DSSC中准固态电解质的研究

DSSC中准固态电解质的研究
DSSC中准固态电解质的研究

蝴㈣

⑧天洋大蓥

硕士学位论文

■■~一一~…一

学科专业:堕旦些兰

作者姓名:堡巴量

指导教师:奎壁亘塑丝

天津大学研究生院

2008年5月

锂离子电池固态聚合物电解质研究进展(英文)

邵 将等:纺织陶瓷基复合材料力学性能研究进展· 123 · 第35卷第1期 锂离子电池固态聚合物电解质研究进展 唐子龙1,胡林峰1,张中太1,粟付芃2 (1. 清华大学材料科学与工程系,新型陶瓷与精细工艺国家重点实验室,北京 100084; 2. 北京城建天宁耐火有限责任公司,北京 100053) 摘要:电解质是制备高功率密度和高能量密度、长循环寿命的锂离子电池的重要材料之一,而聚合物电解质是实现全固态锂离子电池的关键技术。总结近几年来为提高聚合物电解质电导率所作研究的新进展,并提出了今后的研究方向。 关键词:固态聚合物电解质;离子电导率;锂离子二次电池 中图分类号:TQ172 文献标识码:A 文章编号:0454–5648(2007)01–0123–06 RESEARCH PROGRESS OF SOILD POLYMER ELECTROLYTES FOR LITHIUM ION BATTERIES TANG Zilong1,HU Linfeng1,ZHANG Zhongtai1,SU Fupeng2 (1. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084; 2. Beijing Urban Construction Tianning Fire Protection Co., LTD., Beijing 100053, China) Abstract: Electrolytes are a key material for developing lithium ion batteries with high power and energy density and a long life cycle. Polymer electrolytes are one of the most important materials used in solid state lithium ion batteries. This paper presents a review of new progress in recent years in research to enhance the ionic conductivity of polymer electrolytes. The trend of this development is also reviewed. Key words: soild polymer electrolyte; ionic conductivity; lithium secondary battery Since the lithium secondary battery was first pro-duced by the Sony Corporation in 1990, Lithium secon-dary batteries have rapidly taken over the whole market in high performance rechargeable batteries.[1] Lithium ion secondary batteries are widely used in the electronic prod-ucts, such as mobile telephones, notebook personal com-puters (PCs), and digital cameras. Lithium ion batteries, which have high energy density and safe performance, also have excellent prospects for application in the fields of electric vehicles (EV), hybrid electric vehicles (HEV), aviation technology and high energy storage apparatuses.[2] Compared with other batteries, lithium ion batter-ies have many advantages, such as high discharge volt-age and energy density, good cyclability and no envi-ronment pollution. A schematic diagram of a lithium secondary battery is shown in Fig.1. As the public’s awareness of environmental protection has awakened, research on new green lithium batteries has grown. Electrolytes are the key component for lithium ion bat-teries. However, the application of liquid electrolytes is limited by unsatisfactory safety and cyclability and bad thermodynamic stability. In general, solid polymer elec-trolytes (SPEs) have the advantages such as no leakage of electrolytes, low density, safety, and ease of production. There has been increasing interest in the development of polymer electrolytes in recent years, which indicates the development direction of lithium battery electrolytes. Since Fenton et al. [3] found that the complex of polyenthylene oxide (PEO) and alkaline salts had the property of ionic conductivity in 1973, there has been much research on solid-state lithium-ion electrolytes. In 1979, Armand reported that PEO-LiX based electrolyte had a high ionic conductivity of 10–5 S/cm at temperatures between 40℃ to 60℃. [4] Moreover, it was easy to be prepared as a film, this aroused a worldwide interest in polymer electrolytes(PEs). PEs should have the following 收稿日期:2006–04–28。修改稿收到日期:2006–09–25。 基金项目:国家自然科学基金(50472005,50372033);清华大学基础研究基金(JC2003040)资助项目。 第一作者:唐子龙(1966~),男,副教授。Received date:2006–04–28. Approved date: 2006–09–25. First author: TANG Zilong (1966—), male, associate professor. E-mail: tzl@ 第35卷第1期2007年1月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 35,No. 1 January,2007

聚合物电解质

课名:能源材料及技术工程基础 题目:聚合物全固态锂离子电池研究现状与应用 姓名:崔辉 学号: 2220160681 签名:

