硅胶键合相

硅胶键合相

美国药典规定色谱柱类型

L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱 L22:带有磺酸基团的多孔苯乙烯阳离子交换柱 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW 范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相,即C4柱 L27:30~50mm的全多孔硅胶微粒 L28:多功能载体,100?的高纯硅胶加以氨基键合以及C8反相键合的官能团 L29:氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5mm,孔径80? L30:全多孔硅胶键合乙基硅烷固定相 L31:季胺基改性孔径2000?的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂 L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料 L33:能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相, pH稳定性好 L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形 L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150? L36:5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰 L37:适合分离分子量2000~40000MW的聚甲基丙烯酸酯凝胶 L38:水溶性甲基丙烯酸酯基质SEC色谱柱 L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱 L40:Tris 3,5-二甲基苯基氨基甲酸酯纤维素涂覆多孔硅胶微球 L41:球形硅胶表面固定α1酸糖蛋白固定相 L42: C8和C18硅烷化学键合多孔硅胶固定相 L43:硅胶微球键合五氟代苯基固定相

化学键合固定相的基本理论

将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。 1.键合相的性质 目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应,形成Si-O-Si-C键形的单分子膜而制得。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应(不可能将较大的有机官能团键合到全部硅醇基上)和其它因素的影响,使得大约有40~50%的硅醇基未反应。 残余的硅醇基对键合相的性能有很大影响,特别是对非极性键合相,它可以减小键合相表面的疏水性,对极性溶质(特别是碱性化合物)产生次级化学吸附,从而使保留机制复杂化(使溶质在两相间的平衡速度减慢,降低了键合相填料的稳定性。结果使碱性组分的峰形拖尾)。为尽量减少残余硅醇基,一般在键合反应后,要用三甲基氯硅烷(TMCS)等进行钝化处理,称封端(或称封尾、封顶,end-capping),以提高键合相的稳定性。另一方面,也有些ODS 填料是不封尾的,以使其与水系流动相有更好的"湿润"性能。 由于不同生产厂家所用的硅胶、硅烷化试剂和反应条件不同,因此具有相同键合基团的键合相,其表面有机官能团的键合量往往差别很大,使其产品性能有很大的不同。键合相的键合量常用含碳量(C%)来表示,也可以用覆盖度来表示。所谓覆盖度是指参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。 pH值对以硅胶为基质的键合相的稳定性有很大的影响,一般来说,硅胶键合相应在pH=2~8的介质中使用。 2.键合相的种类 化学键合相按键合官能团的极性分为极性和非极性键合相两种。 常用的极性键合相主要有氰基(-CN)、氨基(-NH2)和二醇基(DIOL)键合相。极性键合相常用作正相色谱,混合物在极性键合相上的分离主要是基于极性键合基团与溶质分子间的氢键作用,极性强的组分保留值较大。极性键合相有时也可作反相色谱的固定相。 常用的非极性键合相主要有各种烷基(C1~C18)和苯基、苯甲基等,以C18应用最广。非极性键合相的烷基链长对样品容量、溶质的保留值和分离选择性都有影响,一般来说,样品容量随烷基链长增加而增大,且长链烷基可使溶质的保留值增大,并常常可改善分离的选择性;但短链烷基键合相具有较高的覆盖度,分离极性化合物时可得到对称性较好的色谱峰。苯基键合相与短链烷基键合相的性质相似。 另外C18柱稳定性较高,这是由于长的烷基链保护了硅胶基质的缘故,但C18基团空间体积较大,使有效孔径变小,分离大分子化合物时柱效较低。 3.固定相的选择 分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发生反应生成Schiff 碱。二醇基键合相适用于分离有机酸、甾体和蛋白质。 分离非极性和极性较弱的化合物可选择非极性键合相。利用特殊的反相色谱技术,例如反相离子抑制技术和反相离子对色谱法等,非极性键合相也可用于分离离子型或可离子化的化合

分析化学

单选题(共6题,每题10分) 1 .以高压液体为流动相的色谱法被称为() 2 A.液相色谱B.高速色谱 ?C.高压色谱 ?D.高效液相色谱 ?E.高分辨色谱 参考答案:D 2 .高效液相色谱法英文缩写为() ?A.HPLC ?B.TLC ?C.HTLC ?D.HSLC ?E.HRLC 参考答案:A 3 .正相液-液色谱法,流动相极性()固定相极性,()的组分先流出色谱柱。?A.大于;小极性 ?B.大于;大极性 ?C.小于;大极性 ?D.小于;小极性 ?E.小于;不肯定 参考答案:D 4 .以化学键合相作为固定相的色谱法叫做( ) ?A.固相色谱法 ?B.键合相色谱法 ?C.正相键合相 ?D.化学色谱法 ?E.反相色谱法 参考答案:B 答案解析:暂无 5 .高效液相色谱法结构流程图为() ?A.载气源→色谱柱→进样系统→检测器→记录仪 ?B.载气源→进样系统→色谱柱→检测器→记录仪 ?C.储液瓶→高压泵→色谱柱→检测器→记录仪 ?D.储液瓶→色谱柱→高压泵→检测器→记录仪 ?E.进样系统→储液瓶→色谱柱→检测器→记录仪 参考答案:C 6 .以化学键合相作为固定相的色谱法叫做( )

