精选题压杆稳定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压杆稳定

1. 图示结构,AB 为刚性杆,其它杆均为直径10 mm d =的细长圆杆,弹性模量200 GPa E =, 屈服极限s 360 MPa σ=,试求此结构的破坏载荷F 值。

解:1

2.37 m, sin 26

H α⎛⎫== ⎪⎝⎭,

0.169()Cy Dy F F F =-=↓,

N1N4N2N30.507F F F F F ==-=-=

由杆1,4,N11s 0.507F F A σ==,s 155.8 kN 0.507

A

F σ=

=

由杆2,3,2N2cr 2π0.673 kN EI

F F l ===, cr 2 1.33 kN 0.507

F F ==

结构破坏载荷 1.33 kN F =

2. 图示桁架由5根圆截面杆组成。已知各杆直径均为30 mm d =, 1 m l =。各杆的弹性模量均为200 GPa E =,p 100λ=,061λ=,直线经验公式系数304 MPa a =, 1.12 MPa b =,许用应力[]160 MPa σ=,并规定稳定安全因数st []3n =,试求此结构的许可载荷[]F 。 解:由平衡条件可知杆1,2,3,4受压,其轴力为

N1N2N3N4N F F F F F =====

杆5受拉,其轴力为N5F F = 按杆5的强度条件:

N5

[], []113 kN F F A A

σσ≤≤= 按杆1,2,3,4的稳定条件 p 133λλ=> 由欧拉公式 cr 78.48 kN F =

cr

st N

[]F n F ≥ 37.1 kN F ≤ , []37.1 kN F =

3. 钢杆和铜杆截面、长度均相同,都是细长杆。将两杆的两端分别用铰链并联,如图,此时两杆都不受力。试计算当温度升高多少度时,将会导致结构失稳?已知杆长 2 m l =,横截面积220 cm A =,惯性矩440 cm z I =;钢的弹性模量s 200 GPa E =,铜的弹性模量c 100 GPa E =,钢的线膨胀系数6s 12.510α-=⨯℃-1

,铜的线膨系数6c 16.510α-=⨯℃-1

m

解:铜杆受压,轴力为Nc F ,钢杆受拉,轴力为Ns F ,Nc Ns N F F F ==

由协调条件 s c l l ∆=∆ 即 N N s c s c F l F l

tl tl E A E A

αα∆+=∆- N c s s c 11 ()F t A E E αα⎛⎫

∆=

+ ⎪-⎝⎭

铜杆为细长杆 2c cr 2π98.7 kN E I

F l

==

当 Nc cr F F =时失稳, 此时 185 C t ∆=o

4. 图示矩形截面杆AC 与圆形截面杆CD 均用低碳钢制成,C ,D 两处均为球铰,材料的弹性模量200 GPa E =,强度极限b 400 MPa σ=,屈服极限s 240 MPa σ=,比例极限

p 200 MPa σ=,直线公式系数304 MPa a =, 1.118 MPa b =。p 100λ=,061λ=,强度安

全因数[] 2.0n =,稳定安全因数st [] 3.0n =,试确定结构的最大许可载荷F 。 解:(1) 由梁AC 的强度

2

max max

max 2, , []

36 97.2 kN

z z

M F bh M W W F σσ===≤≤得 (2) 由杆CD 的稳定性

cr

p cr N N 1200, 15.50 kN, ,

33

15.50 kN, []15.50 kN

CD CD F F F F F F F λλ=>==≥≤=

5. 图示两端固定的工字钢梁,横截面积22

6.1 cm A =,惯性矩41 130 cm z I =,

493.1 cm y I =,长度 6 m l =,材料的弹性模量200 GPa E =,比例极限p 200 MPa σ=,屈服极限

s 240 MPa σ=,直线公式的系数304 MPa a =, 1.12 MPa b =,线膨胀系数712510/l α-=⨯℃,当工字钢的温度升高10t ∆=℃时,试求其工作安全因数。

解:p 158.799.3λλ=>=

由欧拉公式,可得临界应力cr 78.2 MPa σ=

温度应力 25 MPa l tE σα=∆= 工作安全因数 cr

st 3.13n σσ

=

=

6. 图示正方形平面桁架,杆AB ,BC ,CD ,DA 均为刚性杆。杆AC ,BD 为弹性圆杆,其直径20 mm d =,杆长550 mm l =;两杆材料也相同,比例极限p 200 MPa σ=, 屈服极限

s 240 MPa σ=,弹性模量200 GPa E =,直线公式系数304 MPa a =, 1.12 MPa b =,线膨

胀系数612.510/l α-=⨯℃,当只有杆AC 温度升高,其他杆温度均不变时,试求极限的温度改变量cr t ∆。

解:由平衡方程可得:N N N AC BD F F F == (压) 由变形协调方程,并注意到小变形, 有AC BD ΔΔB

即 N N AC BD l F l F l

tl EA EA

α∆-=

又由 p 11099λλ=>=, 知2cr 2πEI

F l

=

令 N cr F F =, 得 22

cr 2

π130.58d t l α∆==℃

7. 图示结构,已知三根细长杆的弹性模量E ,杆长l ,横截面积A 及线膨胀系数α均相同。问:当升温t ∆为多大时,该结构将失稳。

解:由 N l F l

tl EA α∆=, 可得 N l F tEA α=∆

细长杆: 2cr 2π EI

F l =

当 N cr F F =时失稳 22πl EI

tEA l

α∆= 得 22πl I t Al α∆=

8. 图示结构ABC 为矩形截面杆,60 mm, 100 mm, 4 m b h l ===,BD 为圆截面杆,直径

60 mm d =,两杆材料均为低碳钢,弹性模量200 GPa E =, 比例极限p 200 MPa σ=,屈服

极限s 240 MPa σ=,直线经验公式为cr (304 1.12) MPa σλ=-,均布载荷 1 kN/m q =,稳定安全因数st []3n =。试校核杆BD 的稳定性。

解:(1) 由协调方程,Δcos45BD

B l f =o

3

4N cos 45(2)5(2)38448BD F l q l EI EI -o 解得 N 7.06 kN BD F = (2) 杆BD :p 377100λλ=>= 由欧拉公式:cr 39 kN F = cr st st N 5.56[]BD

F

n n F ==>,安全。

B

D

A

C

相关文档
最新文档