摘要 传统液态锂离子电池易泄露、易腐蚀、服役寿命短,具有安全隐患,逐渐不能满足大容量储能元件、电池薄膜化以及电动汽车的需求。聚合物全固态锂离子电池有望解决安全性问题,越来越受到设计者们的青睐并将得到广泛应用。本文对固态聚合物电解质的发展历程及研究现状进行了简要的概述,并阐述了聚合物全固态锂离子电池的应用及发展方向。 关键词:固态聚合物电解质;全固态锂电池 一、引言 能源和环境是人类进入21世纪必须面对的两个严峻问题,新能源和清洁可再生能源的不断开发是人类社会可持续发展的重要基础。锂离子电池以其高能量密度、高工作电压、长循环寿命、可快速充放电和环境友好等诸多优点,在手机、笔记本电脑、电动工具、电动自行车等中小型电池领域应用广泛,已经成为21世纪能源经济中一个不可或缺的组成部分[1,2]。但传统的液态锂二次电池中含有大量有机电解液,具有易挥发、易燃、易爆等缺点,会造成重大安全隐患。与传统的液态电解质锂二次电池相比,基于聚合物电解质的全固态锂电池除了具有液态有机电解质锂离子电池的特点外,还在几何形状、容量、充放电、循环寿命和环保性能等方面更具优势[3]。同时,不存在液态电解质电池所存在的漏液污染和燃烧爆炸,从根本上解决安全隐患。本文就结合相关文献对全固态聚合物电解质进行简要介绍,并讨论了全固态锂离子电池的相关应用。 二、全固态聚合物电解质简介 1、发展历程 聚合物电解质的研究起源于1973年,当时Wright首次测量了聚氧乙烯(PEO)与碱金属盐(M x)络合的电导率,报道了聚氧化乙烯(PEO)-碱金属盐复合物具有较高的离子导电性[4]。1983年,Berthier等利用核磁共振技术表明固态聚合物电解质中PEO低室温电导率的主要原因是由于其很高结晶度的缘故。随后,Cheradame等利用交联与共聚的合成方法,获得了室温电导率达 5×10-5S·cm-1的固态聚合物电解质,从此揭开了固体聚合物电解质研究的序幕。20世纪90年代,Gozdz等利用P(VDF—HFP)共聚物制备了多孔型聚合物电解质最先实现了聚合物锂离子电池的产业化[5]。经过20余年的开发与研究,目前已经出现了众多固态聚合物电解质体系。 2、全固态聚合物电解质的分类[6] 根据基体的不同,可将全固态聚合物电解质(ASPEs)分为以下几类:

高分子电解质

高分子电解质 1.概述 在大分子链上带有可离子化的基团的水溶性高分子化合物称为高分子电解质,也称为聚电解质.高分子电解质在室温下电导率可达0.0001-0.001S/CM,具有良好的饶曲性、粘弹性能和应变性能,并因具有良好的透光性可制成透明薄膜;同时由于高分子电解质固化后具有一定的黏附力和良好的机械强度而便于器件的组装,所以成为全固态器件的首选材料。另外由于高分子电解质还具有絮凝、增稠、减阻、分散和电离等性能,已经被广泛的应用到环境保护、石油化工、印染与造纸、制药等行业具有很大的应用市场。 在能源日益缺乏的今天,高分子电解质的研究尤为重要,近年来有关高分子电解质的研究主要集中在保持力学性能的前提下提高室温离子传导率等方面。 2、高分子电解质的分类 按来源:天然高分子电解质、化学改性高分子电解质、合成高分子电解质 按形态:高分子全固态电解质、分子凝胶电解质 按离子类型:阳离子聚电解质、阴离子聚电解质、两性高分子电解质 按结构:主链带离子团的高分子电解质、侧链带梳状离子基团的高分子电解质、中性单体与离子单体的共聚物 按传输离子:质子导电电解质、离子导电电解质 按高分子基团:醚类、酯类、胺类等 3、高分子固体电解质的结构和性能 高分子固体电解质材料是由高分子主体物和金属盐两部分复合而成。其中高分子含有起配位作用的给电子基团,所以高分子主体物所含基团的数目与性质、大分子链的柔顺性及稳定性等对高分子电解质的性能均有重要影响。聚醚、聚酯、聚亚