?A.固相色谱法 ?B.键合相色谱法 ?C.正相键合相 ?D.化学色谱法 ?E.反相色谱法 参考答案:B 单选题(共18题,每题4分) 1 .常用于定性定量分析紫外光谱区的波长范围是()。 ?A.200-400 nm ?B.400-800 nm ?C.100-200 nm ?D.100-800 nm ?E.200-800 nm 参考答案:A 2 .物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态所发射出的光称为()?A.红外光 ?B.紫外光 ?C.光致发光 ?D.荧光 ?E.磷光 参考答案:D 3 .荧光分析法是根据物质的荧光谱线位置及其强度进行物质()的方法。 ?A.结构式测定 ?B.化学性质测定 ?C.物理性质测定 ?D.元素测定 ?E.鉴定和含量测定 参考答案:E 4 .原子吸收分光光度法基于蒸气相中被测元素的基态原子对其( ) 的吸收来测定试样中该元素含量的一 种方法。 ?A.分子能级跃迁 ?B.电子能级跃迁 ?C.原子共振辐射 ?D.分子共振辐射 ?E.分子衍射能量 参考答案:C

分析化学

单选题(共6题,每题10分) 1.以高压液体为流动相的色谱法被称为() 2A.液相色谱 B.高速色谱 C.高压色谱 D.高效液相色谱 E.高分辨色谱 参考答案:D 2 .高效液相色谱法英文缩写为() A.HPLC B.TLC C.HTLC D.HSLC E.HRLC 参考答案:A 3 .正相液-液色谱法,流动相极性()固定相极性,()的组分先流出色谱柱。 A.大于;小极性 B.大于;大极性 C.小于;大极性 D.小于;小极性 E.小于;不肯定 参考答案:D

4 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B 答案解析:?暂无 5 .高效液相色谱法结构流程图为() A.载气源→色谱柱→进样系统→检测器→记录仪 B.载气源→进样系统→色谱柱→检测器→记录仪 C.储液瓶→高压泵→色谱柱→检测器→记录仪 D.储液瓶→色谱柱→高压泵→检测器→记录仪 E.进样系统→储液瓶→色谱柱→检测器→记录仪参考答案:C 6 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B

单选题(共18题,每题4分) 1 .常用于定性定量分析紫外光谱区的波长范围是()。 A.200-400 nm B.400-800 nm C.100-200 nm D.100-800 nm E.200-800 nm 参考答案:A 2 .物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态所发射出的光称为() A.红外光 B.紫外光 C.光致发光 D.荧光 E.磷光 参考答案:D 3 .荧光分析法是根据物质的荧光谱线位置及其强度进行物质()的方法。 A.结构式测定 B.化学性质测定 C.物理性质测定 D.元素测定

环糊精类手性固定相

8.1引言 近年来手性色谱领域的发展,使对映体的分离逐渐趋向于正规化,环糊在这方面起着重要作用。环糊精由villiers于1891年发现,由于它没有还原性和能被酸分解,在外形上又与纤维素十分相似,所以称为木粉(cellulosine)[1]。12年后,schardinger首次鉴定出环糊精是一种低聚糖,同时详细地叙述了它的制备和分离方法[2,3]。Schardinger还成功的分离出纯芽孢杆菌,取名纯化芽孢杆菌(bacillus macerans)至今仍是环糊精生产和研究中经常用的菌种。环糊精可以由水解液选择性的分离,也可用吸附色谱和纤维素柱色谱分离和鉴定环糊精[4]。 Freudenberg等人认识到了环糊精配合物的稳定性[5].此后对环糊精及其配合物特性的研究进行了大量的研究工作。目前高效液相色谱环糊精键合固定相,衍生化环糊精键合固定相,在对映体分离领域中已成为很有用的工具。 环糊精(cyclodextrin,CD)是由一定数量的葡萄糖单元通过α-1,4葡苷连接的环状分子结构。由所含葡萄糖单元的个数不同,可分为α-CD,β-CD ,γ-CD . α-CD含有6个葡萄糖单元,β-CD含有7个葡萄糖单元,γ-CD含有8个葡萄糖单元。 目前还未发现少于6个葡萄糖单元的环糊精,已鉴定出多于8个葡萄糖单元的环糊精,某些支化结构的环糊精已有报告[4]。环糊精的分子示意图类似于厚壁截顶圆锥筒(见图8.1)。 图8.1环糊精结构 n=1,α-CD;n=2,β-CD;n=3,γ-CD

