg α> tg β D 、ctg α> ctg β

7、若实数a,b 满足a 2-8a+5=0,b 2-8b+5=0则代数式11--a b +1

1

--b a 的值为( )

A 、—20

B 、2

C 、2或—20

D 、2或20

8、若三角形的三边长为Sin θ、COS θ,tg θctg θ,00<θ<900,则此三角形的内切圆半径是( )

A 、Sin θ+COS θ—1

B 、1-Sin θ-COS θ

C 、21(Sin θ+COS θ—1)

D 、2

1

(1-Sin θ-COS θ)

9、方程x 2+3x-6=0与x 2-6x+3=0所有根的乘积是( ) A 、-18 B 、18 C 、-3 D 、3 10、在(1)圆、(2)等腰梯形、(3)正方形、(4)正三角形这四种图形中,既是轴对称图形又是中心对称图形的是( )

A 、(1)(4)

B 、(1)(2)(3)

C 、(1)(3)

D 、(1)(3)(4) 11、若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )

A 、k<31

B 、k<31<1

C 、k>1

D 、k>1或k<31

12、两圆的半径分别是R 和r (R>r ),圆心距为d ,若关于x 的方程 x 2—2rx+(R —d)2=0有相等的两实根,则两圆的位置关系是( )

A 、内切

B 、外切

C 、相交

D 、相切 13、二次函数y=ax 2+bx+c 的图象如图所示,则a,b,c 的大小关系是( )

A 、a>b>c

B 、a>c>b

C 、a>b=c

D 、不能确定

14、半径为5、25的两圆相交且公共弦长为8

则圆心距是( )

A 、5

B 、6

C 、1

D 、1或5

15、如图,P ,Q 为双曲线y=x

2

上的两点

Rt △POM 的面积为S 1,Rt △QON 的面积为S 2,则S 1与S 2之间的关系是( )

A 、S 1=2S 2

B 、S 1+S 2<2

C 、S 1=S 2=1

D 、S 1+S 2>2 16、下列四个命题: (1)如果一条直线上的两个不同的点到另一 条直线的距离相等,那么这两条直线平行;

(2)反比例函数的图象是轴对称图形,且只有一条对称轴;

(3)等腰三角形一腰上的高等于腰长的一半,则底角等于750; (4)相等的圆周角所对的弧相等。 其中错误的命题有( )

A 、4个

B 、3个

C 、2个

D 、1个

I 卷答题卡

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

II 卷

二、填空题(每空4分,共40分)

17、已知a 是正数,且a —a 2=1,则a 2-24

a = 。

18、如果某商品进价降低5%,而售价不变,利润可由日前的a%增加到 (a+15)% ,则a= 。

19、如图在圆内接四边形ABCD中,∠A=60o ∠B=900 AB=2,CD=1则BC=

20、已知反比例函数y=

x

m

21-的图象上两点 A(x 1,y 1),B(x 2,y 2),当x 1<0< x 2时,y 1

21、如图在三角形ABC中,AD是中线, 且AB=3,AC=5 AD=2, 则BC=

22、如图,圆A,圆B,圆C两两不相交,且半径都是r ,则图中阴影部分的 面积为 。

23、某县举办建党80周年歌咏比赛,六位评委给某合唱队评分如下:

90,96,91,96,92,94则这组数据中,众数和中位数分别 是 。

24、用长为8米的铝合金条制成如图形状的矩形窗框,使窗户的

透光面积最大,那么窗户的最大透光面积是 。

25、如果圆柱和母线长为3厘米,侧面积为12л平方厘米,那么圆柱的底面半径是 。

26、为了调查学生的身体状况,对某校的毕业生进行了体检,在前50名学生中有49名是合格的,以后每8名中有7名是合格的,且该校毕业生体检合格率在90%以上,则该校毕业生人数最多有 名。

三、解答下列各题(共62分) 1、计算(6分)

1

21++2-2+COS2

300—0.52001·22002·Sin450

2、已知a>0,b a

<0 化简2)

2(326---+--a b b a (6分)

学校 考场 姓名 考号

3、如图,△ABC中,∠B=900。O是AB上的一点,以O为圆心OB为半径的圆交AO于点E,与AC相切于点D,若AD=2,AE=1。求CD的长。(6分)

4、若x,y为正整数,且xy+x+y=23,x2y+xy2=120。求x2+y2的值.(6分)5、与铁路平行的一条公路上有一行人与骑车人同时向东行进,行人速度是3.6千米/小时,骑车人的速度是10.8 千米/小时,如果一列火车从他们的背后开来,它通过行人的时间是22秒,通过骑车人的时间是26秒,这列火车的身长是多少米?

