初中数学竞赛专题选讲-配方法(含答案)

合集下载

最全最新初中数学竞赛——配方法

最全最新初中数学竞赛——配方法

初中数学竞赛专题讲解配方法把一个式子或一个式子的部分改写成完全平方式或者几个完全平方式的和的形式,这种解题方法叫配方法。

配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段。

运用配方法解题的关键在于“配凑”,“拆”与“添”是配方中常用的技巧。

熟悉以下基本等式:1.222)(2b a b ab a ±=+±2.2222)(222c b a ac bc ab c b a ++=+++++;3.[]222222)()()(21a c c b b a ca bc ab c b a ±+±+±=±±±++ 4.a b ac a b x a c bx ax 442222-+⎪⎭⎫ ⎝⎛+=++ 一、基础过关:1.因式分解:44x +=________________________________________2.=_______________________________3.代数式222a a +-的最小值为多少?4.求方程222450x y x y ++-+=的解,x y5.已知20172018a x =+,20172019b x =+,20172020c x =+,则多项式 222a b c ab bc ca ++---的值为多少?6.若12123y z x +--==,则222x y z ++的最小值为多少? 二、例题讲解例1.因式分解:222241a b a ab b -+-+练习1:在ABC ∆中,,,a b c 为ABC ∆的三条边,且满足444222212a b c a c b c ++=+,试判断ABC ∆的形状练习2:因式分解 ①4224x x y y ++ ; ②222669x xy y x y -+-++; ③42221x x ax a +--+例2.化简下列二次根式: ①347+; ②32-; ③223410+-.练习2:(1)化简: (2练习3:如果a =45x <<时,求a 的值练习4:若152a b c +-=-,则a b c ++的值为多少?例3.求下列代数式的最大或最小值:①22101x x ++; ②2112x x -+-练习1:已知y x ,实数满足0332=-++y x x ,则y x +的最大值为练习2:设,a b 为实数,那么222a ab b a b ++--的最小值是多少?练习3:若,,a b c 满足2229a b c ++=,代数式()()()222a b b c c a -+-+-的最大值是 多少?练习4:正实数,,x y z 满足10xy yz +=,则22254x y z ++的最小值为多少练习5:已知实数,,x y z 满足2623x y z x y z +-=⎧⎨-+=⎩求222x y z ++的最小值例4.解下列方程:①422210x x xy y -+++=; ②222624100x xy x y y +++++=练习1:已知24,40a b ab c -=++=,则a b c ++的值为多少?练习2:已知,,,a b c d 都为正数,且满足44444a b c d abcd +++=,求证:a b c d ===练习3:已知实数,,x y z 满足25,9x y z xy y +==+-,求23x y z ++的值练习4:已知,,a b c 是ABC ∆的三边长,且满足222222222,,111a b c b c a a b c ===+++,试求ABC ∆的面积练习5:已知,x y 为实数,且22422y x xy y ++≤+,求x y +的值练习6:已知0a b >>,且226a b ab +=,则a b a b+-的值为多少?例5:求方程22410160x y x y +-++=的整数解练习1:已知a 是正整数,且a a 20042+是一个正整数的平方,求a 的最大值。

八年级数学竞赛讲座配方法的解题功能附答案

八年级数学竞赛讲座配方法的解题功能附答案

第二十四讲 配方法的解题功能 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用.运用配方法解题的关键是恰当地“配凑”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.例题求解【例1】已知有理数x ,y ,z 满足)(2121z y x z y x ++=-+-+,那么(x —yz)2的值为 . (北京市竞赛题) 思路点拨 三元不定方程,尝试从配方法人手.【例2】 若32211-=+=-z y x ,则222z y x ++可取得的最小值为( ) A .3 B .1459 C .29 D .6 (武汉市选拔赛试题)思路点拨 通过引参,设k z y x =-=+=-32211,把x ,y ,z 用k 的代数式表示,则222z y x ++转化为关于k 的二次三项式,运用配方法求其最小值.【例3】怎样的整数a 、b 、c 满足不等式:c b ab c b a 233222++<+++.(匈牙利数学奥林匹克试题)思路点拨 一个不等式涉及三个未知量,运用配方法试一试.【例4】 求方程m 2-2mn+14n 2=217的自然数解. (上海市竞赛题)思路点拨 本例是个复杂的不定方程,由等式左边的特点,不难想到配方法.【例5】求实数 x 、y 的值,使得(y -1)2+(x+y -3)2+(2x+y -6)2达到最小值.(全国初中数学联赛试题)思路点拨 展开整理成关于x(或y)的二次三项式,从配方的角度探求式子的最小值,并求出最小值存在时的x 、y 的值.【例6】 为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD ,AB=10m ,BC=20m)上进行绿化,中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个直角三角形)上铺设草坪,并要求AC =AH=CF=CG ,那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH (中间种花的一块)面积最大?若存在,请求出该设计中AE 的长和四边形EFGH 的面积;若不存在,请说明理由.(2温州市中考题)思路点拨 这是一道探索性几何应用题,解题的关键是代数化.设AE=AH=CF=CG=xm ,则BE=DG=(20-x)m ,四边形E FGH 的面积可用x 的代数式表示,利用配方法求该代数式的最大值.注 配方的对象具有多样性,数,字母、等式、不等式都可以配方;同一个式于可以有不同的配方结果,可以配一个平方式,也可以配多个平方式.配方法的实质在于揭示式子的非负性,而非负数有以下重要性质:(1)若有限个非负数的和为0,则每一个非负数都为零;(2)非负教的最小值为零.学历训练1.若03)(2222=+++-++c b a c b a ,则=-++abc c b a 3333 .(2江西省中考题)2.设2122+=-b a ,2122-=-c b ,则222222444a c c b b a c b a ---++的值等于 .( “希望杯”邀请赛试题)3.分解因式:32422+++-b a b a = .4,已知实数 x 、y 、z 满足5=+y x ,92-+=y xy z ,那么z y x 32++= . (“祖冲之杯”邀请赛试题)5.若实数x 、y 满足052422=+--+y x y x ,则xy y x 23-+的值是( ) A .1 B .223+ C .223+ D .2326.已知20001999+=x a ,20011999+=x b ,20021999+=x c ,则多项式ac bc ab c b a ---++222的值为( )A .0B .1C . 2D .3(全国初中数学竞赛题)7.整数x 、y 满足不等式y x y x 22122+≤++,则x+y 的值有( )A .1个B .2个C .3个D .4个 ( “希望杯”邀请赛试题)8.化简312213242--+为( )A .5-43B . 43-lC .5D . 1 (2003年天津市竞赛题)9.已知正整数 a 、b 、c 满足不等式c b ab c b a 8942222++<+++,求a 、b 、c 的值.(江苏省竞赛题)10.已知x 、y 、z 为实数,且满足⎩⎨⎧=+-=-+3262z y x z y x ,求222z y x ++的最小值. (第12届“希望杯”邀请赛试题)11.实数x 、y 、z 满足⎩⎨⎧=+-+-=0223362z xy y x y x ,则z y x +2的值为 . 12.若521332412---=----+c c b a b a ,则a+b+c 的值为 . 13.x 、y 为实数,且y xy y x 24222+≤++,则x 、y 的值为x= ,y= . 14.已知941012422+++-=y y xy x M ,那么当x= ,y= 时,M 的值最小,M 的最小值为 .15.已知4=-b a ,042=++c ab ,则a+b =( )A .4B .0C .2D .-2(重庆市竞赛题)16.设0.>>b a ,ab b a 322=+,则ba b a -+的值为( ) A .2 B .3 C .2 D .5 (江苏省竞赛题)17.若 a 、b 、c 、d 是乘积为l 的4个正数,则代数式cd bd bc ad ac ab d c b a +++++++++2222 的最小值为( )A .0B .4C .8D .1018.若实数a 、b 、c 满足9222=++c b a ,代数式222)()()(a c c b b a -+-+-的最大值是( )A .27 D .18 C .15 D .1219.已知x+y+z=1,求证:31222≥++z y x . (苏奥尔德莱尼基市竞赛题)20.已知a>b ,且243)()(=+-+++ba b ab a b a ,a 、b 为自然数,求a 、b 的值. 21.已知a 、b 、c 是△ABC 的三边长,且满足b a a =+2212,c b b =+2212,a c c =+2212,试求 △ABC 的面积. 22.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果获利润最大的产晶是第k 档次(最低档次为第一档次,档次依次随质量增加),求k 的值. (山东省竞赛题)。

数学培优竞赛新方法(九年级)-配方法

数学培优竞赛新方法(九年级)-配方法

配方法把一个式子或一个式子的部分改写成完全平方式或者几个完全平方式的和的形式,这种解题方法叫配方法。

配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段。

运用配方法解题的关键在于“配凑”,“拆”与“添”是配方中常用的技巧。

熟悉以下基本等式:1.222)(2b a b ab a ±=+±2.2222)(222c b a ac bc ab c b a ++=+++++; 3.[]222222)()()(21a c cb b a ca bc ab c b a ±+±+±=±±±++ 4.a b ac a b x a c bx ax 442222-+⎪⎭⎫ ⎝⎛+=++ 【例1】已知y x ,实数满足0332=-++y x x ,则y x +的最大值为(镇江市中考题)思路点拨 把y 用x 的式子表示,通过配方法求出y x +的最大值。

【例2】已知c b a 、、,满足722=+b a ,122-=-c b , 1762-=-a c ,则c b a ++的值等于( )A.2B.3C.4D.5(河北省竞赛题)思路点拨 由条件等式的特点,从整体叠加配方入手【例3】已知a 是正整数,且a a 20042+是一个正整数的平方,求a 的最大值。

