《数字图像处理与分析基础》第八章图像分割与描述(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理与分析基础

根据分割算法本身

数字图像处理与分析基础

路 路
(b)
分割结果
对象 A B A1 B1 C1 A2 B2 C2 坐标点 A3 B3 C3 B4 C4 C5
(a)
(0,0) A1 A3
图 分割的两种方法
(511,0)
x
分割
A
B1
A2 C5 B2 C4
C1 C2 C3
B4
原 图
C
B3
y
图7-3图像与分割结果 (511,511)
数字图像处理与 分析基础
第八章 图像分割与描述
内容摘要
图像的分割与描述是在图像预处理的基础上对信息进 行组织与加工,它是实现图像自动识别与理解的必不 可少的过程,是计算机视觉的中间层次。本章的内容 对拓展编码算法的设计思路也很有启发作用。图像的 分割算法介绍基于灰度的分割算法和基于梯度的分割 算法两大类,这两类算法分别利用了图像的区域相关 性和点相关性,在此基础上拓展到彩色图像分割。图 像的描述方法很多,本文介绍了链码描述子、傅立叶 描述子以及矩描述子三种基本手段。描述手段与分割 策略应当统一考虑。
数字图像处理与分析基础
并行区域技术
Region-Based Parallel Techniques


1、原理和分类 2、依赖像素的阈值选取 3、依赖区域的阈值选取
数字图像处理与分析基础
图像阈值分割(Image Segmentation :Thresholding)


最常用的图像分割技术 主要利用图像中背景与对象之间的灰度差异。 理想状态下,背景与对象之间的灰度值应当差 异很大,且同一个对象具有基本相同的灰度值。 体现在图像的灰度直方图上,就是直方图呈明 显的双峰分布,两类物体灰度级间无交叠。在 直方图中处于谷底的区域选取一个灰度值作为 阈值,根据灰度与阈值的关系将像素判定为对 象点或背景点,这个过程称为图像二值化。对 二值图像进行进一步的分析就可以获得图像的 分割结果。
数字图像处理与分析基础
二值化
设f(x,y)表示原图像,g(x,y)表示分割后的图像,T为 选定的灰度阈值,分割算法表示为
1 , f( x ,y ) T g ( x ,y ) 0 , f( x ,y ) T

1 , f( x ,y ) T g ( x ,y ) 0 , f( x ,y ) T
数字图像处理与分析基础
1 1 1 1 1 1 1 1
1 4 5 6 5 4 6 1
1 5 7 8 7 8 5 1
1 6 8 8 8 7 4 1
1 5 8 8 8 7 5 1
1 6 8 7 8 7 6 1
1 5 6 6 6 6 5 1
Βιβλιοθήκη Baidu
1 1 1 1 1 1 1 1
30 20 10
象 素 点
(a)
0
1 2 3 4 5 6 7 8 灰度级 (b) 图8-1 灰度取域法,阈值对分 割结果影响很大 (a)数字图像 (b)直方图 (c)取阈结果Th=4,Th=7
数字图像处理与分析基础
连通性有两种度量准则,如果只依据四邻域 (上下左右)确定连通,就称为4连通(fourconnectivity),物体也被称为是4连通的。如 果依据八邻域(加上四个对角像素)确定连 通,就称为8连通(eight-connectivity)。在 同一类问题的处理中,应当采用一致的准则。 通常8连通的结果误差小,与人的感觉更相近。
数字图像处理与分析基础
General Introduction and Classification



图像分量以及相互关系 图像分析与理解、自动景物分析、模式 识别 机器抽取信息
数字图像处理与分析基础
图像分割


定义:把图像中有意义的区域与背景分离开, 并按其不同的内涵将它们分割开。 “区域”是图像中相邻的具有类似性质的点 组成的集合。同一区域(region)中的像素 是相邻的,就是说区域是像素的连通集。 “连通”(connectedness)的定义为:在连 通集的任意两个像素间,存在一个完全由这 个集合中的元素构成的路径。同一区域中的 任意两个像素间至少存在一条连通路径。
(0,511)
数字图像处理与分析基础
特征集 对象1 图像 分块 化 对象n 分块化和描述
描述1
描述2 描述3 特征集
数字图像处理与分析基础
8.1.21基于灰度的分割 (区域相关技术)

两大类

是基于阈值分割的技术 是基于灰度均匀性的区域分裂——合并算法。


阈值分割算法实施时各像素间无相关性,原图 像可以分成几部分同时进行分割,又称为并行 区域技术(Region-Based Parallel Techniques)。 区域分裂——合并算法实施时,要利用像素间 的相关性,是一种串行区域技术。
数字图像处理与分析基础
第八章 图像分析基础
Image Analysis theory

1、图像分割 2、图像描述
数字图像处理与分析基础
8.1 图像分割 Image Segmentation

1、概述和分类 2、基于灰度的分割技术 3、基于梯度的分割技术 4、彩色图像分割技术 5、分割评价
“同质”分割依据:灰度、颜色、纹理、灰度变化 分割结果 以区域的边界坐标表示

数字图像处理与分析基础
分割方法分类

从分割依据出发



“相似性分割”就是将具有同一灰度级或纹理的像素聚集 在一起,形成图像中的不同区域。这种基于相似性原理的 方法常称为“基于区域相关的分割技术” “非连续性分割”需要先检测图像的局部不连续性,然后 将它们连接起来形成边界,这些边界将图像分割成不同的 区域。这种基于不连续原理检测图像中物体边缘的方法也 称为“基于点相关的分割技术”。 这两种方法具有互补性,一般来说在不同的场合需要不同 的方法,有时也将它们的处理结果相结合,以获得更好的 效果。 阈值法、边缘检测法、匹配法等
其中:“1”表示物体(对象、目标), “0”表示背景。
数字图像处理与分析基础
多阈值二值化
有时对象的灰度分布相对集中,而背景的灰度分布 很散,就需要设置两个灰度阈值T1、T2, T1>T2,这 两个阈值间的灰度范围都对应于对象,即:
1 ,T x ,y ) T 1 f( 2 g ( x ,y ) 0 , 其它
相关文档
最新文档