环氧树脂复合材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环氧树脂复合材料
日期: 2006-10-09
高性能复合材料在国外称为先进复合材料(Advanced Composites),也称为现代复合材料。它是适应航空、航天、军工等高科技领域的需要而发展起来的一种高性能复合材料。用作受力结构件。它解决了单一材料无法解决的技术难关,已成为制造飞机、导弹、火箭、卫星及航天飞机的关键性材料。可以说,没有高性能复合材料就没有现代的高性能飞机、导弹、火箭、卫星和航天飞机。
一、高性能复合材料的特点
据中国环氧树脂行业协会()专家介绍,主要有以下几个方面。
1、充分利用和发挥了复合材料各向异性的特点,实现了在更高层次上的材料可设计性。按受力状态铺层从而合理地、有效地使用了原材料的性能,减轻了制品的重量。得到非常高的比强度和比模量。见表9-2及图9-26。
2、通过精心设计和细心制作,高度实现了材料的复合效应,从而充分发挥了各组成材料的潜在能力,获得了原材料所没有的优异性能和新用途。例如耦合效应是复合材料的独特性能。合理地利用其可耦合的弯曲扭转变形,能克服飞机在高速度飞行时产生的气动弹性问题,从而使前掠翼布局得以实现。
3、耐疲劳性和减振性优异,即使在已有损伤的情况下,也很难观察到损伤在疲劳下的扩展。这是高性能复合材料在航空、航天领域广泛应用的又一重要原因。
4、材料设计和结构设计,材料成型和构件成型是同时一次完成的,不可分开的。制得的产品既是复合材料,也是复合材料结构件。
5、由于上述特点,所以高性能复合材料的设计和制造必须从结构设计、材料、工艺和模具等方面综合考虑,并由这几方面的技术人员协调配合才能完成。
6、为了获得高性能复合材料,不仅应对复合材料的力学性能进行宏观力学和宏观断裂力学的分析,而且还应进行细观力学和细观断裂力学的分析。宏观分析为结构设计提供了数据和依据,但是它不能从理论上说明材料具有这些力学性能的原因,不能确切地判断在材料设计和制备时影响材料性能的因素,不能了解复合材料断裂过程中各组分材料的性能对裂纹的引发、扩展和失稳扩展的影响和抑制作用,不能提供设计材料和开发新材料的理论基础,不能实现设计材料的目的。
为了通过材料设计使之达到预定的宏观性能,必须从细观上了解各组分材料的结构和性能在复合材料的平均力学性能中起什么作用。中国环氧树脂行业协会()专家表示,要掌握组分材料的形态、性能、含量、配置等对复合材料中裂纹的引发、扩展及失稳扩展的影响及规律,为结构设计和破损安
全特性提供可靠的判据,也为材料的设计、制造、加工及新材料的研制提供理论依据。也就是要进行细观力学和细观断裂力学分析。
7、为了确保高性能复合材料的质量,在每道工序和环节中都有严格的质量监控和保障措施。高性能环氧复合材料采用的增强材料主要是碳纤维(CF)以及CF 和芳纶纤维(K-49)或高强玻璃纤维(S-GF)的混杂纤维,所用基体材料环氧树脂约占高性能复合材料树脂用量的90%左右。高性能复合材料成型工艺多采用单向预浸料干法铺层,热压罐固化成型。高性能环氧复合材料已广泛应用在各种飞机上。以美国为例,20世纪60年代就开始应用硼/环氧复合材料作飞机蒙皮、操作面等。由于硼纤维造价太贵,70年代转向碳/环氧复合材料,并得到快速发展。中国环氧树脂行业协会()专家介绍说,大致可分为三个阶段。第一阶段应用于受力不大的构件,如各类操纵面、舵面、扰流片、副翼、口盖、阻力板、起落架舱门、发动机罩等次结构上。第二阶段应用于承力大的结构件上,如安定面、全动平尾和主受力结构机翼等。第三阶段应用于复杂受力结构,如机身、中央翼盒等。一般可减重20%~30%。目前军机上复合材料用量已达结构重量的25%左右,占到机体表面积的80%。我国于1978年首次将碳-玻/环氧复合材料用于强-5型飞机的进气道侧壁。20世纪80年代在多种军机上成功地将C/EP用作垂直安定面、舵面、全动平尾和机翼受力盒段壁板等主结构件。