(北京市竞赛题)思路点拨 设222004m a a =+(m 为正整数),解题的关键是把等式左边配成完全平方式。

【例4】已知c b a 、、是整数,且01,422=-+=-c ab b a ,求c b a ++的值(浙江省竞赛题)【例5】若y x 、是实数,且y x y xy x m 446422--+-=,确定m 的最小值(北京市竞赛题)分析与解 选择x 为主元,将条件等式重新整理成x 的二次三项式,利用配方求m 的最小值。

练习1.设mn n m n m 4,022=+>>,则mnn m 22-的值等于( )A.32B.3C.6D.3(2011年南通市中考题)2.已知m m Q m P 158,15172-=-=(m 为任意实数),则Q P 、的大小关系为( ) A.Q P > B.Q P = C.Q P < D.不能确定(泰州市中考题)3.若实数z y x 、、,满足0))((4)(2=----z y y x z x ,则下列式子一定成立的是( )A.0=++z y xB.02=-+z y xC.D.02=-+y x z(2011年天津市中考题)4.化简2121722321217223---++的结果是( ) A.2 B.2- C.2 D.2-(2011年江西省竞赛题)5.已知实数c b a 、、满足016,72=++++=+-c b bc ab c b a ,则ab的值等于 (天津市竞赛题)6.当2>x 时,化简代数式1212--+-+x x x x 得(“希望杯”邀请赛试题)7.已知z y x 、、为实数,且满足52,352-=--=-+z y x z y x ,则222z y x ++的最小值为 。

配方法的题及其答案(精选3篇)

配方法的题及其答案(精选3篇)

配方法的题及其答案(精选3篇)以下是网友分享的关于配方法的题及其答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一配方法及其应用初一()班学号:_______ 姓名:____________一、配方法:将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。

配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”.配方法使用的最基本的配方依据是二项完全平方公式(a +b ) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如:222a 2+b 2=(a +b ) 2-2ab =(a -b ) 2+2ab ;b 2⎛3⎫2⎛a +ab +b =(a +b ) -ab =(a -b ) +3ab =a ++ b ⎪;⎝2⎭⎝2⎭2222a 2+b 2+c 2+ab +bc +ca =[(a +b ) 2+(b +c ) 2+(c +a ) 2].下面举例说明配方法的应用:一、求字母的值【例1】已知a ,b 满足a +2b -2ab -2b +1=0,求a +2b 的值.分析:可将含x,y 的方程化为两个非负数和为0的形式, 从而求出两个未知数的值. 解:∵a +2b -2ab -2b +1=0,∴a +b -2ab +b -2b +1=0,∴(a -b ) +(b -1) =0.∵(a -b ) ≥0,(b -1) ≥0,∴a -b =0,b -1=0,∴a =1,b =1,∴a +2b =1+2×1=3,∴a +2b 的值是3.变式练习:1、已知x 2y 2+x 2+4xy +13=6x , 则x,y 的值分别为[1**********]122、已知a +b +4a -2b +5=0,则3a +5b -4的值为___ ___.4. 已知x 2+2xy +y 2-6x -6y +9=0,则x +y 的值为5、若a 、b 为有理数,且2a 2-2ab +b 2+4a +4=0,则a 2b +ab 2的值为___ ___.6、已知a 、b 、c 满足a 2+2b =7,b 2-2c =-1,c 2-6a =-17,则a +b +c 的值为______.7、已知a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则abc 的值为___ ___.228. 已知a +b +1=ab +a +b ,则3a -4b 的值为___ ___. 2222二、证明字母相等【例2】已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2-ab -bc -ac =0, ,判断这个三角形的形状.分析:等式两边乘以2, 得2a 2+2b 2+2c 2-2ab -2bc -2ac =0, 配方,得(a 2-2ab +b 2)+(b 2-2bc +c 2)+(c 2-2ca +a 2)=0,即(a -b )+(b -c )+(c -a )=0. 222由非负数的性质得a-b=0,b-c=0,c-a=0,a=b,b=c,c=a,即a=b=c.故△ABC 是等边三角形.变式练习:1、已知3a 2+b 2+c 2=(a +b +c ),求证:a =b =c 2()44442、已知:a +b +c +d =4abcd ,其中a ,b ,c ,d 是正数,求证:a=b=c=d。

《配方法》习题精选及参考答案

《配方法》习题精选及参考答案

《配方法》习题精选及参考答案一、填空题1.方程x2=16的根是x1=__________,x2=__________.2.若x2=225,则x1=__________,x2=__________.3.若x2-2x=0,则x1=__________,x2=__________.4.若(x-2)2=0,则x1=__________,x2=__________.5.若9x2-25=0,则x1=__________,x2=__________.6.若-2x2+8=0,则x1=__________,x2=__________.7.若x2+4=0,则此方程解的情况是____________.8.若2x2-7=0,则此方程的解的情况是__________.9.若5x2=0,则方程解为____________.10.由7,8,9三题总结方程ax2+c=0(a≠0)的解的情况是:当ac>0时__________________;当ac=0时__________________;当ac<0时__________________.二、选择题1.方程5x2+75=0的根是A.5B.-5C.±5D.无实根2.方程3x2-1=0的解是A.x=±B.x=±3C.x=±D.x=±3.方程4x2-0.3=0的解是A. B.C. D.4.方程=0的解是A.x=B.x=±C.x=±D.x=±5.已知方程ax2+c=0(a≠0)有实数根,则a与c的关系是A.c=0B.c=0或a、c异号C.c=0或a、c同号D.c是a的整数倍6.关于x的方程(x+m)2=n,下列说法正确的是A.有两个解x=±B.当n≥0时,有两个解x=±-mC.当n≥0时,有两个解x=±D.当n≤0时,方程无实根7.方程(x-2)2=(2x+3)2的根是A.x1=-,x2=-5B.x1=-5,x2=-5C.x1=,x2=5D.x1=5,x2=-5三、解方程1.x2=02.3x2=33.2x2=64.x2+2x=05. (2x+1)2=36.(x+1)2-144=0参考答案一、1.4 -42.15 -153.0 24.2 25.6.2 -27.无实数根8.x1=,x2=-9.x1=x2=010.方程无实根方程有两个相等实根为x1=x2=0 方程有两个不等的实根二、1.D 2.C 3.D 4.C 5.B 6.B 7.A三、解:1.x2=0,x=0,∴x1=x2=02.3x2=3x2=1,x=±1,∴x1=1,x2=-13.2x2=6,x2=3,x=±∴x1=,x2=-4.x2+2x=0x(x+2)=0x=0或x+2=0x=0或x=-2∴x1=0,x2=-25.(2x+1)2=3(2x+1)2=62x+1=±∴2x+1=或2x+1=-∴x=(-1)或x=(--1)∴x1=(-1),x2=(--1) 6.(x+1)2-144=0(x+1)2=144x+1=±12∴x+1=12或x+1=-12∴x=11或x=-13∴x1=11,x2=-13.。

50道配方法及答案初一

50道配方法及答案初一

50道配方法及答案初一1、例题:x²-2x=0变化:x²-2x+1=1变化:(x-1)²=1变化:x-1=±1解为:x=2 或x=02、例题:x²-2x=4变化:x²-2x+1=5变化:(x-1)²=5变化:x-1=±√5解为:x=1+√5 或x=1-√53、例题:2x²-4x=4变化:x²-2x+1=3变化:(x-1)²=3变化:x-1=±√3解为:x=1+√3 或x=1-√34、例题:x²-4x=-4变化:x²-4x+4=0变化:(x-2)²=0变化:x-2=±0解为:x=25、例题:x²-4x=0变化:x²-4x+4=4变化:(x-2)²=4变化:x-2=±2解为:x=4 或x=06. 例题:(3x+1)^2=7(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= (±√7-1)/3 7. 例题:9x^2-24x+16=119x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= (±√11+4)/3 ∴原为x1=(√11+4)/3 x2=(-√11+4)/38. 例题:(x+3)(x-6)=-8(x+3)(x-6)=-8化简整理得x^2-3x-10=0 (方程左边为二次,右边为零)(x-5)(x+2)=0 (方程左边)∴x-5=0或x+2=0 (转化成两个)∴x1=5,x2=-29. 例题:2x^2+3x=02x^2+3x=0 x(2x+3)=0 (用将方程左边)∴x=0或2x+3=0 (转化成两个)∴x1=0,x2=-3/210. 例题:6x^2+5x-50=06x2+5x-50=0(2x-5)(3x+10)=0 (时要特别注意符号不要出错)∴2x-5=0或3x+10=0∴x1=5/2,x2=-10/311.例题:.x^2-4x+4=0x^2-4x+4 =0(x-2)(x-2 )=0∴x1=2 ,x2=212. 例题:(x-2)^2=4(2x+3)^2 解.(x-2)^2-4(2x+3)^2=0.[x-2+2(2x+3)][(x-2-2(2x+3)=0. (5x+4)(-5x-8)=0.x1=-4/5,x2=-8/513. 例题:y^2+2√2y-4=0解(y+√2)^2-2-4=0.(y+ √2)^2=6.y+√2=√6.y=-√2±√6.y1=-√2+√6;y2=-√2-√6.14.例题:(x+1)^2-3(x+1)+2=0 解(x+1-1)(x+1-2)=0.x(x-1)=0.x1=0,x2=1.15. 例题:x^2+2ax-3a^2=0(a为常数)解(x+3a)(x-a)=0.x1=-3a,x2=a.16.2x^2+7x=4.方程可变形为2x^2+7x-4=0.∵a=2,b=7,c=-4,b2-4ac=72-4×2×(-4)=81>0,∴x=.∴x1=,x2=-4.17.x^2-1=2 x方程可变形为x^2-2 x-1=0.∵a=1,b=-2 ,c=-1,b2-4ac=(-2 )2-4×1×(-1)=16>0.∴x=.∴x1=+2,x2=-218. x^2 + 6x+5=0原方程可化为(x+5)(x+1)=0x1=-5 x2=-119. x ^2-4x+ 3=0原方程可化为(x-3)(x-1)=0x1=3 x2=120.7x^2 -4x-3 =0解原方程可化为(7x+3)(x-1)=0x1=-3/7 x2=121.x ^2-6x+9 =0解原方程可化为(x-3)^2=0x1=x2=3(17)x²+8x+16=9(x+4)²=9x+4=3或x+4=-3x1=-1,x2=-722.(x²-5)²=16x²-5=4或x²-5=-4x²=9或x²=1x1=3,x2=-3,x3=1,x4=-123.x(x+2)=x(3-x)+1解x²+2x=3x-x²+12x²-x-1=0(2x+1)(x-1)=0x1=-1/2 x=124. 6x^2+x-2=0解原方程可化为(3x+2)(2x-1)=0 (x+2/3)(x-1/2)=0x1=-2/3 x2=1/2(1)x^2-9x+8=0 答案:x1=8 x2=1(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x-102=0 答案:x1=17 x2=-6。