胺、聚硅氧烷衍生物常用做高分子电解质主体物。PEO和碱金属组成的配合体系是研究最多的高分子电解质体系,PEO作为离子传导基质,碱金属离子作为电荷载流子源,起离子导电机理是:在分子链的醚氧原子的作用下金属盐解离为电荷载流子,离子借助高分子的近程链段运动,在高分子介质中迁移而表现出离子导电能。另外可通过化学方法和物理方法对高分子主体物进行改性,以降低高分子玻璃化温度和结晶度,达到提高室温离子传导率的目的。 4、高分子电解质的制备 (1)阳离子聚电解质的合成: 1)单体共聚法:通过阳离子型单体的共聚反应获得阳离子聚电解质。该方法由于阳离子单体种类有限,合成工艺复杂和制备成本较高等缺点,应用受到限制。 2)高分子化学反应法:以天然或合成高分子为母体,通过高分子链上的基团与阳离子化试剂的化学反应,获得阳离子聚电解质的方法。与1)比较合成工艺相对简单,目前应用较多的有天然高分子如淀粉、纤维素等和合成高分子如PS、PVC、聚乙烯醇等阳离子化改性物。 (2)阳离子聚电解质的合成 1)聚丙烯酸盐的合成:首先由丙烯酸或丙烯酸酯与金属的氢氧化物中和或皂化制备(甲基)丙烯酸的铵、钠、钾、镍等盐的单体,然后用水溶性氧化还原引发剂引发丙烯酸盐单体的自由基水溶液聚合。 2)聚苯乙烯磺酸盐的合成:有两条合成路线,一是苯乙烯磺酸盐聚合,二是苯乙烯的磺化反应制备。 3)苯乙烯磺酸盐的合成:由乙烯磺酸盐钠单体在水溶液中自由基聚合制备。 4)羟甲基纤维素的合成:将富含纤维素的棉短绒或木质纸浆纤维用氢氧化钠溶液处理后,与氯乙酸钠在50-70度反应。可的羟甲基纤维素。 (3)两性高分子电解质的合成

锂离子电池固态电解质制备及性能研究【开题报告】

开题报告 应用化学 锂离子电池固态电解质制备及性能研究 一、选题的背景与意义 锂无机固态电解质(ion conductor)又称锂快离子导体(super ion conductor),按其晶体结构分为晶态电解质和非晶态电解质。晶态电解质又称导电陶瓷,目前已研究的有钙钛矿(ABO3)型结构锂离子电解质、NASICON型结构锂离子电解质、LISICON型结构锂离子电解质等;非晶态电解质又称玻璃态电解质,目前已研究的有氧化物玻璃态锂离子电解质、硫化物玻璃态锂离子电解质等[1-5]。其导电机制是,锂无机固态电解质具有载流子,在导电过程中伴随着Li+的迁移,并且导电能力跟温度有密切关系。图1.列举了部分重要的晶态和非晶态无机固态电解质的离子电导率[3]。 图1. 部分重要的晶态和非晶态无机固态电解质的离子电导率的Arrhenius曲线Fig. 1. Arrhenius plot of ionic conductivity of important crystalline and amorphous inorganic solid lithium ion conductor. NaA(PO)(A =Ge, Ti and Zr)发现于1968年。这个结构被描述成AO6 NASICON晶体结构IV 243 正八面体和PO4正四面体组成的共价键结构[A2P3O12]-,形成3D相互联系通道和两种分布导电离子间隙位置(M·和M··)。导电离子越过瓶颈从一个位置移动到另一个位置,瓶颈的大小取决于两种间隙位置(M·和M··)的骨架离子性质和载体浓度。结果是,NASICON类型化合物的结构和电化学性质随着骨架组成的不同而变化。比如,在化学通式为LiA’IV2-x A’’IV x(PO4)3的化合物,晶胞参数a 和 LiGe(PO)。通过三价阳离子(Al, Cr, Ga, Fe, c取决于A’IV和A’’IV阳离子大小。已获得的最小晶胞是 243 Sc, In, Lu, Y, La)取代八面体中的Ti4+位置,可以提高陶瓷的烧结性能,降低晶粒边界电阻,提高材