6、已知关于x的方程x2—(3k+1)x+2k2+2k=0。(1)求证:无论k取何实数值方程总有实数根。(2)若等腰三角形△ABC的一边长a=6,另两边长b,c恰好是此方程的两根,求△ABC的周长。(10分)

7、已知点M(a,b)第一象限,半径为r的圆M交x轴于A、B两点,交y轴于C、D两点,且点M在直线y=x—2 上,点A、B分圆M的弧长之比为1:3,CD=2。

(1)求证:r=2

b (2)求过M、A、B三点的抛物线的解析式。(10分)

8、如图:直角梯形ABCD与矩形EFGH的边AB、EH在直线L上,

且AD=DC=EF=8cm,EH=2cm,BE=6cm,∠ABC=450。若矩形EFGH 沿直线L以2厘米/秒的速度向左运动,设运动时间t(秒),矩形与梯形叠合部分的面积S(cm2),试求:当0≤t≤11时,S与t的函数关系式。

初中数学竞赛试题 2 及答案

题号 1~5 6~10 11 12 13 14 总分 得分

评卷人

一、选择题(共5小题,每小题6分,满分30分)

1、设M = b 222c b a ++,其中a 、b 为相邻的两个整数,c =ab ,则M( )

(A) 必为偶数 (B) 必为奇数 (C) 必为无理数 (D) 以上三种都有可能

2、等腰△ABC 中,AB =AC =6,P 为BC 上一点,且PA =4,则PB ·PC 的值等于( )

(A) 10 (B) 15 (C) 20 (D) 25

3、若x -1=2(y +1)=3(z +2),则x 2

+y 2

+z 2

可取得的最小值为( )

(A) 6 (B) (C) (D)

4、已知正方形ABCD 的边长为2,E 、F 分别是AB ,BC 的中 点,AF 分别交DE ,DB 于G ,H 两点,则四边形BEGH 的 面积是( )

(A) (B) (C) (D) 5、如图,边长为12的正三角形ABC 内接于圆,弦DE ∥BC 分别交AB ,AC 于F ,G ,若AF 长x ,DF 长y 都是正整数,则y 的

值为( )

(A) 2 (B) 3 (C) 4 (D) 6

二、填空题(共5小题,每小题6分,满分30分)

6、己知方程x 2-x -1=0的根是方程x 6-px 2+q =0的根,则p =________,q =

________.

7、已知:如图,凸五边形ABCDE 中,S △ABC =S △BCD =S △CDE =S △DE A

S △EAB =1,则S 五边形ABCDE =__________.

8、如图,把10个两两互不相等的正整数,a 1a 2…a 10写成下列图表

的形式,其中两个箭头所指的数等于这两个箭头始点两个数的和,例如 表示a 2=a 1+a 5,那么, 满足该图表的a 4的最小可能值为___________.

9、已知二次函数y =ax 2+bx +c 与一次函数y =mx +n 的图

象交点为(-1,2),(2,5),且二次函数的最小值为1,则这个二次函数的解析式为_________________________.

10、将四十个自然数1,2……,40任意排成一排,总可以找到连续排列的八个数,它们的和不小于A ,则A 的最大值等于_____________. 三、解答题(共4题,每小题15分,满分60分) 11、已知正实数a 、b 、c 满足方程组

a +

b 2+2a

c =29 b +c 2

+2ab =18 c +a 2+2bc =25 求a +b +c 的值

12、设计一套邮票,设计要求如下:该套邮票由四种不同面值的邮票组成,面值数为

正整数,并且对于连续整数1,2…,R 中的任一面值数,都能够通过适当选取面值互相不同且不超过三枚的邮票实现。试求出R 的最大值,并给出一种相应的设计.