配方法的步骤例题及答案

配方法的步骤例题及答案

配方法的步骤例题及答案引言在科学研究和工程实践中,我们常常需要进行各种配方法的步骤。

配方法是一种根据一定的条件和限制来确定各种材料或物质之间的适配性和组合性的方法。

在本文中,我们将介绍一个配方法的步骤例题并给出详细的答案。

例题假设我们需要研究一种新材料A和另一种材料B的配方法。

根据已有的条件和限制,我们需要确定两种材料的最佳配方法。

以下是该例题的详细步骤。

步骤一:材料的特性分析在确定配方法之前,首先需要对材料A和材料B的特性进行详细分析。

这包括物理特性、化学特性、机械性能等方面的考虑。

我们可以通过实验和文献研究收集到关于两种材料的特性数据。

步骤二:目标设定根据研究或应用的要求,我们需要设定配方法的具体目标。

在本例中,我们假设目标是寻找材料A和材料B的最佳配比,以获得最优的性能。

步骤三:配方法候选集的确定在这一步骤中,我们将根据材料特性和目标要求,确定可能合适的配方法候选集。

这些候选集可以是基于经验或理论依据得出的,也可以是根据前人的研究或成功案例得出的。

我们需要将这些候选集列举出来,作为进一步筛选和优化的基础。

步骤四:专家意见的获取在确定配方法候选集后,我们可以寻求相关领域的专家意见。

专家可以根据自身的经验和知识,对每个候选集做出评估和建议。

他们的意见将有助于我们排除不合适的配方法,提供优化和改进的方向。

步骤五:数据分析和筛选在前面的步骤中,我们已经收集到了大量的材料特性和专家意见数据。

接下来,我们需要进行数据分析和筛选,以找出最佳的配方法。

通过统计分析、模型评估等方法,我们可以对每个配方法候选集进行量化和比较,从而得出最佳配方法。

步骤六:实验验证和结果评估为了验证最佳配方法的有效性,我们需要进行实验验证。

实验可以通过合成材料、加工制备样品等方式进行。

实验结果将有助于对最佳配方法进行评估和优化。

答案根据上述步骤,我们得出以下答案:1.步骤一:通过实验和文献研究,我们了解到材料A的物理特性包括密度、热导率等,化学特性包括成分、反应性等;材料B的物理特性包括硬度、膨胀系数等,化学特性包括稳定性、溶解性等。

配方法的应用含答案

配方法的应用含答案
的形式是解题的关键.
(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出 x、y 的值,然后代入代数式计算即可;
(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出 a、b 的值, 然后利用三角形的三边关系即可求解.
第 3页,共 3页
=(a+2)2-9.故选 D.
3. 设 A=2a+3,B=a2-a+7,则 A 与 B 的大小关系是( )
A. A>B
B. A<B
C. A≥B
D. A≤B
【答案】B
【解析】【分析】
本题考查了配方法的应用,非负数的性质以及整式的加减,配方法的理论依据是公式
a2±2ab+b2=(a±b)2,通过作差法和配方法比较 A 与 B 的大小.
D. (a+2)2-9
【答案】D
【解析】【分析】
此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改
变式子的值.若二次项系数为 1,则常数项是一次项系数的一半的平方,若二次项系数
不为 1,则可先提取二次项系数,将其化为 1 后再计算.
【解答】
解:a2+4a-5
=a2+4a+4-4-5
配方法的应用
一、选择题
1. 不论 x、y 为什么实数,代数式
的值( )
A. 总不小于 2 B. 总不小于 7 C. 可为任何实数 D. 可能为负数
【答案】A
【解析】[分析]
把代数式 x2+y2+2x-4y+7 根据完全平方公式化成几个完全平方和的形式,再进行求解.
[详解]
x2+y2+2x-4y+7=(x+1)2+(y-2)2+2≥2,

人教版 初二数学 竞赛专题:配方法(包含答案)

人教版 初二数学 竞赛专题:配方法(包含答案)

人教版 初二数学 竞赛专题:配方法(含答案)【例1】 已知实数x ,y ,z 满足25,z 9x y xy y +==+- ,那么23x y z ++=_____ 【例2】 若实数a ,b , c 满足2229a b c ++= ,则代数式222()()()a b b c c a -+-+- 的最大值是 ( )A 、27B 、18C 、15D 、12【例3】 已知152a b c +-=-, 求a + b + c 的值.【例4】 证明数列49,4489, 444889,44448889,…的每一项都是一个完全平方数.【例5】 一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼).【例6】 已知自然数n 使得21991n n -+ 为完全平方数,求n 的值.能力训练1=_________.2、已知2222()30a b c a b c ++-+++= ,则3333_________a b c abc ++-=.3、x ,y 为实数,且22422y x xy y ++≤+ ,则x + y 的值为__________.4、当x >2,得___________.5、已知224121049m x xy y y =-+++ ,当x =________,y =______时,m 的值最小. 6、若22221076,51M a b a N a b a =+-+=+++ ,则M -N 的值 ( )A 、负数B 、正数C 、非负数D 、可正可负7的值为 ( )A 、1 BC、 D、8、设a ,b , c 为实数,2222,2,2362x a b y b c z c a πππ=-+=-+=-+,则x ,y ,z 中至少有一个值 ( )A 、大于零B 、等于零C 、不大于零D 、小于零9、下列代数式表示的数一定不是某个自然数的平方(其中n 为自然数)的是( )A 、2333n n -+B 、2444n n ++C 、2555n n -+ D 、2777n n -+ E 、2111111n n -+10、已知实数a ,b , c 满足22227,21,617a b b c c a +=-=--=- ,则a + b + c 的值等于 ( )A 、2B 、3C 、4D 、5 解“存在”、“不存在”“至少存在一个”等形式的问题时,常从整体考虑并经常用到一下重要命题:设x 1,x 2,x 3,… x n 为实数.(1) 若120n x x x ⋅⋅⋅=L 则x 1,x 2,x 3,… x n 中至少有(或存在)一个为零; (2) 若120n x x x +++>L ,则x 1,x 2,x 3,… x n 中至少有(或存在)一个大于零; (3) 若120n x x x +++<L ,则x 1,x 2,x 3,… x n 中至少有(或存在)一个小于零.11、解方程组222222212121z x z x y x y z y⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩12、能使2256n+ 是完全平方数的正整数n 的值为多少?13、已知b a >,且()()243aa b a ab b b+++-+= ,a ,b 为自然数,求a ,b 的值.13、设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ ,求a ,b 的值.14、某宾馆经市场调研发现,每周该宾馆入住的房间数y 与房间单价x 之间存在如图所示的一次函数关系.(1) 根据图象求y 与x 之间的函数关系式(0<x <160);(2) 从经济效益来看,你认为该宾馆如何制定房间单价,能使其每周的住宿收入最高?每周最高住宿收入是多少元?间数(个)yx0 50 100540990 单价(元)答案例 1 10 提示:x =5-y 代入z 2=xy +y −9,然后配方.例2 A 提示:原式=3(a 2+b 2+c 2)−(a 2+b 2+c 2+2ab +2bc +2ac ).例 3 a+b+c =20 提示:将等式整理,得(a −1−2√a −1+1)+(b −2−4√b −2+4)+12(c −3−6√c −3+9)=0即(√a −1−1)2+(√b −2−2)2+12(√c −3−3)2=0例 4 原式=44⋯44 ⏟ n+188⋯88⏟ n+1+1=44⋯44 ⏟ n+100⋯00⏟ n+1+88⋯88⏟ n+1+1=4×11⋯11 ⏟ ×n+110n+1 +8×11⋯11 ⏟n+1+1=4()2211111111119111118111113611111211111611111n n n n n n ++++++⎛⎫⎛⎫⨯⨯⨯++⨯+=⨯+⨯+=⨯+ ⎪ ⎪⎝⎭⎝⎭L L L L L L 12312312312312314243 例5 已知,这32个人恰好是第2至第33层各住1人,对于每个乘电梯上、的人,他所住的层数一定不小于直接上楼的人所住的层数,事实上,设住S 层的人乘电梯,而住t 层的人直接上楼,S <t ,交换两人的上楼方式,其余的人不变,则不满意总分减少.设电梯停在第x 层,在第一层有y 人没有乘电梯而直接上楼,那么不满意总分为: ()()()31233312122S x y x y =+++-++++++++--⎡⎤⎡⎤⎣⎦⎣⎦L L L=()()()()()333343121222x x y y x y x y ⨯--+----++=()222102231684x y x y y -++++ =()221021215180306848y x y y +⎛⎫-+-+ ⎪⎝⎭=()2210212631631648y x y +⎛⎫-+-+≥ ⎪⎝⎭又当x=27,y=6时,=316S 最小值.故当电梯停在第27层时,总分最小,最小值为316分.例6 若2n 19n 91-+为完全平方数,则()24n 19n 91-+也是完全平方数.设()224n 19n 91=m -+(m 为自然数)配方得()222n 193=m -+,0 50 100单价(元)∴(m+2n-19)(m-2n+19)=3于是219=3219=1219=1219=3m n m n m n m n +-+--+-+⎧⎧⎨⎨⎩⎩或 解得:=2=2=10=10m m n n ⎧⎧⎨⎨⎩⎩或故当n=9或10时2n 19n 91-+是完全平方数. 能力训练1.4+ 2. 0 3. 6 4.5. -3,-2, 56. B7. C8. A 提示:()()()222x y z=a 1b 1c 13π++-+-+-+-大于0 . 9. B 提示:取n=2和3可否定A 、C 、D 、E ,而()224n 4n 4=4n n 1++++,()222n n n 11n <++<+,故2n n 1++不是完全平方数. 10. B11. (x ,y ,z )=(0,0,0)或(1,1,1) 提示:取倒数. 12. 提示:当n<8时,(22222=01+ab a b =m--,若它是完全平方数,则n 必为偶数.若n=2,则22256265n +=⨯;若n=4,则42256217n +=⨯;若n=6,则6225625n +=⨯;若n=8,则8225622n +=⨯.所以当n ≤8时,2256n +都不是完全平方数.当n>8时,8n 822562(21)n -+=+,若它是完全平方数,则n 821-+为一奇数的平方,设()2n 82121k -+=+(k 为自然数),则()n 10211k k -+=+,由于k 和k+1一奇一偶,∴k=1,于是n 1022-=,故n=11.13. 提示:设a=kb (k 为正整数),则()222124327339k b +==⨯=⨯,解得542428a a b b ==⎧⎧⎨⎨==⎩⎩或 14. 由()222292a b =5093k +⨯,得到2a+b=509k ,b=509k-2a ,代入原式得()224a 511509k 2a =5093k +-⨯,()k 5119k a=2-,因为a 为质数,故有以下情况:⑴当k=1时,5119a==2512-,为质数,b=509k-2a=7. ⑵当k=2时,a=511-18=493=17×29,不为质数,舍去. ⑶当k>2且k 为奇数时,5119k a=k 2-•为质数且k>2,则5119k=12-,此方程无整数解,舍去.⑷当k>2且k 为偶数时,()k a=5119k 2-为质数,且k12>,则511-9k=1,此方程无整数解,舍去.综上所述,a=251,b=7.15. 提示:⑴ y=-9x+1440 (0<x<160).⑵每周的住宿收入是S 元,则()()22914409144098057600S x x x x x =-+=-+=--+ 当x=80时,57600S =最大元.。