每个葡萄糖单元的2,3位仲羟基在环的大口一方,6位伯羟基在环的小口一方。环的内侧是由氢原子和成桥氧原子形成的,所以环的内侧具有相对疏水性。环糊精分子中每个葡萄糖单元含有5个手性碳原子。因此α-CD,β-CD,和γ-CD 就分别含有30,35,40个手性碳原子。环糊精最突出的特点是能与许多有机分子形成包容配合物(inclusion complex),即客体分子部分或全部进入CD的空腔[5].环糊精的物理性质列在表8.1中 表8.1环糊精的物理性质 环糊精葡萄糖 单元 分子量 腔尺寸水溶性,M 外径内径深度 α-CD 697313.7 5.77.80.114 β-CD 7113515.37.87.80.016 γ-CD 8129716.99.57.80.179环糊精液相色谱固定相的发展大致可分为环糊精聚合物固定相,环糊精键合固定相,衍生化环糊精固定相或多模式环糊精固定相几个阶段。 1965年,Solms和Enli[6]合成出了保留环糊精包合作用性能的CD聚合物,他们把环糊精与3-氯-1,2还氧丙烷反应,得到适用于液相色谱标准粒径的不溶性聚合物的固定相。这种固定相对溶质的保留是CD-溶质包合常的函数,且对大量的天然产物,香料,芳香酸,核酸等有分离能力。其缺点是机械强度差,不能在高压下操作。以后的研究多集中在如何将环糊精连接在硅胶上,得到能在高压下使用的环糊精键合固定相。 1983年,Fujimura [7]和Kawguchi [8]合成出了硅基氨和酰胺键合固定相,但该固定相稳定性差,易水解。 1985年,Armstrong 研究组[9]合成除了不含硫,氮的环糊精手性固定相,这类固定相稳定性好,不易水解,目前这些稳定的固定相已作为Cyclobond 商品出售,Cyclobond 分别为β-CD,α-CD和γ-CD,对位置异构体和光学异构体都有很好的拆分能力。但是这类环糊精固定相只有在反相条件下才能使用才能有分离能力。在正相条件下,由于流动相中的非极性分子占据了环糊精内腔,使得溶质分子很难进入内腔,因而不能对溶质包合。对于手性化合物常常没有拆分能力,限制了它的应用范围。

USP色谱柱解释

L1和L8是美国药典(USP)规定的色谱柱编号,其实就是C18柱和NH2柱。下面是对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称C18或ODS L2:30~50um表面多孔薄壳型键合C18(ODS)固定相 L3:多孔硅胶微粒即一般的硅胶柱 L4:30~50um表面多孔薄壳型硅胶 L5:30~50um表面多孔薄壳型氧化铝 L6:30~50um实心微球表面包覆磺化碳氟聚合物-强阳离子交换固定相 L7:全多孔硅胶微粒键合C8官能团固定相简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相 L10:多孔硅胶微球键合氰基固定相(CN)简称CN柱 L11:键合苯基多孔硅胶微球固定相简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子填料 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1)简称C1柱 L14:10um硅胶化学键合强碱性季铵盐阴离子交换固定相简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L18: 3~10um全多孔硅胶化学键合胺基(NH2)和氰基(CN) L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol)简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球 L22:带有磺酸基团的多孔苯乙烯阳离子交换树脂 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换树脂 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相 L27:30~50um的全多孔硅胶微粒