___________________ 姓名___________________ 考证号___________________ 试场___________________

……………………装………………订………………密……………封…………………线…………………

13、已知:如图,Rt△ABC中,AB=AC,∠BAC=90°,过点A的圆分别交AB,AC于

点P和Q,交BC于点D和E,若BP+CQ=PQ,求∠DAE的度数.

14、试求出所有满足下列条件的正整数a,b,c,d,其中1<a<b<c<d,且abcd

-1是(a-1)·(b-1)·(c-1)·(d-1)的整数倍.

试题参考答案及评分标准

一、选择题(共5小题,每小题6分,满分30分)

12345

B C D C C

二、填空题(共5小题,每小题6分,满分30分)

6、p=8,q=3

7、

8、20

9、y=x2+1或y=

9

1

(x2+8x+25) 10、164

三、解答题(共4题,每小题15分,满分60分)

11、解:三式相加,得:

(a+b+c)+(a2+b2+c2+2ab+2bc+2ca)=72 (5分)

∴ (a+b+c)2+(a+b+c)-72=0

∴〔(a+b+c)+9〕〔(a+b+c)-8〕=0 (5分)

∵ a,b,c都是正实数

∴ a+b+c+9>0

∴ a+b+c=8 (5分)

12、解:从四种不同面值的邮票中选取面值互不相同且不超过三张的不同取法共有4+6+4=14(种)。

不同取法所获得邮票的总面值可能相同,也可能不同,至多只有14种不同的总面值,∴ R≤14 (5分)

又若设计四种邮票的面值数分别为1,2,4,8。 (5分)

∵ 1=1,2=2,3=1+2,4=4,5=1+4,6=2+4,7=1+2+4,

8=8,9=1+8,10=2+8,11=1+2+8,12=4+8,13=1+4+8,14=2+4+8,∴ R≤14

从而R最大为14,上述四种面值数作为一套,即是符合题意的设计。 (5分)

13、解:∵∠CAB=90°∴ PQ是直径,PQ的中点O

是过点A的圆的圆心。连OE,PE,作PF⊥AB交BC于点F

∵AB=AC ∴∠B=45°

∵ PF⊥AB ∴ PF=PB,PF∥CQ

∵ BP+CQ=PQ ∴ FP+CQ=PQ=2OE

∴ OE= (FP+CQ)(5分)

若取梯形CQPF的边CF中点M,连OM,则OM∥CQ∥PF,

O

M =

((F P +C Q )∴ OE∥CQ 又∵CQ⊥AB ∴ OE⊥AB ∴EA=EP ∴∠EAP=∠EPA ∵∠EAP=∠EAD+∠DAB ∠EPA=∠B+∠PEB

∴∠EAD+∠DAB=∠B+∠PEB ∴∠DAB=∠PEB

∴∠EAD=∠B=45° (5分)

14、解:设k=,

则由题意,k为正整数∴ a、b、c、d都是奇数或都是偶数 (1分)且1<k<

又易证:对于任意的正整数m,n且m>1,有< (1分)∵ 1<a<b<c<d ∴当a≥5时,

∴即1<k<2

这是不可能的∴1<a≤4 (3分)

当a=4时,则b、c、d都是偶数,从而k为奇数

∴ b≥6,c≥8,d≥10,k≥3 ∴

即3≤k<3,这是不可能的。

当a=3时,则b、c、d都是奇数∴ b≥5,c≥7,d≥9

∴∴ k=2

若b=7,则k=于是分子不是3的倍数而分母是3的倍数

从而k不是整数∴ b≠7

若b≥9 则由于c-1,d-1都不能是3的倍数

∴这是不可能的

∴ a=3时,k=2,b=5 ∴ 2=,cd-16c-16d+17=0

∴ (c-16)(d-16)=239为质数∴ c-16=1 d-16=239

∴ a=3,b=5,c=17,d=255是符合题意的一组值。 (5分)

当a=2时,b、c、d为偶数,k为奇数∴

∴ k=3 ∴ 2bcd-1=3(b-1)·(c-1)·(d-1) ∴ bcd不是3的倍数

若b≠4,则b≥8,c≥10,d≥14,于是与k=3矛盾∴ a=2时,b=4,k=3 ∴ 3=

∴ (c-9)·(d-9)=71为质数∴ c-9=1,d-9=71

∴ a=2,b=4,c=10,d=80是符合题意的另一组值。 (5分)

综上所述,所有满足条件的正整数a、b、c、d有两组:

注意:没有推理过程,猜出一组给2分,猜出两组给5分。欢迎您的下载,资料仅供参考!