凝胶聚合物电解质的组成

凝胶聚合物电解质主要由聚合物、增塑剂,以及锂盐几部分组成。它具有液体电解质聚合物锂电池体系中的隔膜与离子导电载体的功能。 1、聚合物 聚合物在GPE中主要起骨架支撑作用。固体SPE中的聚合物都可以用作凝胶聚合物电解质的聚合物。对用作骨架材料的聚合物的要求是成膜性能好,膜强度高,电化学稳定窗口宽,在有机电解液中不分解等。比较好的聚合物骨架材料是Feuilladec首先采用的聚丙烯腈(Polyacrylonitrile,PAN)等高分子,除此之外还有聚氧乙烯(Polyethylene Oxide,PEO),聚氧丙烯(Polypropylene Oxide,PPO),聚氯乙烯(Polyvinyl Chloride,PVC),聚偏氟乙烯(Polyvinylidene Fluoride,PVdF)等高分子。 为了提高凝胶聚合物的机械性及导电能力,通常采用共聚、嫁接等方法生成交链聚合物。如偏氟乙烯(Vinylidene Fluoride,VdF)与六氟丙烯(Hexafluoride Propylene,HFP)形成的共聚物P(VdF-HFP),PAN经常是与甲基丙烯酸甲酯(MethylMethacrylate,MMA)交链而形成共聚物P(AN—MMA),PEO的共聚物结构中,氧乙烯基(OCH2CHz)与氧亚甲基(OCH2)相互交错,由于氧亚甲基的插入而抑制了聚合物PEO的结晶性,从而可以提高聚合物的导电性。PEO共聚物的结构式如下: 2、增塑剂

增塑剂的作用是造孔。一般是将增塑剂混溶于聚合物溶液中,成膜后将它除去,留下微孔用以吸附电解液。要求增塑剂与高聚物混溶性好,增塑效率高,物理化学性能稳定,挥发性小且无毒,不与聚合物电池材料发生反应。一般应选择沸点高,粘度低的低分子溶剂或能与高聚物混合的低聚体。例如,邻苯二甲酸二丁酯(DBP,沸点340℃)为增塑剂时,当DBP在聚合物溶液含量为40%(质量分数)时,经抽提后,聚合物膜的强度大幅提高,孔率50%。大于一般膜的40%孔率大于。因此,添加DBP40%~50%时,可以达到膜的要求。 凝胶聚合物电解质的增塑剂类似液体电解质体系的溶剂。 为了达到以上要求,通常采用混合碳酸酯溶剂。当然溶剂的混合比例不同,所得的电解质的导电性也不同。PC含量高则导电性高,因为PC常温下为液体,比常温下为固体的EC粘度要低。不同的溶剂混合也会影响电解质的导电性。 3、锂盐 电解质盐是指无机阴离子或有机阴离子与锂离子形成的锂盐。在锂离子电池中作为电解质盐使用的主要有LiCl04,LiBF4,LiF6,LiPFs,LiCF3SO。电解质盐对电解质的导电性的影响也很大,以LiPF6,LiAsF6的离子导电性最好,LiCl04及LiN(CF3S02)2的导电性次之 文章出处:

固态电解质膜材合成加工成型

固态电解质膜材合成加工成型 一、拟解决的关键科学问题、关键技术和研究目标 (一)拟解决的科学问题 1.现有有机固态电解质(如PEO等)弹性模量不足,不能达到完全抑制锂枝晶 的强度。 2.现有无机固态电解质中锂枝晶会沿晶界生长,也不能完全抑制锂枝晶,且制 成薄膜成本高,并且与正负极结合较差。 (二)研究课题的关键技术和预期目标 应用自有发明专利技术,研发、设计、生产、优化一种新型固体聚合物电解质材料。实现如下预期目标:在宽温度范围内(-40°-100℃)具有高离子电导率(>10-4S/cm),高杨氏模量(>0.5GPa),并达到厚度小于20微米,质地均匀无微孔连续薄膜。可将该材料如隔膜状使用,与现有的正负极活性材料包括锂金属相容。 二、主要研究内容 研究重点: 1.根据材料的新机理进行合成路线及加工成型路线设计。 研究思路: (一)新型固态聚合物电解质的设计 目前,固态电解质材料主要以无机锂氧化物、硫化物体系和有机全固态聚合物体系这两种体系实现。而现有的有机全固态聚合物体系由于其依靠高分子链运动实现锂离子传导,其室温离子电导率低,在50℃以上才能达到良好的离子电导率,限制了其室温全固态锂电池的广泛应用。 通过转变原有在聚合物固态电解质中依靠高分子链运动而带动锂离子迁移的思路,我们设计了一种新型固态聚合物电解质。在PEO等体系中,形成的是一种强路易斯酸碱配位,PEO链作为强碱通过氧原子与锂离子的强配位能力,解离锂盐。而在我们的设计中,形成一种弱酸弱碱交替的高分子聚合物分子链与锂离子相互作用,形成锂离子迁移。示意图如下:

其中A为一种中性物,在与共轭高分子中性链接近后,由于共轭结构链中的电子可在振动时候或者有A中提供给电子或者拉电子能力时离位,形成极化子。随后极化作用带来电场的扰动变化,弱化电子与A之间的作用,高分子链形成孤立子。在众多孤立子存在下,在电解质中形成孤立子带。从而实现了较高的离子迁移率,即离子以一种在富电子或缺电子的点位中跳跃的方式迁移。 以此为思路合成固态电解质聚合物材料,同时通过涂布或挤出等方式实现该材料的薄膜化。 (二)新型固态聚合物电解质的合成以及加工 根据如上设计思路,我们参照Nafion膜材进行设计,将全氟主链换为具有一定共轭结构的主链,成弱路易斯酸碱,其上再直接替换原有氢位为磺酸基或其他具有一定电离能力的基团,再将活泼氢位置换为锂离子,实现导锂结构。下图合成过程为参考。

固体电解质

来源:仲恺农业工程学院绿色化工研究所作者:黄金辉等 提要:介绍了聚合物锂离子电池的关键材料聚合物电解质。叙述了聚合物电解质的发展、组成、分类,离子在聚合物中的传导机理以及国内外的研究进展和今后的研究重点及方向。信息、能源和环保是21 世纪人类社会关心的主要课题。二次电池对3 个问题的解决都起着关键作用。锂离子电池是最新型的二次电池,近10年来得到迅速发展。到2008 年,全球锂离子电池的销售额已远远超过镉镍(Ni-Cd)和氢镍电池(Ni-MH)。锂离子电池以其他电池所不可比拟的优势迅速占领了许多领域,从信息产业(移动电话、PDA、笔记本电脑)到能源交通(电网调峰、电动车辆),从太空(卫星、飞船)到水下(潜艇、水下机器人),锂离子电池在本世纪作为主要的二次电池,进入了人类社会的各个领域,为人类造福。 电解质作为锂离子电池的关键材料影响甚至决定着电池的比能量、寿命、安全性能、充放电性能和高低温性能等多种宏观电化学性质。现在的电解质已经从以前的液态电解发展到固态电解质也就是聚合物电解质。以聚合物电解质取代液态电解质,是锂离子电池发展的一个重大进步,其显著特点就是提高了电池的安全性能,易于加工成膜,可以做成全塑结构,从而可制造超薄和各种形状的电池;能够很好的适应电池冲放电过程中电极的体积变化,同时又有较好的化学和电化学稳定性能。因此在新型高能锂电池及电化学的应用上显示出很大的优越性。 1 聚合物电解质 聚合物电解质也就是高分子电解质,它是由极性聚合物和金属盐络合形成的一类在固态下具有离子导电性的功能高分子材料,实际上就是锂盐的聚合物溶液,广义的说是指具有离子传导性的导电聚合物材料,即在外加电场驱动力作用下,负载电荷的离子定向移动来实现导电过程的聚合物,它的溶剂无论是液体高分子还是固体高分子都具有能够和锂离子配位的基团,而且这些基团与锂离子配位能力越强,锂盐在聚合物中的溶解度就越大,相应的聚合物电解质电性能就越强。 作为各种电池等需要化学能与电能转换场合中的离子导电介质,它在工业和科研工作中的各种电解和电分析过程中有重要的用途,在锂离子电池中它作为锂离子的传输介质必须具备这些条件:工作温度下的电导率较高,一般要大于1 mS/cm,以保证组装成的电池电阻降较低;锂离子迁移数大,以防止产生浓差极化;对电子传输几乎绝缘,因而能够有效地隔离正负电极,以防止电池内部短路;对锂电极的化学和电化学稳定性高,以保证电解质-Li 界面性质稳定性良好;制造成本低廉,以利于市场开发;温和的化学成分,不会污染环境。基于对这种新型电解质的这些特点与要求,许多科研工作者进行了不懈地努力。从最开始的导电聚合物,到有机聚合物再到无机聚合物,再到有机-无机共混聚合物等等,进行了大量的理化性质、常温下的导电率和成膜强度的研究和测试。 电解质的发展到今,已形成了一定的体系,可以分成不同的类型。标准不同其分类也不同,根据导电离子不同,可分为单离子和双离子聚合物电解质;根据聚合形态不同,可分为固体