HPLC中固定相和流动相

HPLC中固定相和流动相 在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。以下是填料基质、化学键合固定相和流动相的性质及其选择。 一、基质(担体) HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。无机物基质主要是硅胶和氧化铝,无机物基质刚性大,在溶剂中不容易膨胀;有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯,有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。 1、基质的种类: 1)硅胶 硅胶是HPLC填料中最普遍的基质。除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。硅胶基质填料适用于广泛的极性和非极性溶剂。缺点是在碱性水溶性流动相中不稳定。通常,硅胶基质的填料推荐的常规分析pH范围为2~8。 硅胶的主要性能参数有: ①平均粒度及其分布。 ②平均孔径及其分布,与比表面积成反比。 ③比表面积:在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。 ④含碳量及表面覆盖度(率):在反相色谱法中,含碳量越大,溶质的k值越大。 ⑤含水量及表面活性:在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性 越强,对溶质的吸附作用越大。 ⑥端基封尾:在反相色谱法中,主要影响碱性化合物的峰形。 ⑦几何形状:硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点 是涡流扩散项及柱渗透性差,后者无此缺点。 ⑧硅胶纯度:对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。 2)氧化铝 具有与硅胶相同的良好物理性质,也能耐较大的pH范围。它也是刚性的,不会在溶剂中收缩或膨胀。但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。 3)聚合物 以高交联度的苯乙烯-二乙烯苯或聚甲基丙烯酸酯为基质的填料是用于普通压力下的HPLC,它们的压力限度比无机填料低。苯乙烯-二乙烯苯基质疏水性强,使用任何流动相,在整个pH范围内稳定,可以用NaOH或强碱来清洗色谱柱。甲基丙烯酸酯基质本质上比苯乙烯-二乙烯苯疏水性更强,但它可以通过适当的功能基修饰变成亲水性的。这种基质不如苯乙烯-二乙烯苯那样耐酸碱,但也可以承受在pH13下反复冲洗。 所有聚合物基质在流动相发生变化时都会出现膨胀或收缩。用于HPLC的高交联度聚合物填料,其膨胀和收缩有限制。溶剂或小分子容易渗入聚合物基质中,因为小分子在聚合物基质中的传质比在陶瓷性基质中慢,所以造成小分子在这种基质中柱效低。对于大分子像蛋白质或合成的高聚物,聚合物基质的效能比得上陶瓷性基质。因此,聚合物基质广泛用于分离大分子物质。

高效液相色谱固定相和流动相

高压液相色谱HPLC培训教程(六) IV.固定相和流动相 在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。本章着重讨论填料基质、化学键合固定相和流动相的性质及其选择。 一、基质(担体) HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。无机物基质主要是硅胶和氧化铝。无机物基质刚性大,在溶剂中不容易膨胀。有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。 1.基质的种类 1)硅胶 硅胶是HPLC填料中最普遍的基质。除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。硅胶基质填料适用于广泛的极性和非极性溶剂。缺点是在碱性水溶性流动相中不稳定。通常,硅胶基质的填料推荐的常规分析pH范围为2~8。硅胶的主要性能参数有: ①平均粒度及其分布。 ②平均孔径及其分布。与比表面积成反比。 ③比表面积。在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。 ④含碳量及表面覆盖度(率)。在反相色谱法中,含碳量越大,溶质的k值越大。 ⑤含水量及表面活性。在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。 ⑥端基封尾。在反相色谱法中,主要影响碱性化合物的峰形。 ⑦几何形状。硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。 ⑧硅胶纯度。对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。 2)氧化铝 具有与硅胶相同的良好物理性质,也能耐较大的pH范围。它也是刚性的,不会在溶剂中收缩或膨胀。但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。 3)聚合物 以高交联度的苯乙烯-二乙烯苯或聚甲基丙烯酸酯为基质的填料是用于普通压力下的HPLC,它们的压力限度比无机填料低。苯乙烯-二乙烯苯基质疏水性强。使用任何流动相,在整个pH范围内稳定,可以用NaOH或强碱来

HPLC的固定相和流动相

HPLC的固定相和流动相 IV.固定相和流动相 在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。本章着重讨论填料基质、化学键合固定相和流动相的性质及其选择。 一、基质(担体) HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。无机物基质主要是硅胶和氧化铝。无机物基质刚性大,在溶剂中不容易膨胀。有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。 1.基质的种类 1)硅胶 硅胶是HPLC填料中最普遍的基质。除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。硅胶基质填料适用于广泛的极性和非极性溶剂。缺点是在碱性水溶性流动相中不稳定。通常,硅胶基质的填料推荐的常规分析pH范围为2~8。 硅胶的主要性能参数有: ①平均粒度及其分布。 ②平均孔径及其分布。与比表面积成反比。 ③比表面积。在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。