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛题中方程解的讨论问题解题策略(一)

- 1 - 初中数学竞赛题中方程解的讨论问题解题策略(一) 安徽省巢湖市教学研究室 张永超 (本讲适合初中) 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 一、知识要点 1.形如 方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为=。 2.关于一元二次方程(≠0)根的讨论,一般需应用到根的判别式、根与系数的关系等相关 知识。 ⑴若 ,则它有一个实数根=1;若 ,则它有一个实数根=-1。 ⑵运用数形结合思想将方程(≠0)根的讨论与二次函数 (≠0)的图象结合 起来考虑是常用方法。 3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。 4.关于含绝对值的方程解的讨论,一般使用分类讨论的方法去掉绝对值符号,有时也应用到数形结合思想与绝对值的几何意义。 5.解决有关方程整数根的问题时,一般要应用到整数的知识,要理解整除、质数等相关概念。 二、例题选讲 1.方程整数根的讨论 例1.已知 ,且方程 的两个实数根都是整数,则其最大的根是 。 解:设方程的两个实数根 为 、 , 则 ,所 以 。因为 、都是整数,且97是质数,若设 < ,则 , ,或 , ,因此最大的根是98。 评注:此题解答应用了一元二次方程根与系数的关系,分解质因数的知识等方法与技能。这种方法在有关一元二次方程整数根的讨论问题中经常用到,如:

- 2 - 类题.(2004年四川)已知,为整数,关于的方程有两个相同的实数 根,则-等于( ) A.1; B.2; C.±1; D.±2. 分析:依题意得⊿=,所以 ,由,为整 数得 ,或 ,或 ,或 , 所以-=± 1。 例2.(2000年全国竞赛)已知关于的方程的根都是整数,那么符合条件的整数 有______个。 解:上述方程没有说明是一次方程还是二次方程,因此需要分类讨论。 ①当时, ,符合题意; ②当 时,原方程是一元二次方程,易知 是方程的一个整数根。设是方程的另一个整数根, 由一元二次方程根与系数的关系得。因为 是整数,所以 ±1,或±2,∴ =-1,0,2, 3。 结合①、②得,本题符合条件的整数有5个。 评注:本例首先对项的系数是否为零进行了分类讨论。对于 时方程解的讨论方法具有一般性, 即由 是整数判断得 ±1,或±2。 延伸拓展:例2关于一元二次方程整数解的讨论方法应用到整除知识与分解变形技巧,是初中数学竞赛常考的内容,如: (2004年信利杯)已知、是实数,关于、的方程组有整数解(,),求、满 足的关系式。 解:原方程组可化 为 ,所 以 ,显然方程中≠-1,因 此 。因为、是整数,所以 ,即=0,或-2。 当=0时,=0,此时、满足的关系式是=0(为任意实数); 当=-2时,=8,此时、满足的关系式。 例3.(2004年全国联赛)已知方程 的根都是整数,求整数的值。

数学初中竞赛大题训练:几何专题(包含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

初中数学竞赛专题复习第二篇平面几何第18章整数几何试题新人教版

第18章 整数几何 ABC △,第三条高的长数,求这条高之长的所有可能值. 解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则 解得1515 45 h <<,h 可取4、5、6、7这四个值. ABC △3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠,而z 可正可负. 由2y z n x +=+,及()()()2 2 223242y z n x n x n x x -=+-+=+?,得4y z x -=,32 n y x = +,由勾股定理,知()2 22332n x n n x ?? ++=+ ??? ,展开得12n x =,由01x <≤及n 为正整数,知 1n =,2,…,12,这样的三角形有12个. ,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值. 解析 设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2 c R = ,内切圆半径2 a b c r +-= ,不妨设20a ≤. 由条件知 5 2 c a b c =+-,557a b c +=,平方,得()() 222225249a b ab a b ++=+,即 ()2212250a b ab +-=, ()()34430a b a b --=, 于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72. ABC △,60A ∠=?,7BC =,其他两边长均为整数,求ABC △的面积. 解析 设AB x =,AC y =,则由余弦定理,有 2249x y xy +-=. 由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解. 于是1 sin 602 ABC S xy = ?=△. P ,求经过P 且长为整数的弦的条数. 解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ?=?=,因此 24ST SP TP =+≥.