一种新型全固态聚合物电解质的制备和研究

一种新型全固态聚合物电解质的制备和研究 杨道均1,2,傅相锴1,2,3,龚永锋1,2 1西南大学化学化工学院应用化学研究所,重庆(400715) 2重庆市应用化学市级重点实验室,重庆(400715) 3三峡库区生态环境教育部重点实验室,重庆(400715) 摘要:以醋酸乙烯酯(V Ac)和甲基丙烯酸甲酯(MMA)为单体,采用半连续种子乳液聚合法制备了无规共聚物P(V Ac-MMA),再以四氢呋喃(THF)为溶剂,机械搅拌混入LiClO4,制备了聚合物电解质。FTIR测试表明P(V Ac-MMA)已经聚合生成,用XRD对不同单体投料比下共聚物中的无定形相进行分析;TG、力学性能和电化学交流阻抗测试表明,P(V Ac-MMA)为基体的聚合物电解质具有很好的热稳定性,机械强度和较高的电导率。在25℃不含增塑剂的条件下,离子电导率最高达到了1.2738×10-3S/cm;离子电导率随着温度的升高而迅速增加,电导率—温度曲线符合Arrhenius方程。 关键词:醋酸乙烯酯;甲基丙烯酸甲酯;聚合物电解质;离子电导率 1.引言 高分子固体电解质(Solid polymer electrolyte),又称为离子导体聚合物(Ion-conducting polymer),是从20世纪70年代起迅速发展起来的一种新型固体电解质材料。1973年英国的Wright等[1]首次报道了聚氧化乙烯(PEO)/碱金属盐络合物具有离子导电性。1979年,法国Armand等[2]报道了PEO/碱金属盐络合物在40—60℃时离子电导率达10-5 S/cm,且具有良好的成膜性,可用作锂离子电池电解质。此后,在全世界的范围都掀起了聚合物固体电解质的研究热潮。目前研究最为广泛的聚合物电解质基体主要有PEO、PAN[3]、PMMA[4]、PVdF [5]等。但迄今,电性能和力学性能具佳的聚合物电解质薄膜报道并不多。有文献报道了一系列以共混聚醋酸乙烯酯(PVAc)为基体的聚合物电解质,如PV Ac/PMMA[6]、PV Ac/PVdF[7]、PV Ac/PEO[8]和PV Ac/P(VdF-co-HFP)[9]等,它们都有较高的离子电导率和较好的机械性能。但是以V Ac共聚物为基体的聚合物电解质还未曾见报道。 本文采用半连续种子乳液聚合法[10],以V Ac和MMA为单体,聚合生成了无规共聚物P(V Ac-MMA),并将其作为基体应用于聚合物电解质,进一步提高离子电导率和力学性能。运用热重分析、交流阻抗和力学性能测试对聚合物电解质的热稳定性、离子导电性和机械性能进行表征。 2.实验 2.1 原料 醋酸乙烯酯单体(上海山浦化工有限公司)用前蒸馏,取71—73℃的馏分,甲基丙烯酸甲酯单体(成都科龙化工试剂厂)用5%的 NaOH溶液洗涤,以除去阻聚剂对苯二酚,再用去离子水洗至中性。乳化剂十二烷基硫酸钠(天津市纵横兴工贸有限公司化工试剂分公司),引发剂过硫酸铵(天津市纵横兴工贸有限公司化工试剂分公司),缓冲剂碳酸氢钠(重庆北碚化学试剂厂),溶剂四氢呋喃(宁波大川精细化工有限公司),破乳剂硫酸铝钾(成都科龙化工试剂厂),均系市售化学纯,直接使用;去离子水自制。 2.2P(V Ac-MMA)共聚物和电解质薄膜的制备 用80g去离子水溶解0.5g乳化剂十二烷基硫酸钠加入到250ml的三口烧瓶中,开启搅