④含碳量及表面覆盖度(率)。在反相色谱法中,含碳量越大,溶质的k值越大。 ⑤含水量及表面活性。在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。 ⑥端基封尾。在反相色谱法中,主要影响碱性化合物的峰形。 ⑦几何形状。硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。 ⑧硅胶纯度。对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。 2)氧化铝 具有与硅胶相同的良好物理性质,也能耐较大的pH范围。它也是刚性的,不会在溶剂中收缩或膨胀。但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。 3)聚合物 以高交联度的苯乙烯-二乙烯苯或聚甲基丙烯酸酯为基质的填料是用于普通压力下的HP LC,它们的压力限度比无机填料低。苯乙烯-二乙烯苯基质疏水性强。使用任何流动相,在整个pH范围内稳定,可以用NaOH或强碱来清洗色谱柱。甲基丙烯酸酯基质本质上比苯乙烯-二乙烯苯疏水性更强,但它可以通过适当的功能基修饰变成亲水性的。这种基质不如苯乙烯-二乙烯苯那样耐酸碱,但也可以承受在pH13下反复冲洗。 所有聚合物基质在流动相发生变化时都会出现膨胀或收缩。用于HPLC的高交联度聚合物填料,其膨胀和收缩要有限制。溶剂或小分子容易渗入聚合物基质中,因为小分子在聚合物基质中的传质比在陶瓷性基质中慢,所以造成小分子在这种基质中柱效低。对于大分子像蛋白质或合成的高聚物,聚合物基质的效能比得上陶瓷性基质。因此,聚合物基质广泛用于分离大分子物质。

高效液相色谱法习题答案

第二十章高效液相色谱法 思考题和习题 1.简述高效液相色谱法和气相色谱法的主要异同点。 相同点:均为高效、高速、高选择性的色谱方法,兼具分离和分析功能,均可以在线检测不同点: 分析对象及范围流动相的选择操作条件 GC 能气化、热稳定性好、且沸 点较低的样品,占有机物的20% 流动相为有限的几种 “惰性”气体,只起运载作 用,对组分作用小 加温常压操作 HPLC 溶解后能制成溶液的样品, 高沸点、高分子量、难气化、离 子型的稳定或不稳定化合物,占 有机物的80% 流动相为液体或各种液 体的混合。它除了起运载作用 外,还可通过溶剂来控制和改 进分离。 室温、高压下进行 2.何谓化学键合相?常用的化学键合相有哪几种类型?分别用于哪些液相色谱法中? 采用化学反应的方法将固定液键合在载体表面上,所形成的填料称为化学键合相。优点是使用过程不流失,化学性能稳定,热稳定性好,适于作梯度淋洗。 目前常用的Si-O-Si-C型键合相,按极性分为非极性,中等极性与极性三类。①非极性键合相:常见如ODS键合相,既有分配又有吸附作用,用途非常广泛,用于分析非极性或弱极性化合物;②中等圾性键合相:常见的有醚基键合相,这种键合相可作正相或反相色谱的固定相,视流动相的极性而定:③极性键合相:常用氨基、氰基键合相,用作正相色谱的固定相,氨基键合相还是分离糖类最常用的固定相。 3.什么叫正相色谱?什么叫反相色谱?各适用于分离哪些化合物? 正相色谱法:流动相极性小于固定相极性的色谱法。用于分离溶于有机溶剂的极性及中等极性的分子型物质,用于含有不同官能团物质的分离。 反相色谱法:流动相极性大于固定相极性的色谱法。用于分离非极性至中等极性的分子型化合物。 4.简述反相键合相色谱法的分离机制。 典型的反相键合色谱法是用非极性固定相和极性流动相组成的色谱体系。固定相,常用十八烷基(ODS或C18)键合相;流动相常用甲醇-水或乙腈-水。非典型反相色谱系统,用弱极性或中等极性的键合相和极性大于固定相的流动相组成。 反相键合相表面具有非极性烷基官能团,及未被取代的硅醇基。硅醇基具有吸附性能,剩余硅醇基的多寡,视覆盖率而定。对于反相色谱的分离机制目前,保留机制还没有一致的看法,大致有两种观点,一种认为属于分配色谱,另一种认为属于吸附色谱。分配色谱的作用机制是假设混合溶剂(水十有机溶剂)中极性弱的有机溶剂吸附于非极性烷基配合基表面,组分分子在流动相中与被非极性烷基配合基所吸附的液相中进行分配。吸附色谱的作用机制可用疏溶剂理论来解释。这种理论把非极性的烷基键合相,看作是在硅胶表面上覆盖了一层键合的十八烷基的"分子毛",这种"分子毛'有强的疏水特性。当用水与有机溶剂所组成的极性溶剂为流动相来分离有机化合物时,一方面,非极性组分分子或组分分子的非极性部分,由于疏溶剂作用,将会从水中被"挤"出来,与固定相上的疏水烷基之间产生缔合作用,其结果使组分分子在固定相得到保留。另一方面,被分离物的极性部分受到极性流动相的作用,使它离开固定相,减小保留值,此即解缔过程,显然,这两种作用力之差,决定了分子在色谱中的保留行为。一般说来,固定相上的烷基配合基或被分离分子中非极性部分的表面积越