初中数学竞赛专题选讲 最大、最小值(含答案)

初中数学竞赛专题选讲 最大、最小值(含答案)

初中数学竞赛专题选讲(初三.20)最大 最小值一、内容提要1. 求二次函数y=ax 2+bx+c(a ≠0),的最大、最小值常用两种方法:①配方法:原函数可化为y=a(x+ab 2)2+a b ac 442-.∵在实数范围内(x+ab 2)2≥0, ∴若a>0时,当x=-a b2 时, y 最小值=a b ac 442-;若a<0时,当x=-ab2 时, y 最大值=a b ac 442-.②判别式法:原函数可化为关于x 的二次方程ax 2+bx+c -y=0. ∵x 在全体实数取值时, ∴ △≥0即b 2-4a(c -y)≥0, 4ay ≥4ac -b 2.若a>0,y ≥a b ac 442-,这时取等号,则y 为最小值a b ac 442-;若a<0,y ≤a b ac 442-,这时取等号,则y 为最大值ab ac 442-.有时自变量x 定在某个区间内取值,求最大、最小值时,要用到临界点,一般用配方法方便.2. 用上述两种方法,可推出如下两个定理:定理一:两个正数的和为定值时,当两数相等时,其积最大. 最大值是定值平方的四分之一.例如:两正数x 和y , 如果x+y=10, 那么xy 的积有最大值,最大值是25.定理二:两个正数的积为定值时,当两数相等时,其和最小. 最小值是定值的算术平方根的2倍.例如:两正数x 和y ,如果xy=16, 那么 x+y 有最小值,最小值是8. 证明定理一,可用配方法,也叫构造函数法.设a>0, b>0, a+b=k . (k 为定值).那么ab=a(k -a)=-a 2+ka=-(a -21k)2+42k .当a=2k时,ab 有最大值42k .证明定理二,用判别式法,也叫构造方程法. 设a>0, b>0, ab=k (k 为定值),再设 y=a+b. 那么y=a+ak, a 2-ya+k=0.(这是关于a 的二次议程方程) ∵ a 为正实数,∴△≥0. 即(-y)2-4k ≥0, y 2-4k ≥0. ∴y ≤-2k (不合题意舍去); y ≥2k . ∴ y 最小值=2k .解方程组⎩⎨⎧==+.2k ab k b a , 得a=b=k .∴当a=b=k 时,a+b 有最小值 2 k .3. 在几何中,求最大、最小值还有下列定理:定理三:一条边和它的对角都有定值的三角形,其他两边的和有最大值. 当这两边相等时,其和的值最大.定理四:一条边和这边上的高都有定值的三角形,其他两边的和有最小值. 当这两边相等时,其和的值最小.定理五:周长相等的正多边形,边数较多的面积较大;任何正多边形的面积都小于同周长的圆面积.二、例题例1. 已知:3x 2+2y 2=6x, x 和y 都是实数,求:x 2+y 2 的最大、最小值.解:由已知y 2=2362xx -, ∵y 是实数, ∴y 2≥0.即2362x x -≥0, 6x -3x 2 ≥0, x 2-2x ≤0.解得 0≤x ≤2.这是在区间内求最大、最小值,一般用配方法,x 2+y 2=x 2+2362x x -=-21( x -3)2+29在区间0≤x ≤2中,当x=2 时,x 2+y 2有最大值 4. ∴当x=0时,x 2+y 2=0是最小值 .例2. 已知:一个矩形周长的数值与它面积的数值相等. 求:这个矩形周长、面积的最小值. 解:用构造方程法.设矩形的长,宽分别为 a, b 其周长、面积的数值为k. 那么2(a+b)=ab=k.即 ⎪⎩⎪⎨⎧==+.21k ab k b a ,∴a 和b 是方程 x 2-21kx+k=0 的两个实数根. ∵a, b 都是正实数,∴△≥0. 即(-2k )2-4k ≥0. 解得k ≥16;或k ≤0 . k ≤0不合题意舍去. ∴当k ≥16取等号时,a+b, ab 的值最小,最小值是16. 即这个矩形周长、面积的最小值是16.例3. 如图△ABC 的边BC=a, 高AD=h, 要剪下一个 矩形EFGH ,问EH 取多少长时,矩形的面积最大? 最大面积是多少?解:用构造函数法设EH=x, S 矩形=y, 则GH=xy . ∵△AHG ∽△ABC ,∴hxh a x y-= . ∴ y=4)2()(2ahh x h a h x h ax +--=-. aCE∴当x=2h时,y 最大值 =4ah .即当EH=2h时,矩形面积的最大值是4ah .例4. 如图已知:直线m ∥n ,A ,B ,C 都是定点,AB=a, AC=b, 点P 在AC 上,BP 的延长线交直线m 于D.问:点P 在什么位置时,S △PAB +S △PCD 最小? 解:设∠BAC=α,PA=x, 则PC=b -x.∵m ∥n ,∴PA PCAB CD =. ∴CD=x x b a )(-S △PAB +S △PCD =21axSin α+21x x b a )(-(b -x) Sin α=21aSin α()222x x bx b x +-+=21aSin α(2x+)22b x b -. ∵2x ×x b 2=2b 2(定值), 根据定理二,2x +x b 2有最小值.∴ 当2x =x b 2, x=b 221时,S △PAB +S △PCD 的最小值是 (2-1)abSin α. 例5.已知:Rt △ABC 中, 内切圆O 的半径 r=1. 求:S △ABC 的最小值.解:∵S △ABC =21ab ∴ab =2S △.∵2r=a+b -c, ∴c=a+b -2r. ∴a+b -2r=22b a + .两边平方,得 a 2+b 2+4r 2+2ab -4(a+b)r= a 2+b 2. 4r 2+2ab -4(a+b)r=0. 用r=1, ab=2S △ 代入, 得 4+4S △-4(a+b) =0. a+b=S △+1. ∵ab=2S △ 且a+b=S △+1.∴a, b 是方程x 2-(S △+1)x+2S △=0 的两个根.nmDa∵a,b 是正实数, ∴△≥0,即 [-(S △+1)]2-4×2S △ ≥0, S △2-6S △+1≥0 .解得 S △≥3+22或S △≤3-22. S △≤3-22不合题意舍去. ∴S △ABC 的最小值是3+22.例6.已知:.如图△ABC 中,AB=26+,∠C=30 . 求:a+b 的最大值.解:设 a+b=y , 则b=y -a. 根据余弦定理,得 (26+)2=a 2+(y -a)2-2a(y -a)Cos30写成关于a 的二次方程: (2+3)a 2-(2+3)ya+y 2-(8+43)=0. ∵a 是实数, ∴△≥0.即(2+3)2y 2-4(2+3)[y 2-(8+43)]≥0, y 2-(8+43)2 ≤0 .∴ -(8+43)≤y ≤(8+43). ∴a+b 的最大值是8+43.又解:根据定理三 ∵AB 和∠C 都有定值. ∴当a=b 时,a+b 的值最大.由余弦定理,(26+)2=a 2+b 2-2abCos30可求出 a=b=4+23. ……… 三、练习1. x 1,x 2,x 3,x 4,x 5 满足. x 1+x 2+x 3+x 4+x 5=. x 1x 2x 3x 4x 5,那么. x 5的最大值是______.2. 若矩形周长是定值20cm,那么当长和宽分别为____,____时,其面积最大,最大面积是______.3. 面积为100cm 2的矩形周长的最大值是________.4. a, b 均为正数且a+b=ab,那么 a+b 的最小值 是________.5. 若x>0, 则x+x9的最小值是________. 6.如图直线上有A 、B 、C 、D 四个点.那么到A ,B ,C ,D 距离之和为最小值的点,位于_________,其和的最小值等于定线段___________..7. 如右图△ABC 中,AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ是 以AB ,BC ,CA 为边的正方形,则阴影部份的面积的和的最大值是____________. 8. 下列四个数中最大的是 ( )(A ) tan48 +cot48 ..(B)sin48 +cos48 . (C) tan48 +cos48 . (D)cot48 +sin48 . 9.已知抛物线y=-x 2+2x+8与横轴交于B ,C 两点,点D 平分BC ,若在横轴上侧的点A 为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是__________10. 如图△ABC 中,∠C=Rt ∠,CA=CB=1,点P 在ABPQ ⊥BC 于Q.问当P 在AB 上什么位置时,S △APQ 最大? 11. △ABC 中,AB=AC=a ,以BC 为边向外作等边 三角形BDC ,问当∠BAC 取什么度数时AD 最长?12. 已知x 2+2y 2=1, x,y 都是实数,求2x+5y 2的最大值、最小值.13. △ABC 中∠B=60,AC=1,求BA+BC 的最大值及这时三角形的形状. 14. 直角三角形的面积有定值k,求它的内切圆半径的最大值.15. D ,E ,F 分别在△ABC 的边BC 、AC 、AB 上,若BD ∶DC=CE ∶EA=AF ∶FA =k ∶(1-k) (0<k<1). 问k 取何值时,S △DEF 的值最小?16.△ABC 中,BC=2,高AD=1,点P ,E ,F 分别在边BC ,AC ,AB 上,且四边形PEAF 是平行四边形.问点P 在BC 的什么位置时,S PEAF 的值最大?C DA B AB参考答案1. 5.2. 5,5 25.3. 40cm4. 45. 66.BC 上,BC+AD.7. 最大值是9,∵S △=21×3×2×SinBAC, ∠BAC=90度时值最大. 8. (A). 9. 3<AD ≤910. P 在AB 中点时,S △最大值=81, S △=222x x -⋅x 与2-x 的和有定值, 当x=2-x 时,S △值最大.11. 当∠BAC=120度时,AD 最大,在△ABD 中,设∠BAD=α由正弦定理a Sin ain 230)30180(S AD ==--α,当150 -α=90 时, AD 最大. 12. 当x=52时,有最大值1029;当x=-1时,有最小值-2 (仿例3).13. 当a=c 时,a+c 有最大值2,这时是等边三角形. 14. 内切圆半径的最大值r=(2-1)△S (仿例6).15. 当 k=21时,S △DEF =41S △ABC ,16.当PB=1时,S 有最大值21. 16. 当点P 是BC 中点时,面积最大值是12.。