宇航工业中除烧蚀复合材料外,高性能复合材料应用也很广泛。如三叉戟导弹仪器舱锥体采用C/EP后减重25%~30%,省工50%左右。还用作仪器支架及三叉戟导弹上的陀螺支架、弹射筒支承环,弹射滚柱支架、惯性装置内支架和电池支架等55个辅助结构件。由于减重,使射程增加342km。德尔塔火箭的保护罩和级间段亦由C/EP制造。美国卫星和飞行器上的天线、天线支架、太阳能电池框架和微波滤波器等均采用C/EP定型生产。国际通讯卫星V上采用C/EP 制作天线支撑结构和大型空间结构。宇航器“空中旅行者”的高增益天线次反射器和蜂窝夹层结构的内外蒙皮采用了K-49/EP。航天飞机用Nomex蜂窝C/EP 复合材料制成大舱门,C/EP尾舱结构壁板等。
近年来高性能环氧复合材料在高级体育用品中得到很快的发展。如用C/EP 或C-G/EP或C-K49/EP制造高尔夫球杆、羽毛球拍、网球拍、自行车架、滑雪杖、滑雪板、标枪、撑杆、弓箭、钓鱼杆、雪橇、冰球棍、赛车、滑翔机、赛艇、冲浪板、跳水板等。
二、组成材料及其功能
前曾概括地介绍了环氧复合材料的组成材料及其功能等内容。据中国环氧树脂行业协会()专家将从力学复合效应的角度作进一步地分析,并提出对高性能环氧复合材料组成材料性能的要求。现以单向纤维复合材料为例用细观力学和细观断裂力学的方法定性地分析各种受力情况下各组成材料在
复合材料中所起的作用和机理。
1、纵向拉伸
环氧树脂浇注体及纤维的力学性能。单向复合材料纵向受力示意图可知,纵向拉伸载荷PcL由纤维和基体共同承担。
2、横向拉伸
横向拉伸的情况比较复杂。虽然已提出十几种理论和公式,但终因力学模型与实际情况不完全符合而使理论值与实测值有差距。我们只从定性的方面结合实际情况作一些分析。复合材料的横向拉伸不仅与基体、界面及纤维的性能有关,而且受纤维排列的平直及规整程度、界面粘结强度,孔隙率等工艺因素的影响很大。概括地讲,高模量的纤维起着限制基体变形的作用。这导致复合材料横向拉伸模量高于基体的模量,提高的幅度与纤维体积含量Vf及纤维模量Ef有关。复合材料的横向拉伸强度则与其破坏模式有密切关系。破坏模式可能是:基体拉伸破坏、界面脱粘及纤维撕裂。实际上纤维被撕裂的情形很少有,大多为基体和界面混合破坏。从玻纤/EP复合材料实测值可以看到,复合材料的横向拉伸强度之比可高达2.3。实线是横向拉伸强度等于30MPa的复合材料的理论曲线,二者是相当吻合的。大的基体往往是脆性基体,应力集中增大,结果使低于基体强度。
而延性大的基体虽然应力集中小,可是其本身强度较低,虽然使复合材料的横向拉伸强度高,但实际值并不高。试验研究表明采用基体增韧的方法,即在基体的强度和模量基本不降低或降低不大的前提下,提高基体的断裂延伸率,可以显著地提高复合材料的横向拉伸强度。基体韧性的增加还提高了抵抗裂纹失稳扩展的能力,这对提高强度是有利的。中国环氧树脂行业协会
()专家表示,此外,选用横向模量小的纤维(如CF)能降低基体的应变增大因子,从而能提高复合材料的横向拉伸强度。
3、纵向压缩
基体的性能对复合材料的纵向压缩性能有较大的影响。复合材料纵向压缩破坏形式很多,如纤维失稳、基体屈服、界面脱粘、基体开裂、纤维压断、45°剪切破坏等现象,并能互相引发、扩展,最后导致破坏。不少学者依据这些现象提出了各自的纵向压缩破坏模式和理论公式。但理论值与实测值都有一定差距。纵向压缩破坏机理不很清楚。大体上讲实际的宏观破坏形式主要有3种,即复合材料形成弯折带而破坏、沿纵向劈裂(分层)破坏和与载荷成45°角方向剪切破坏。弯折带的形成是由于纤维受压失稳、基体受压失稳或屈服、或基体太软,模量太小,不能给纤维足够的支持所致。
分层破坏的原因主要是基体强度太低,界面粘结力小,孔隙率含量大,或在复合材料制备时就形成纤维弯曲(如纤维本身的弯曲和编织造成的弯曲,铺层时的偏差等)受纵向压缩时会在基体中产生横向拉应力,易造成基体沿纵向开裂及界面脱胶。45°剪切破坏是典型的脆性破坏模式,发生在基体、纤维及界面的强度都很大,而延伸率较小的情况下。中国环氧树脂行业协会
()专家强调,复合材料纵向压缩破坏的模式随组成材料的性