9-4-化学键合相色法-离子交换键合相 中国药科大学药物色谱分析讲义

1、离子交换键合相色谱 定义:在化学键合的有机硅烷分子中带上固定的离子交换基团,便成了离子交换键合相。 阳离子交换剂:磺酸基(-SO 3H)、羧酸基(-COOH) 阴离子交换剂:季氨基(-R 4N +)、氨基(-NH 2) 中国药科大学药物分析教研室 中国药科大学色谱分析课程 第 九 章 -4 化学键合相色谱 离子交换键合相色谱 ion exchange chromatography ,IEC 中国药科大学药物分析教研室

中国药科大学药物分析教研室 + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + 5μm + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++ ++ 阴离子交换剂 离子交换键合相色谱 ? 基质:薄壳型或全多孔微粒硅胶 ? 优点:具有较高的耐压性; 化学及热稳定性; 由于有较好的机械强度,耐压; 可以高压匀浆装柱。 ? 缺点:pH 适用范围只能在pH 2-8。 pH >9时,硅胶便容易溶解,未键合的残留硅羟基易 生成硅酸盐。 中国药科大学药物分析教研室

[BH + R - ][M + ] [BH + ][R - M + ] R :固定相带负电荷的交换基团 K A BH :样品离子 M :流动相离子 1)阳离子交换 4、分离机理 中国药科大学药物分析教研室 测定方法:酸碱滴定法 薄壳型(表面多孔层): 优点:传质快,渗透性好 缺点:表面积较小,样品容量小 (μmol/g ) 2、离子交换容量 ? 交换容量是指单位质量的离子交换剂所能与其它离子发生交换的量。 ? 交换容量越大,负载能力越大,k'值也越大。 ? 离子交换键合相的交换容量与固定相的表面积直接有关。 优点:表面积大,样品容量大 全多孔微粒型固定相: (mmol/g )

美国药典色谱柱型号对照

美国药典色谱柱型号对照 下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱 L22:带有磺酸基团的多孔苯乙烯阳离子交换柱 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW 范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相,即C4柱 L27:30~50mm的全多孔硅胶微粒 L28:多功能载体,100?的高纯硅胶加以氨基键合以及C8反相键合的官能团 L29:氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5mm,孔径80? L30:全多孔硅胶键合乙基硅烷固定相 L31:季胺基改性孔径2000?的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂 L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料L33:能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相, pH稳定性好L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形 L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150? L36:5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰 L37:适合分离分子量2000~40000MW的聚甲基丙烯酸酯凝胶 L38:水溶性甲基丙烯酸酯基质SEC色谱柱 L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱

分析化学 高效液相色谱法

第十八章 高效液相色谱 学习指导与基本要求: 高效液相色谱法又称为高压液相色谱法或高速液相色谱法。它是在经典液相柱色谱法的基础上,引入了气相色谱的理论,在技术上采用了高压输液泵、高效固定相和高灵敏度的检测器而发展起来的快速分离分析技术,具有分离效率高、检测限低、操作自动化和应用范围广的特点。 具体要求如下:掌握高效液相色谱法和气相色谱法区别和联系; 掌握高效液相色谱仪的组成,采用梯度洗脱的优点; 掌握高效液相色谱仪的检测器:紫外光度检测器、荧光检测器、示差折光检测器工作原理; 掌握影响色谱峰扩展的因素及分离条件选择; 掌握高效液相色谱固定相和流动相; 了解:高效液相色谱分离类型的选择;高效液相色谱在药物分析和临床检验中的应用。 概述 高效液相色谱法(HPLC)是20世纪60年代末70年代初发展起来的一种新型分离分析技术,它是在气相色谱和经典色谱的基础上发展起来的。随着不断改进与发展,目前已成为应用极为广泛的化学分离分析的重要手段。它是在经典液相色谱基础上,引入了气相色谱的理论,在技术上采用了高压泵、高效固定相和高灵敏度检测器,现代液相色谱和经典液相色谱没有本质的区别。不同点仅仅是现代液相色谱比经典液相色谱有较高的效率和实现了自动化操作。 经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。而现代液相色谱法引用了气相色谱的理论,流动相改为高压输送(最高输送压力可达 4.9×107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。因此,高效液相色谱具有分析速度快、分离效能高、灵敏度高、操作自动化等特点。所以人们称它为高压、高速、高效或现代液相色谱法。 为了更好地了解高效液相色谱法优越性,现从两方面进行比较: 一、HPLC与经典LC区别 HPLC与经典LC的主要区别在于固定相、输液设备和检测手段。 经典LC仅做为一种分离手段;其柱内径1~3cm,固定相粒径>100μm 且不均匀;采用常压输送流动相,柱效低(H↑,n↓),分析周期长,无法在线检测。