(完整版)初中数学竞赛专题选讲-配方法(含答案)

(完整版)初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法]一、内容提要1. 配方:这里指的是在代数式恒等变形中,把二次三项式a2土2ab+b2写成完全平方式(a土b) 2.有时需要在代数式中添项、折项、分组才能写成完全平方式.常用的有以下三种:①由a +b配上2ab, ②由 2 ab 配上a +b ,③由a2土2ab配上b2.2. 运用配方法解题,初中阶段主要有:①用完全平方式来因式分解例如:把x4+4因式分解.2 2 2 2 2母乱=x +4 + 4x — 4x =(x +2) — 4x = ...........这是由a2+b2配上2ab.②二次根式化简常用公式:福|a ,这就需要把被开方数写成完全平方式.例如:化简、一5一2 6.我们把5-2*写成2 - 2逐+ 3=(克V - ^ 2^3 + (V3)2=(V2 —V3 ).这是由2 ab配上a2+b2.③求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即a >0, .,•当a=0时, a2的值为0是最小值.例如:求代数式a2+2a — 2的最值... a2+2a— 2= a2+2a+1 - 3=(a+1) 2- 3当a=— 1时,a +2a— 2有最小值—3.这是由a2土2ab配上b2④有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.例如::求方程x2+y2+2x-4y+5=0的解x, y.解:方程x2+y2+2x-4y+1 + 4= 0.配方的可化为(x+1) 2+(y - 2) 2=0.要使等式成立,必须且只需x 1 0y 2 0x 1 y2解得此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.二、例题2 2 2 2例 1.因式分解:a b —a +4ab— b +1.解:a b — a +4ab — b +1 = a b +2ab+1+( — a +2ab — b ) (折项,分组)=(ab+1 ) 2 - (a - b):(配方)= (ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)本题的关键是用折项,分组,树立配方的思想^例2.化简下列二次根式:①J7 5 ;②*2焰;③了10时3 2豆. 解:化简的关键是把被开方数配方①(7 4>/3 = J4 2 2/3 3 = J(2 V3)2=2 < 3 = 2 + 43.②户=居=疗=\吁<2(73 1)=无V2 2 . 2③\;10 4^3 2龙=寸10 4》(。

【精】初中八年级数学竞赛培优讲义全套专题25 配方法

【精】初中八年级数学竞赛培优讲义全套专题25 配方法

专题 25 配方法阅读与思考把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧.配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具.配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有:1、2222()a ab b a b ±+=±2、2a b ±=3、2222222()a b c ab bc ca a b c +++++=++ 4、2222221[()()()]2a b c ab bc ac a b b c a c ++---=-+-+- 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于:(1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如2a = 能联想起配方法.(2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.例题与求解【例1】 已知实数x ,y ,z 满足25,z 9x y xy y +==+- ,那么23x y z ++=_____(“祖冲之杯”邀请赛试题)解题思路:对题设条件实施变形,设法确定x , y 的值.【例2】 若实数a ,b , c 满足2229a b c ++= ,则代数式222()()()a b b c c a -+-+- 的最大值是 ( )A 、27B 、18C 、15D 、12(全国初中数学联赛试题)解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.配方法的实质在于揭示式子的非负性,而非负数有以下重要性质; (1) 非负数的最小值为零;(2) 有限个非负数的和为零,则每一个非负数都为零.【例3】 已知152a b c +-=-, 求a + b + c 的值. 解题思路:题设条件是一个含三个未知量的等式,三个未知量,一个等式,怎样才能确定未知量的值呢?不妨用配方法试一试.复合根式的化简,含多元的根式等式问题,常常用到配方法.【例4】 证明数列49,4489, 444889,44448889,…的每一项都是一个完全平方数.解题思路:2222497,448967,444889667,444488896667==== ,由此可猜想2144448889(66661)n n+⋅⋅⋅⋅⋅⋅=+ ,只需完成从左边到右边的推导过程即可.几个有趣的结论: (1) 21444488889(66661)n nn+=+(2) 21111155556(33331)n nn+=+这表明:只出现1个奇数或只出现1个偶数的完全平方数分别有无限多个.【例5】 一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼).(全国初中数学联赛试题)解题思路:通过引元,把不满意的总分用相关字母的代数式表示,解题的关键是对这个代数式进行恰当的配方,进而求出代数式的最小值.把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题条件的目的,这种解题方法叫配方法.配方法的作用在于改变代数式的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具.【例6】 已知自然数n 使得21991n n -+ 为完全平方数,求n 的值.(“希望杯”邀请赛试题)解题思路:原式中n 的系数为奇数,不能直接配方,可想办法化奇为偶,解决问题.能力训练1=_________.(“希望杯”邀请赛试题)2、已知2222()30a b c a b c ++-+++= ,则3333_________a b c abc ++-=.3、x ,y 为实数,且22422y x xy y ++≤+ ,则x + y 的值为__________.4、当x >2,得___________.5、已知224121049m x xy y y =-+++ ,当x =________,y =______时,m 的值最小.(全国通讯赛试题)6、若22221076,51M a b a N a b a =+-+=+++ ,则M -N 的值 ( )A 、负数B 、正数C 、非负数D 、可正可负7的值为 ( )A 、1BC 、D 、(全国初中数学联赛试题)8、设a ,b , c 为实数,2222,2,2362x a b y b c z c a πππ=-+=-+=-+,则x ,y ,z 中至少有一个值 ( )A 、大于零B 、等于零C 、不大于零D 、小于零(全国初中数学竞赛试题)9、下列代数式表示的数一定不是某个自然数的平方(其中n 为自然数)的是( )A 、2333n n -+B 、2444n n ++C 、2555n n -+ D 、2777n n -+ E 、2111111n n -+10、已知实数a ,b , c 满足22227,21,617a b b c c a +=-=--=- ,则a + b + c 的值等于 ( )A 、2B 、3C 、4D 、5(河北省竞赛试题)解“存在”、“不存在”“至少存在一个”等形式的问题时,常从整体考虑并经常用到一下重要命题:设x 1,x 2,x 3,… x n 为实数.(1) 若120n x x x ⋅⋅⋅= 则x 1,x 2,x 3,… x n 中至少有(或存在)一个为零; (2) 若120n x x x +++>,则x 1,x 2,x 3,… x n 中至少有(或存在)一个大于零; (3) 若120n x x x +++<,则x 1,x 2,x 3,… x n 中至少有(或存在)一个小于零.11、解方程组222222212121z x z x y x y z y⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩ (苏州市竞赛试题)12、能使2256n+ 是完全平方数的正整数n 的值为多少?(全国初中数学联赛试题)13、已知b a >,且()()243aa b a ab b b+++-+= ,a ,b 为自然数,求a ,b 的值. (天津市竞赛试题)13、设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ ,求a ,b 的值.(全国初中数学联赛试题)14、某宾馆经市场调研发现,每周该宾馆入住的房间数y 与房间单价x 之间存在如图所示的一次函数关系.(1) 根据图象求y 与x 之间的函数关系式(0<x <160);(2) 从经济效益来看,你认为该宾馆如何制定房间单价,能使其每周的住宿收入最高?每周最高住宿收入是多少元?。