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD ⌒上任意一点.求证:PA PC PB 为定值. 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分DB ⌒ D.随C 点的移动而移动 【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线 的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB ⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE . (1)求证:四边形OGCH 是平行四边形; (2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度; (3)求证:CD 2+3CH 2是定值. P A B C D A P B

【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标; (2)连接MG ,BC ,求证:MG ∥BC ; (3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时, PF OF 的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律. (图1) (图2) 【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值. 【能力训练】 1.如图,点A ,B 是双曲线x y 3 上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则B O A C E H G D A

初中数学竞赛专题选讲对称式(含答案)

初中数学竞赛专题选讲(初三.5) 对称式 一、内容提要 一.定义 1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式. 例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, y x 11+, xyz x z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式. 2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式. 例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )( )111z y x ++, 2 22222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式. 二.性质 1. 含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍. 2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等. 例如:在含x, y, z 的齐二次对称多项式中, 如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为: m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数. 3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识

第六章几何基础知识 第一节线段与角的推理计算 【知识点拨】 掌握七条等量公理: 1、同时等于第三个量的两个量相等。 2、等量加等量,和相等。 3、等量减等量,差相等。 4、等量乘等量,积相等。 5、等量除以等量(0除外),商相等。 6、全量等于它的各部分量的和。 7、在等式中,一个量可以用它的等量来代替(等量代换)。 【赛题精选】 例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。 例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。 例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠ AOC和∠BOC的平分线。问图中互为补角关系的角共有多少对? 例4、已知B、C是线段AD上的任意两点,M是AB的中 点,N是CD的中点,若MN=a,BC=b,求CD的长。

例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。求∠MON的度数。 例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。 例7、如图,AE=8.9CM,BD=3CM。求以A、B、C、D、 E这5个点为端点的所有线段长度的和是多少? 例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM, PQ=11CM。求线段BQ的长。 例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。

求∠BOC的度数。 例10、已知C是AB上的一点,D是CB的中点。若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。求线段AC的长度是多少厘米?

【针对训练】

初中数学竞赛第二十三讲平面几何的定值与最值问题(含解答)

第二十三讲平面几何的定值与最值问题 【趣题引路】 传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1. 这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢? (1) (2) 解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短. 证明如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR. ∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP. 不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”. 【知识延伸】 平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.?所谓几何定值问题就是要求出这个定值. 在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变. 例1如果△ABC的外接圆半径R一定,求证: abc S 是定值.(S表示△ABC的面积)

解析 由三角形面积S=12 absinC 和正弦定理sin c C =2R, ∴c=2RsinC. ∴ abc S =2sin c C =4sin sin R C C =4R 是定值. 点评 通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值. 平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,?某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,?这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式). 例2 如图,已知⊙O 的半径 为⊙O 上一点,过A 作一半径为r=3的⊙O ′, 问OO ′何时最长?最长值是多少?OO ′何时最短?最短值是多少? 解析 当O ′落在OA 的连线段上(即⊙A 与线段OA 的交点B 时)OO ′最短,且最短长度为 当O ′落在OA 的延长线上(即⊙O 与OA 的延长线交点C 时)OO ′最长,且最长的长度为 点评 ⊙O ′是一个动圆,满足条件的⊙O ′有无数个,但由 于⊙O ′过A 点,所以⊙O ′的圆心O ′在以A 为圆心半径为3的⊙A 上. 【好题妙解】 佳题新题品味 例1 如图,已知P 为定角O 的角平分线上的定点,过O 、P?两点任作一圆与角的两边分别交于A 、B 两点. 求证:OA+OB 是定值. 证明 连结AP 、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.?另记x 1=OA,x 2=OB. 对△POA 应用余弦定理, 得x 12+OP 2-2OP ·cos ∠AOP ·x 1=r 2. 故x 1为方程x 2-2OP ·cos 1 2 ∠AOB ·x+(O P 2-r 2)=0的根,同理x 2亦为其根. 因此x 1,x 2为此方程的两根,由韦达定理,得x 1+x 2=2OP(1 2 ∠AOB)是定值.

相关文档
最新文档