化学键合相色谱法

一、原理 “化学键合相色谱法”——采用化学键合相作固定相的液相色谱法。 化学键合相是利用化学反应通过共价键将有机分子键合在载体(硅胶)表面,形成均一、牢固的单分子薄层而构成的固定相。其分离机理为吸附和分配两种机理兼有。对多数键合相来说,以分配机理为主。通常,化学键合相的载体是硅胶,硅胶表面有硅醇基,≡Si–OH,它能与合适的有机化合物反应,获得各种不同性能的化学键合相。 从键合反应的性质可分为:酯化键合(≡Si-O-C)、硅氮键合(≡Si-N)和硅烷化键合(≡Si-O-Si-C)等;硅烷化键合相应用最广泛。这种键合相是用有机氯硅烷与硅醇基发生反应:≡Si–OH + C18H37 SiCl3→ ≡Si-O–Si–C18H37 + HCl,这种固定相在pH = 2~8.5 范围内对水稳定,有机分子与载体间的结合牢固,固定相不易流失稳定性好。 十八烷基硅烷键合相(Octadecylsilane 简称ODS或C18):是最常用的非极性键合相。它们用于反相色谱法,在70℃以下和pH 2~8范围内可正常工作。 化学键合固定相具有如下优点: ①柱效高:传质速度比一般液体固定相快; ②稳定性:耐溶剂冲洗,耐高温,无固定液流失,从而提高了色谱柱的稳定性和使用寿命; 应用范围广:改变键合有机分子的结构和基团的类型,能灵活地改变分离的选择性,适用于分离几乎所有类型的化合物;且能用各种溶剂作流动相(梯度洗脱)。 二、流动相 化学键合相色谱所用流动相的极性必须与固定相显著不同,根据流动相和固定相的相对极性不同分为: 1、正相键合相色谱法:流动相极性小于固定相极性。 常用非极性溶剂如烷烃类溶剂,样品组分的保留值可用加入适当的有机溶剂(调节剂)的办法调节洗脱强度。常用有机溶剂为极性溶剂如氯仿、二氯甲烷、已腈、醇类等。 适用于分离中等极性化合物,如脂溶性维生素、甾族、芳香醇、芳香胺、脂、有机氯农药等。 2、反相键合相色谱法:流动相极性大于固定相极性。 流动相多以水或无机盐缓冲液为主体,再加入一种能与水相混溶的有机溶剂(如甲醇、乙睛、四氢呋喃等)为调节,根据分离需要,改变洗脱剂的组成及含量,以调节极性和洗脱能力。在反相键合相色谱中,极性大的组分先流出,极性小的组分后流出。固定相一般为C18、C8。 反相键合相色谱法应用最广泛,因为它以水为底溶剂,在水中可以加入各种添加剂,改变流动相的离子强度、pH 值和极性等,以提高选择性,而且水的紫外截至波长低,有利痕量组分的检测,反向键合相稳定性好,不易被强极性组分污染,且水廉价易得,安全。 荧光素荧光与PH关系 假设荧光物质为弱酸或者是弱碱性物质,溶液的PH会对荧光物质的强度产生很大的影响。大多数含酸性或者是碱性的芳香族化合物的荧光光谱对于溶剂的PH和氢键能力很敏感。体系的PH的变化影响了荧光基团的电荷状态。当PH改变时,配位比也会发生改变。从而影响金属离子-有机配位体荧光配合物的荧光发射。高浓度样品对荧光的影响,高浓度样品应该进行稀释 激发光照射高浓度样品,在激发光入口附近产生荧光,但这些荧光不会进入荧光检测器。 高浓度样品中,分子之间相互作用发生活性阻碍作用 荧光的再吸收 荧光和磷光的区别 磷光是一种缓慢发光的光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段),而且与萤光过程不同,当入射光停止后,发光现象持续存在。