2022中考数学技巧《配方法的应用》专题讲解附练习及答案

2022中考数学技巧《配方法的应用》专题讲解附练习及答案

解题技巧专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.用配方法解方程3x 2-6x +1=0,那么方程可变形为〔 〕A .(x -3)2=13B .3(x -1)2=13C .(3x -1)2=1D .(x -1)2=232.一元二次方程x 2+22x -6=0的根是〔 〕A .x 1=x 2= 2B .x 1=0,x 2=-2 2C .x 1=2,x 2=-3 2D .x 1=-2,x 2=3 23.用配方法解以下方程:(1)x 2-12x -28=0; (2)3x 2+6x -1=0.◆类型二 配方法求最值或证明4.代数式x 2-4x +7的最小值为〔 〕A .1B .2C .3D .45.关于多项式-2x 2+8x +5的说法正确的选项是〔 〕A .有最大值13B .有最小值-3C .有最大值37D .有最小值16.代数式-2x 2+4x -18.(1)用配方法说明无论x 取何值,代数式的值总是负数;(2)当x 为何值时,代数式有最大值,最大值是多少?◆类型三 完全平方式中的配方7.假设方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,那么k 的值为〔 〕A.-9或11 B.-7或8C.-8或9 D.-6或78.多项式9x2+1加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是______________________.◆类型四利用配方构成非负数求值或证明9.x2+y2+4x-6y+13=0,那么代数式x+y的值为〔〕A.-1 B.1 C.25 D.3610.a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,请你根据此条件判断△ABC的形状,并说明理由.参考答案与解析1.3.解:(1)移项得x2-12x=28,配方得x2-12x+36=28+36,即(x-6)2=64,开平方得x -6=±8,即x -6=8或x -6=-8,∴原方程的解是x 1=14,x 2=-2.(2)移项得3x 2+6x =1,两边除以3得x 2+2x =13,配方得x 2+2x +1=13+1,即(x +1)2=43,开平方得x +1=±233,即x +1=233或x +1=-233,∴原方程的解是x 1=-1+233,x 2=-1-233.6.解:(1)-2x 2+4x -18=-2(x 2-2x +9)=-2(x 2-2x +1+8)=-2(x -1)2-16.∵-2(x -1)2≤0,-16<0,∴-2(x -1)2-16<0,∴无论x 取何值,代数式-2x 2+4x -18的值总是负数.(2)∵-2x 2+4x -18=-2(x -1)2-16,∴当x =1时,代数式有最大值,最大值是-16.7.A 8.-1,-9x 2,6x ,-6x ,814x 4 10.解:△ABC 为等边三角形.理由如下:∵a 2+b 2+c 2-ab -bc -ac =0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac =0,∴a 2+b 2-2ab +b 2+c 2-2bc +a 2+c 2-2ac =0,即(a -b )2+(b -c )2+(c -a )2=0,∴a -b =0,b -c =0,c -a =0,∴a =b =c ,∴△ABC 为等边三角形.。

初三数学解一元二次方程——配方法及答案解析

初三数学解一元二次方程——配方法及答案解析

初三数学解一元二次方程——配方法一.选择题(共1小题)1.(2013春?奉化市校级月考)用配方法解一元二次方程y2﹣y=1,两边应同时加上的数是()2.(2013秋?湖里区校级月考)用配方法解一元二次方程x2+8x+7=0,则方程可化为.3.(2013秋?曲阜市期中)用配方法解一元二次方程x2﹣4x+2=0时,可配方得.4.用配方法解一元二次方程﹣3x2+4x+1=0的第一步是把方程的两边同时除以.5.(2006秋?仙桃期末)用配方法解一元二次方程x2+8x﹣9=0时,当配成完全平方后,原方程可变为.6.(2014春?莱州市期末)用配方法解一元二次方程x2﹣x=1时,应先两边都加上.7.(2010秋?宜城市期中)用配方法解一元二次方程x2﹣8x+1=0,把右边配成完全平方后为(x ﹣)2=.8.(2006秋?西城区校级月考)用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h=,k=.9.(2013秋?鼓楼区期中)将一元二次方程x2﹣4x﹣7=0用配方法化成(x+h)2=k的形式为.三.解答题(共11小题)10.(2008?青岛)用配方法解一元二次方程:x2﹣2x﹣2=0.11.用配方法解一元二次方程:x2+3x+1=0.12.(2010秋?上海校级月考)(1)化简:(2)用配方法解一元二次方程:x2﹣2x﹣2=013.(2013?自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.14.(2012春?威海期末)已知三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0的一个根.请用配方法解此方程,并计算出三角形的面积.15.(1)解一元二次方程:(x﹣3)2+2x(x﹣3)=0(2)用配方法解一元二次方程:2x2+1=3x.16.(2013秋?大理市校级月考)解一元二次方程:(1)4x2﹣1=12x(用配方法解);(2)2x2﹣2=3x(用公式法解).17.用公式法解一元二次方程:3x2+5x﹣2=0.18.(2010秋?岳池县期末)已知关于x的一元二次方程x2+kx﹣5=0(1)求证:不论k为任何实数,方程总有两个不相等的实数根;(2)当k=4时,用配方法解此一元二次方程.19.用配方法解下列关于x的一元二次方程:9x2﹣12x=1.20.(2012春?兰溪市校级期中)解下列一元二次方程:(1)用配方法解方程:x2+4x﹣12=0(2)3(x﹣5)2=2(x﹣5)初三数学解一元二次方程——配方法参考答案与试题解析一.选择题(共1小题)1.(2013春?奉化市校级月考)用配方法解一元二次方程y2﹣y=1,两边应同时加上的数是()y=1y+=1+﹣.二.填空题(共8小题)22﹣=05.(2006秋?仙桃期末)用配方法解一元二次方程x+8x﹣9=0时,当配成完全平方后,原方程可变为(x+4)26.(2014春?莱州市期末)用配方法解一元二次方程x2﹣x=1时,应先两边都加上()2.x+()).故答案为(7.(2010秋?宜城市期中)用配方法解一元二次方程x﹣8x+1=0,把右边配成完全平方后为(x﹣4)=8.(2006秋?西城区校级月考)用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h=,k=.x=,x++)比较对应系数,有:故答案是:、三.解答题(共11小题)2或,))),x+±12.(2010秋?上海校级月考)(1)化简:2=,﹣x=,等式的两边都加上x++),=±,,﹣14.(2012春?威海期末)已知三角形两边长分别是8和6,第三边长是一元二次方程x﹣16x+60=0的一个根.请用配方法解此方程,并计算出三角形的面积.×=×2.15.(1)解一元二次方程:(x﹣3)+2x(x﹣3)=02x=﹣﹣(﹣﹣==±,.16.(2013秋?大理市校级月考)解一元二次方程:(1)4x2﹣1=12x(用配方法解);2x=,=+,),=±+﹣;=,﹣2x=,进行计算即可.=,=,=18.(2010秋?岳池县期末)已知关于x的一元二次方程x+kx﹣5=0(1)求证:不论k为任何实数,方程总有两个不相等的实数根;(2)当k=4时,用配方法解此一元二次方程.x=x+=),=±=(1)用配方法解方程:x2+4x﹣12=02.。

