植物抗病基因工程研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物抗病基因工程研究进展
摘要随着植物抗病基因的分离,植物抗病机制的分子生物学和植物抗病基因工程取得了重大研究进展。该文就植物抗病基因工程的原理、目的基因、转化方法等进行综述,并对植物抗病基因工程的应用前景做了展望。
关键词植物;抗病基因;基因工程;原理;目的基因;转化方法;前景
随着世界人口的迅速增长,粮食问题已成为人类生存的关键问题。有专家预测,到2050 年,全球人口总数将膨胀至90 亿。剧增的人口将给为人类提供粮食的农业生产带来严峻的挑战。众多学者为提高作物产量作了许多努力,也取得了很大成果。但是,长期以来,因病菌侵染而造成的作物产量损失也是巨大的。当前,防治病害的主要策略是改进栽培措施和施用化学杀菌剂。但这只能从一定程度上控制病害的流行而不能从根本上解决问题,而且化学药剂所带来的环境污染和病原抗药性生理小种的形成等问题也给病害防治造成了更大的障碍。
自上世纪90 年代以来,分子生物学理论和技术的不断发展完善,使人们能够从分子水平上研究植物与病原菌的相互作用机制,植物基因工程的兴起更是为病害的控制提供了更广泛的选择余地。基因工程被认为是一项能为人类提供以食用动物为基础的健康和充足粮食途径的关键技术,在应用中扮演着重要角色。在植物抗病基因工程的研究历程中,以植物抗病毒基因工程开展最早,发展也最为迅速,部分转基因植株已开始用于生产。随着植物抗病反应机制和病原菌致病机理研究的深入,近年来植物抗病基因工程的研究取得了很大的进展。
1 植物抗病基因工程的原理
人们对植病互作机制的认识,主要来源于对模式植物拟南芥的研究。并且已经从拟南芥中鉴定和克隆了许多抗病基因,给其他作物的抗病性遗传分析提供了理论基础。
病原菌对宿主植物成功的感染,包括接触识别、崩解植物理化防御系统、产生毒素、灭活整个植株或部分组织的代谢生理活性。病原菌往往含有致病基因和毒性基因,其表达
调控包含有复杂的信号传导。
在经典遗传学中,植物与病原物的互作被看作是由基因型控制的,植物抗病性常常是由来源于植物的抗病基因R 与相应的来源于病原物的无毒基因avr 互相作用所决定的,即“基因对基因”学说。Flor通过亚麻与亚麻锈病菌之间的相互关系的研究,发现真菌的显性avr 基因的产物
(后来被描述成小种专化性诱导因子)能被R 基因的产物识别,从而激发植物抗性。
植物抗病基因工程指的是用基因工程(遗传转化)的手段提高植物的抗病能力,以此获得转基因植物的方法。植物抗病基因工程主要包括:抗病及其他相关基因的分离和克隆;与合适的载体及标记基因构成适于转化的重组质粒;用不同的转化方法向受体植物导入重组质粒;筛选转化因子并鉴定转基因植株。此外,还有一种可以获得抗病转基因植物的方法即把具有抗病能力的植物或微生物的DNA 直接导入受体植物,从后代中筛选具有抗病能力的个体,经过稳定转化得到转基因抗病植株。
2 用于植物抗病基因工程的目的基因
2.1 植物抗病基因
植物抗病基因工程选用的最佳目的基因来自植物自身的抗病基因,即上述的R 基因近20 年来,世界上许多重要实验室一直致力于植物R 基因的克隆,直到1992 年才取得突破,成功地克隆出第1 个玉米抗圆斑病基因Hm1。迄今人们已经从十余种不同植物中成功地克隆出了20 多种R 基因,如番茄抗叶霉病基因Cf2-9、Cf-2、Cf-4,水稻抗白叶枯病基因
Xa21,拟南芥的抗丁香假单胞杆菌基因RPS2、RPM1、抗霜霉病基