分析化学教学内容

分析化学

单选题(共6题,每题10分) 1 .以高压液体为流动相的色谱法被称为() 2 A.液相色谱 B.高速色谱 ?C.高压色谱 ?D.高效液相色谱 ?E.高分辨色谱 参考答案:D 2 .高效液相色谱法英文缩写为() ?A.HPLC ?B.TLC ?C.HTLC ?D.HSLC ?E.HRLC 参考答案:A 3 .正相液-液色谱法,流动相极性()固定相极性,()的组分先流出色谱柱。?A.大于;小极性 ?B.大于;大极性 ?C.小于;大极性 ?D.小于;小极性 ?E.小于;不肯定 参考答案:D 4 .以化学键合相作为固定相的色谱法叫做 ( ) ?A.固相色谱法 ?B.键合相色谱法 ?C.正相键合相 ?D.化学色谱法 ?E.反相色谱法 参考答案:B 答案解析:暂无 5 .高效液相色谱法结构流程图为() ?A.载气源→色谱柱→进样系统→检测器→记录仪 ?B.载气源→进样系统→色谱柱→检测器→记录仪 ?C.储液瓶→高压泵→色谱柱→检测器→记录仪 ?D.储液瓶→色谱柱→高压泵→检测器→记录仪 ?E.进样系统→储液瓶→色谱柱→检测器→记录仪

参考答案:C 6 .以化学键合相作为固定相的色谱法叫做 ( ) ?A.固相色谱法 ?B.键合相色谱法 ?C.正相键合相 ?D.化学色谱法 ?E.反相色谱法 参考答案:B 单选题(共18题,每题4分) 1 .常用于定性定量分析紫外光谱区的波长范围是()。 ?A.200-400 nm ?B.400-800 nm ?C.100-200 nm ?D.100-800 nm ?E.200-800 nm 参考答案:A 2 .物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态所发射出的光称为()?A.红外光 ?B.紫外光 ?C.光致发光 ?D.荧光 ?E.磷光 参考答案:D 3 .荧光分析法是根据物质的荧光谱线位置及其强度进行物质()的方法。 ?A.结构式测定 ?B.化学性质测定 ?C.物理性质测定 ?D.元素测定 ?E.鉴定和含量测定 参考答案:E 4 .原子吸收分光光度法基于蒸气相中被测元素的基态原子对其 ( ) 的吸收来测定试样中该元素含量的一 种方法。 ?A.分子能级跃迁 ?B.电子能级跃迁

化学键合固定相的基本理论

化学键合固定相的基本理论 将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。 1.键合相的性质 目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应,形成Si-O-Si-C键形的单分子膜而制得。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应(不可能将较大的有机官能团键合到全部硅醇基上)和其它因素的影响,使得大约有40~50%的硅醇基未反应。 残余的硅醇基对键合相的性能有很大影响,特别是对非极性键合相,它可以减小键合相表面的疏水性,对极性溶质(特别是碱性化合物)产生次级化学吸附,从而使保留机制复杂化(使溶质在两相间的平衡速度减慢,降低了键合相填料的稳定性。结果使碱性组分的峰形拖尾)。为尽量减少残余硅醇基,一般在键合反应后,要用三甲基氯硅烷(TMCS)等进行钝化处理,称封端(或称封尾、封顶,end-capping),以提高键合相的稳定性。另一方面,也有些ODS填料是不封尾的,以使其与水系流动相有更好的"湿润"性能。 由于不同生产厂家所用的硅胶、硅烷化试剂和反应条件不同,因此具有相同键合基团的键合相,其表面有机官能团的键合量往往差别很大,使其产品性能有很大的不同。键合相的键合量常用含碳量(C%)来表示,也可以用覆盖度来表示。所谓覆盖度是指参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。 pH值对以硅胶为基质的键合相的稳定性有很大的影响,一般来说,硅胶键合相应在pH=2~8的介质中使用。 2.键合相的种类 化学键合相按键合官能团的极性分为极性和非极性键合相两种。 常用的极性键合相主要有氰基(-CN)、氨基(-NH2)和二醇基(DIOL)键合相。极性键合相常用作正相色谱,混合物在极性键合相上的分离主要是基于极性键合基团与溶质分子间的氢键作用,极性强的组分保留值较大。极性键合相有时也可作反相色谱的固定相。 常用的非极性键合相主要有各种烷基(C1~C18)和苯基、苯甲基等,以C18应用最广。非极性键合相的烷基链长对样品容量、溶质的保留值和分离选择性都有影响,一般来说,样品容量随烷基链长增加而增大,且长链烷基可使溶质的保留值增大,并常常可改善分离的选择性;但短链烷基键合相具有较高的覆盖度,分离极性化合物时可得到对称性较好的色谱峰。苯基键合相与短链烷基键合相的性质相似。 另外C18柱稳定性较高,这是由于长的烷基链保护了硅胶基质的缘故,但C18基团空间体积较大,使有效孔径变小,分离大分子化合物时柱效较低。 3.固定相的选择 分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;

相关文档
最新文档