配方法含答案

配方法含答案

配方法1、方程6x2=18的根是__________;已知2(x-3)2=72,则x的值是__________.2、若方程x2-6x+5=0可化为(x+m)2=k的形式,则m=__________,k=__________.3、一元二次方程x2-2x-3=0的根是__________.1、;9或-32、-3;43、x1=3,x2=-14、用配方法解方程x2-4x+2=0,下列配方正确的是()A.(x-2)2=2 B.(x-2)2=6 C.(x-2)2=-2 D.(x-2)2=-6 5、不论x、y为何实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数6、将二次三项式x2+6x+7进行配方,正确结果是()A.(x+3)2+2 B.(x+3)2-2 C.(x-3)2+2 D.(x-3)2-2 7、用配方法解下列方程:(1)(2)5x2-18=9x7、(1)解:(2)解:8、用配方法证明:无论x取何实数,代数式2x2-8x+18的值不小于108、证明:2x2-8x+18=2(x2-4x)+18=2(x-2)2+18-8=2(x-2)2+10.不论x为何实数,(x-2)2≥0,∴2(x-2)2+10≥10.即无论x取何实数,代数式2x2-8x+18的值不小于10.9、已知a是方程x2-2008x+1=0的一个根,试求的值9、∵a是方程x2-2008x+1=0的一个根,∴a2-2008a+1=0, a2-2007a=a-1, a2+1=2008a且∴.10、一次会议上,每两个参加会议的人都相互握了一次手,有人统计一共握了66次手,这次会议到会的人数是多少?10、解:设这次会议到会的人数是x人.则x2-x=132∴,∴x1=12,x2=-11<0(舍去)故这次会议到会的人数是12人.公式法1、下列方程有实数根的是()A.2x2+x+1=0 B.x2-x-1=0 C.x2-6x+10=0 D.x2-+1=02、若关于x的方程有两个不相等的实数根,则k的取值范围是()A.k>1 B.k≥-1 C.k<1 D.k>1且k≠0答案:1、B 2、A例2、用公式法解下列方程.(1)2x2-9x+8=0解:b2-4ac=17(2)9x2+6x+1=0解:b2-4ac=0,x1=x2=.(3)(x-2)(3x-5)=1解:3x2-11x+9=0b2-4ac=13故例3、解方程:.有一位同学解答如下:这里,∴,∴∴x1=,x2=.请你分析以上解答有无错误,如有错误,找出错误的地方,并写出正确的解答.解:有错误,错在常数,而c应为,正确为:原方程可化为:∵∴∴∴例4、m为何值时,方程(2m+1)x2+4mx+2m-3=0.(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根?解:若 2m+1≠0,即 m≠,则=(4m)2-4(2m+1)(2m-3)=4(4m+3)(1)当4m+3>0且2m+1≠0,即m>且m≠时,原方程有两个不相等的实数根.(2)当4m+3=0即m=时,原方程有两个相等实数根.(3)当4m+3<0即m<时,没有实数根.例5、若关于x的方程kx2-(2k+1)x+k=0有实数根,求k的取值范围.解:(1)当k=0时,原方程可化为-x=0,此方程有实根.(2)由题意得:,解得且k≠0.故:综合(1)(2)得k的取值范围为.例6、求证:不论a为何实数,方程2x2+3(a-1)x+a2-4a-7=0必有两个不相等的实数根.证明:∵a=2,b=3(a-1),c=a2-4a-7.b2-4ac=[3(a-1)]2-4×2(a2-4a-7)=a2+14a+65=(a+7)2+16≥16>0.故不论a为何实数,方程2x2+3(a-1)x+a2-4a-7=0必有两个不相等的实数根.因式分解法1、方程x2-4x=0的解为__________.2、请你写出一个有一根为0的一元二次方程__________.3、方程x(x+1)=3(x+1)的解是()A.x=-1 B.x=3 C.x1=-1,x2=3 D.以上答案都不对4、解方程(x+2)2=3(2+x)最适当的解法是()A.直接开平方法B.配方法 C.公式法D.因式分解法5.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x-2=0 B.x2-3x+2=0 C.x2-2x+3=0 D.x2+3x+2=06、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0,则a的值为()A.1或-4 B.1C.-4 D.-1或47、用因式分解法解下列方程:(1)(x+3)2=2x+6(2)2(5x-1)2=3(1-5x)(3)9(x-2)2=4(x+1)2(4)(2x-1)2-x2-4x-4=08、用适当的方法解下列方程:(1)x2-8x-9=0(2)(x+3)(x-3)=(3)x(40-2x)=180(4)x2+()x+=08、(1)解:(x+1)(x-9)=0x1=-1, x2=9(2)解:∴,(3)解:x2-20x=-90 x2-20x+102=-90 +102(x-10)2=10∴x-10=∴,(4)解:(x+)( x+)=0∴x1=-,x2=-9、若x2+xy+y=14 ①,y2+xy+x=28 ②,求x+y的值9、解:由①+②得:(x2+y2)+2xy+(x+y)=42 (x+y)2+(x+y)-42=0 (x+y+7)(x+y-6)=0 ∴x+y=-7或x+y=6.10、关于x的一元二次方程mx2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的值及该方程的根解:由已知得:解得m=2,∴x=,∴x1=,x2=故m的值为2,该方程的根为x1=,x2=1.。

配方法计算题及答案

配方法计算题及答案

配方法计算题及答案首先,让我们来了解一下配方法的基本原理。

配方法,顾名思义,就是通过合理的配对,将一个复杂的表达式分解成两个简单的部分,从而便于进行进一步的计算和求解。

在代数方程的求解中,配方法通常用于解决一些二次方程或者高次方程。

通过合理的配对和分解,我们可以将原方程化简为一些简单的因式,从而更容易进行求解。

接下来,让我们通过一些具体的例题来演示配方法的应用。

假设我们需要解决如下的二次方程,x^2 + 5x + 6 = 0。

首先,我们可以使用配方法来进行求解。

我们可以将x^2 + 5x + 6分解为(x+2)(x+3),然后再分别对(x+2)和(x+3)进行求解,得到x=-2和x=-3。

因此,原方程的解为x=-2和x=-3。

除了解决二次方程外,配方法还可以用于解决一些其他类型的代数方程。

例如,对于一些高次方程,我们可以通过合理的配对和分解,将原方程化简为一些简单的因式,从而更容易进行求解。

此外,配方法还可以用于解决一些不完全平方的问题,通过合理的配对和分解,我们可以将不完全平方化简为一些简单的因式,从而更容易进行求解。

在实际应用中,配方法经常用于解决一些实际问题。

例如,通过配方法可以求解一些与面积、体积、速度等相关的问题,通过合理的配对和分解,我们可以将原问题化简为一些简单的代数方程,从而更容易进行求解。

因此,配方法在数学中具有非常重要的应用价值。

综上所述,配方法是一种常见的数学计算方法,它主要用于解决一些复杂的代数方程。

通过合理的配对和分解,我们可以将原方程化简为一些简单的因式,从而更容易进行求解。

在实际应用中,配方法经常用于解决一些与面积、体积、速度等相关的问题。

因此,掌握配方法对于提高数学解题能力具有非常重要的意义。

希望本文能够帮助大家更好地理解配方法的原理和应用,提高数学解题能力。

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数)一、 配方法例1练习:若2()4()()0x z x y y z ----=,试求x+z 与y 的关系。

二、 非负数法例21()2x y z =++. 三、 构造法(1)构造多项式例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( )(A) 0 (B) 2 (C) 3 (D) 不确定的(2)构造有理化因式例4、 已知(2002x y =. 则22346658x xy y x y ----+=___ ___。

(3)构造对偶式例5、 已知αβ、是方程210x x --= 的两根,则43αβ+的值是___ ___。

(4)构造递推式例6、 实数a 、b 、x 、y 满足3ax by +=,227ax by +=,3316ax by +=,4442ax by +=.求55ax by +的值___ ___。

(5)构造几何图形例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。

练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。

四、 合成法例8、若12345,,,x x x x x 和满足方程组123451234512345123451234520212224248296x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。

五、 比较法(差值比较法、比值比较法、恒等比较法)例9、71427和19的积被7除,余数是几?练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>.六、 因式分解法(提取公因式法、公式法、十字相乘法)1221()(...)n n n n n n a b a b a a b ab b -----=-++++1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+例10、设n 是整数,证明数323122M n n n =++为整数,且它是3的倍数。

配方法(答案)

配方法(答案)