RPP5,亚麻抗锈病基因L6,大麦抗白粉病基因Mol等。这些抗病基因多数已转化到相应的感病植株中,并均使转基因植株表现出了对病原菌特定生理小种的抗性。
随着基因工程学研究的深入和发展,将获得大量的植物高密度遗传图谱,这为定位克隆技术的广泛应用提供了有利的条件和丰富的信息。同时由于R 基因在序列和结构上的相似性,利用与已知R 基因的同源关系分离新的R 基因,将大大提高克隆效率与速度。
2.2 病原体无毒基因
针对转基因植物抗性单一的问题,De Wit于1992 年根据基因对基因学说提出了“双组分系统”理论。即在某一特定的植物病原菌互作系统中,把病原菌的无毒基因与一个特殊的启动子融合在一起组成“双组分系统”,导入含相应抗病基因的植物中,当外源病原菌侵染或其产生的非专化性激发子作用时,该启动子就能及时快速且局部地做出反应,并启动avr 基因的表达,2 者的产物引起植物的过敏反应,从而使植物抗病。据此方法获得的转基因植物具广谱抗性,对真菌、细菌、病毒及线虫等病原物的侵染都有抗性。
已克隆的avr 基因有50 多个,多源于细菌,而真菌avr基因的克隆难度较大。超过40 种细菌的无毒基因被克隆、测序,这些无毒基因主要
来源于假单胞属Pseudomonas 和黄单胞属Xanthomomas。目前无毒基因在植物抗病基因工程上的实际应用远比植物本身的抗病基因广,且有良好的应用前景,因此对病毒基因的克隆具有重要的意义。
2.3 植物防卫反应基因
植物防卫反应基因是由抗病基因产物与无毒基因产物相互识别后激活的,对病原菌有直接作用的植物基因在植物的防御机制中起着重要作用。因此,导入植物防卫基因是目前抗病基因工程中较为有效的一种策略。已分离的防卫基因有:参与植保素(PA)合成的相关酶基因、病程相关蛋白(PR)基因、木质素合成相关基因、钝化病原菌致病酶或毒素的蛋白质基因、富含羟脯氨酸糖蛋白和富含甘氨酸糖蛋白的基因、核糖体失活蛋白基因、溶菌酶基因等。
2.3.1 病程相关蛋白(PR)基因。病程相关蛋白(PR)基因是目前的研究热点,该基因对植物的抗病性,尤其是系统获得性抗性具有重要作用。近年来陆续发现的PR 蛋白有:几丁质酶CHI、β-l,3 葡聚糖酶GLU、类甜蛋白等。其中,又以CHI和GLU 的研究最多。几丁质酶CHI 和β-l,3 葡聚糖是大多数植物病原真菌细胞壁的主要成分,CHI 和GLU 具有降解病原真菌细胞壁的作用,纯化的几丁质酶和葡聚糖酶单独或同时存在都能抑制病原真菌的生长,从而抑制病原真菌的侵染。现已从菜豆、水稻、烟草、拟南芥、油菜和甜菜等中克隆到几丁质酶基因,从大豆、烟草、大麦和豌豆等作物中克隆到葡聚糖酶基因。由菜豆几丁质酶基因单独转化、烟草葡聚糖酶基因与菜豆几丁质酶基因联合转化得到的转基因植株分别对烟草立枯丝核菌和烟草赤星病有较高抗性。一些葡聚糖酶基因也从大豆、大麦、烟草等作物中分离,与合适的启动子构建重组质粒后转化植物获得了转基因植物。Zhu 等报道水稻碱性几丁质酶基因和苜蓿葡聚糖酶基因的转基因烟草对烟草蛙眼病表现出了较只转一种基因的烟草更强的抗性。
2.3.2 溶菌酶基因。溶菌酶具有几丁质酶和葡聚糖酶的双重活性,对植物病原菌表现出很强的裂解活性。在已获得的T4 噬菌体溶菌酶基因的转基因马铃薯中,虽然只有低水平的合成表达,但能有效地分泌到由胞间隙中,明显提高了对马铃薯黑胫病的抗性。
2.4 其他生物的抗菌蛋白基因
自然界中的各种生物对病原菌都有其自身的防御机制和相应的抗菌物质,这为人们寻找抗菌蛋白基因提供了一个广阔空间。目前,人们已从昆虫、动物、细菌、真菌中分离到许多抗菌蛋白,将其笼统称为“抗菌肽”。
抗菌肽主要是通过形成离子通道直接破坏细胞膜来杀灭病原菌,因