2.2 配方法(一)A 卷答案 1.(1) 93,42 (2)9x 2, 12- (3)12x,+3 (4) 2,42p p (5) 22,42b b a a2.(1)1,4 (2)0.2,0.46 (3) 17,33- (4) 149,424-3.c4.BB 卷答案: 5.(1) 1227,27x x =-+=-- (2) 3172x -±= (3) 226x ±=(4) 62x =±+6.(1)原式=2318042x ⎛⎫-+> ⎪⎝⎭ (2)原式= 2112022y ⎛⎫---< ⎪⎝⎭ 7.(1)2秒或5秒 (2)7秒8.∵a+b+c=322,∴(a+b+c)2=92 即a 2+b 2+c 2+2(ab+bc+ac)=92, ∴ab+bc+ac=32∴a 2+b 2+c 2=ab+bc+ac,∴ 12[(a-b)2+(b-c)2+(a-c)2]=0, ∴a=b=c,∴△ABC 为等边三角形配方法(二)【基础练习】一、1. 16,4; 94 , 32 ; 2. 34 , 916 ; 3. x 1 = 1, x 2 = -5; 4. x = 351±. 二、1. D ; 2. C ; 3. B. 三、1.(1)6, -12; (2)233±; 2. (1)-1, 5; (2)- m +22n m +, - m -22n m +.【综合练习】提示:把多项式a 2b 2 +b 2 -6ab -4b +14进行配方.配方法(三)【基础练习】一、1. - 16 , - 3518 ; 2. 1±22; 3. - 52 , 3; 4. m m 2411+±. 二、1.C ; 2. C. 三、1. (1)221±,(2)3,27 ; 2. 2304±-. 【综合练习】提示:证明二次项系数k 2 -6k +12≠0.【探究练习】a 3 - 2a 2 - 4a = 0.配方法(四)练习【基础练习】一、1. (x -5)2 = 36; 2. 26,27; 3. 12,15. 二、1. C ; 2. D. 三、1.5米. 2. a = 28米, b = 14米.【综合练习】(1)当a <15时,问题无解;当15≤a<20时,长为15米,宽为10米;当a ≥20时,长为15米,宽为10米或长为20米,宽为7.5米;(2)a 对问题的解起着限制作用;a 的长度至少要有20配方法(五)一、1.①9 ②2 ③4 2 2.①x 1=3,x 2=1 ②x 1=1,x 2=5 ③x 1=-1,x 2=3 3.x 2-6x =6 9 x 2-6x +9=15 (x -3)2=15 3+15 3-15 4.21 5.34 cm 6.3 7.2 二、8.D 9.A 10.C三、11.15元 12.16 cm 12 cm 13.x 1=40 x 2=24 14.1或5配方法(六)一、1.4 -42.15 -153.0 24.2 25.35 35 6.2 -27.无实数根8.x 1=214,x 2=-214 9.x 1=x 2=010.方程无实根 方程有两个相等实根为x 1=x 2=0 方程有两个不等的实根二、1.D 2.C 3.D 4.C 5.B 6.B 7.A三、解:1.x 2=0,x =0,∴x 1=x 2=02.3x 2=3x 2=1,x =±1,∴x 1=1,x 2=-13.2x 2=6,x 2=3,x =±3∴x 1=3,x 2=-34.x 2+2x =0 x (x +2)=0x =0或x +2=0 x =0或x =-2 ∴x 1=0,x 2=-2 5.21(2x +1)2=3 (2x +1)2=6 2x +1=±6 ∴2x +1=6或2x +1=-6∴x =21(6-1)或x =21(-6-1) ∴x 1=21(6-1),x 2=21(-6-1) 6.(x +1)2-144=0 (x +1)2=144 x +1=±12∴x +1=12或x +1=-12 ∴x =11或x =-13 ∴x 1=11,x 2=-13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛专题[配方法]
一、内容提要
1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2
±2ab+b 2
写成完全平方式
(a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式.
常用的有以下三种:
①由a 2
+b 2
配上2ab , ②由 2 ab 配上a 2
+b 2
, ③由a 2
±2ab 配上b 2
.
2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解
例如:把x 4
+4 因式分解.
原式=x 4
+4+4x 2
-4x 2
=(x 2
+2)2
-4x 2
=……
这是由a 2
+b 2配上2ab. ② 二次根式化简常用公式:a
a =2,这就需要把被开方数
写成完全平方式. 例如:化简6
25-.
我们把5-2
6写成 2-232+3
=2)2(
-232+2)3(
=(
2-3)
2
.
这是由2 ab 配上a 2
+b 2
.
③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2
≥0, ∴当a=0时, a 2
的值为0是最小值.
例如:求代数式a 2
+2a -2 的最值. ∵a 2
+2a -2= a 2
+2a+1-3=(a+1)2
-3 当a=-1时, a 2
+2a -2有最小值-3. 这是由a 2
±2ab 配上b
2
④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.
例如::求方程x 2
+y 2
+2x-4y+5=0 的解x, y.
解:方程x 2
+y 2
+2x-4y+1+4=0.
配方的可化为 (x+1)2
+(y -2)2
=0.
要使等式成立,必须且只需⎩
⎨⎧=-=+0201y x .
解得 ⎩⎨⎧=-=2
1
y x
此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.
二、例题
例1. 因式分解:a 2b 2
-a 2
+4ab -b 2
+1.
解:a 2b 2
-a 2
+4ab -b 2
+1=a 2b 2
+2ab+1+(-a 2
+2ab -b 2
) (折项,分组)
=(ab+1)
2
-(a -b)
2
(配方)
=(ab+1+a-b )(ab+1-a+b)
(用平方差公式分解)
本题的关鍵是用折项,分组,树立配方的思想.
例2. 化简下列二次根式:

347+;

32-;

2
23410+-.
解:化简的关键是把被开方数配方

347+=33224+⨯+=2
)32(+ =3
2+
=2+3.
②32-=
2
3
22-

2
324-=
2
)13(2
-

2)
13(2-=.2
26-

2
23410+-=
2
)12(410+-
=)
+(12410- =
2
46-=22224+⨯-=
2
)22(-=2-2.
=
例3. 求下列代数式的最大或最小值:
① x 2
+5x+1; ② -2x 2
-6x+1 .
解:①x 2
+5x+1=x
2
+2×2`5x+2
25⎪


⎝⎛-4
25+1
=(x+2
5)2
-4
21.
∵(x+2
5)2
≥0,其中0是最小值.
即当
x=2
5时,x 2
+5x+1有最小值-4
21.
②-2x 2
-6x+1 =-2(x 2
+3x-2
1)
=-2(x 2
+2×23x+4949--21)
=-2(x+2
3)2
+211
∵-2(x+2
3)2
≤0,其中0是最大值,
∴当
x=-2
3时,-2x 2
-6x+1
有最大值2
11.
例4. 解下列方程:
①x 4
-x 2
+2xy+y 2
+1=0 ; ②x 2
+2xy+6x+2y 2
+4y+10=0.
解:①(x 4
-2x 2
+1)+(x 2
+2xy+y 2
)=0 . (折项,分组) (x 2
-1)2
+(x+y)2
=0. (配方)
根据“几个非负数的和等于零,则每一个非负数都应等于零”. 得
⎪⎩⎪⎨
⎧=+=-0
12
y x x ∴⎩⎨
⎧-==1
,
1y x 或 ⎩⎨
⎧=-=11y x ②x 2
+2xy+y 2
+6x+6y+9+y 2
-2y+1=0 . (折项,分组) (x+y)2
+6(x+y )+9+y 2
-2y+1=0.
(x+y+3)2
+(y -1)2
=0. (配方) ∴⎩⎨
⎧=-=++0
103y y x ∴⎩⎨
⎧=-=1
4
y x 例5. 已知:a, b, c, d 都是整数且m=a 2
+b 2
, n=c 2
+d 2
,
则mn 也可以表示为两个整数的平方和,试写出其形式. 解:mn=( a 2
+b 2
)( c 2
+d 2
)= a 2c 2
+ +a 2d 2
+b 2
c 2
+ b 2
d 2
= a 2c 2
+ b 2
d 2
+2abcd+ a 2d 2
+b 2
c 2
-2abcd (分
组,添项)
=(ac+bd)2
+(ad-bc)
2
例6. 求方程 x 2
+y 2-4x+10y+16=0的整数解 解:x 2-4x+16+y 2
+10y+25=25 (添项) (x -4)2+(y+5)2
=25 (配方)
∵25折成两个整数的平方和,只能是0和25;9和16.
∴⎪⎩⎪⎨⎧=+=-⎪⎩⎪⎨⎧=+=-⎪⎩⎪⎨⎧=+=-⎪⎩⎪⎨⎧=+=-9
)5(16
)4(16)5(9)40)5(25)4(25)5(0)42
2
222222y x y x y x y x 或(或或( 由⎩⎨
⎧=+=-5504y x 得⎩⎨
⎧==0
4
y x
同理,共有12个解⎩⎨
⎧-==104
y x ⎩⎨⎧==5-9y x ⎩⎨
⎧-=-=5
1
y x ……
三、练习 1. 因式分解:
①x 4
+x 2y 2
+y 4

②x 2-2xy+y 2
-6x+6y+9 ; ③
x 4
+x 2
-2ax-a 2+1. 2. 化简下列二次根式: ①25204912422+-+++x x x x (-2
3<x<2
5);
②2
234432++-+-+x x x x x (1<x<2);
③21217-;
④53+;

3
24411-+; ⑥
5
353-++;
⑦(14+65)÷(3+5);
⑧(
x -3)2
+1682
+-x x .
3求下列代数式的最大或最小值: ①2x 2
+10x+1 ; ②-2
1x 2
+x-1.
4.已知:a 2+b 2
-4a -2b+5 . 求:
2
23-+b a 的值.
5.已知:a 2
+b 2
+c 2
=111, ab+bc+ca=29 . 求:a+b+c 的值. 6.已知:实数a, b, c 满足等式a+b+c=0, abc=8 . 试判断代数式c
b
a
111++值的正负.
7.已知:x=3819-,求:15
823
16262
234+-++--x x x x x x .
参考答案
1. ②(x -y -3)
2
2. ①8, ②0.5x , ③3-22,

2
210+, ⑤
2+
3,

10
⑦3+5, ⑧7-2x (x ≤3)
3. ①当x=-2
5时,有最小值-2
23 ②x=1时,有最大值-2
1
4. a=2, b=1 代数式值是3+22
5. ±13
6.负数。

由(a+b+c )2
=0 得出ab+ac+bc<0 4. 值为5。

先化简已知为4-3,代入分母值为2, 可
知x 2
-8x+13=0
分子可化为(x 2
+2x+1)(x 2
-8x+13)+10 =10 5. 配方(a -b )2
+(b -c)2
=0 6. ①⎩⎨
⎧==3
6
y x ②⎩⎨
⎧-=-=1
,11
,1y x ③⎩⎨
⎧-==1
2
y x 7. ①
⎩⎨
⎧-=-=⎩⎨⎧-=-=⎩⎨⎧-==⎩⎨⎧-==2
1312111y x y x y x y x ②(x-3)
2
+(y+5)2
=9 ……。

相关文档
最新文档