固态电解质能从根本上解决电池安全问题

固态电解质能从根本上解决电池安全问题 导读:全固态锂离子电池采用固态电解质替代传统有机液态电解液,有望从根本上解决电池安全性问题,是电动汽车理想的化学电源。 2019年,对新能源汽车产业链企业而言,都是颇为艰难的一年。补贴退坡、降本压力大、资金链紧张,不少企业在阵痛中挣扎求生。 由于受整体销售状况持续不佳的影响,新能源汽车行业部分整车及动力电池厂商的资金周转出现了压力,一些企业因客户未能按约支付货款,大幅增加计提对其应收账款的坏账准备,对企业的经营业绩产生不利影响。 在此背景下,2月10日工信部发布了“关于修改《新能源汽车生产企业及产品准入管理规定》的决定(征求意见稿)”。 此次征求意见稿主要取消了原规定中的“设计开发能力”要求,把此部分调整为了“技术保障能力”要求,要求企业应具备与生产的新能源汽车产品相适应的技术保障能力;还能够对整车和自制部件有测试能力,能够评价、确认与技术保障能力相关的技术要求。 从技术保障能力来看,要求企业在生产过程中的技术把控能力,主要确保的是生产品质和一致性,测试能力也是为了保障生产出来的产品符合汽车产品所需的技术要求。 此次意见稿的调整,意味着新能源汽车生产企业可以不具备自有的设计开发能力,只要保证生产所需的技术保障能力就行。 01 动力电池是新能源电动汽车的核心零部件,新能源汽车产业的不景气,动力电池产业自然不能幸免。从这一点来看,征求意见稿对新能源汽车行业的要求,同样适用于动力电池行业。 把握市场方向,顺应时代发展,核心技术革新,才是硬道理。技术质量过硬,始终是企业发展的保障,市场的导向。 电池技术发展到今天,可以说相对已经比较成熟了,但也同样遇上了瓶颈,急需新一代技术的诞生,尤其是新能源领域。

锂离子电池固态聚合物电解质材料制备及其性能改善

锂离子电池固态聚合物电解质材料制备及其性能改善 采用液态电解质的锂离子电池在使用过程中容易引发的电解液泄露,引起安全隐患。具有高离子电导率和稳定电位的固态电解质可以提高锂离子电池的能量密度和安全性。 聚偏二氟乙烯-六氟丙烯共聚物(PVDF-HFP)是一种有应用前景的聚合物材料。本研究通过掺杂无机陶瓷颗粒、共混和构造三维网络制备了聚合物电解质,并对其电导率、锂离子迁移率和电化学稳定电位进行了研究,同时组装锂离子电池, 系统分析了其充放电循环稳定性等电化学性能。 (1)本研究首先从纯PVDF-HFP基聚合物室温电导率低的特点出发,利用倒模法,通过掺杂石榴石型无机陶瓷粉末Li7L3Zr2O12制备有机-无机复合电解质并 确定了最适掺杂量(10%)。在室温下,复合聚合物电解质(CPE)具有良好的锂离子电导率3.71×1014-4 S cm-1。 复合聚合物电解质表现出更高的锂离子转移数(0.58)和较为平稳的电化学 窗口(可达4.65VvsLi/Li+)。借助复合聚合物电解质的锂离子电池电化学稳定性有所改善表现出优异的初始放电容量。 在以磷酸铁锂为正极的锂电池系统中,以0.2 C倍率下电池的放电容量达163.1 mAh g-1。评估电池的长循环过程中,通过掺杂改性的聚合物电解质表现出更稳定的电化学充放电能力,在200次充放电周期之后,库伦效率依旧可以维持 在99%以上,容量维持率可达83.8%。 (2)将含有极性很强碳酸酯基团的聚碳酸丙烯酯(PPC)通过共混的方式引入 纯PVDF-HFP聚合物体系中,高电介质基团的引入构成了稳定且低结晶的内部三 维载体,改善了锂离子传输并提高了电解质的循环稳定性。共混改性后的聚合物

锂电池固态电解质的应用和研究进展

目录 第一章锂电池的历史 (5) 1.1 早期的锂电池 (5) 1.2 电化学插层锂电池 (5) 1.3 干燥聚合物电解质锂电池 (7) 第二章锂电池的现状与发展 (8) 第三章锂电池的结构和固态电解质 (9) 3.1 正极材料 (9) 3.2 负极材料 (12) 3.3 聚合物和液体电解质 (14) 3.4 电极-电解液界面 (16) 3.5 固态电解质 (17) 结论 (20) 致谢 (21) 参考文献 (22)

锂电池固态电解质的应用和研究进展 摘要人们对便携式电子设备日益增长的需求推动了可再充电固态电池技术的发展。我们选择了锂离子电池系统,因为它能提供高能量密度,灵活和轻便的设计,并且寿命比同类电池技术更长。我们简要介绍了锂基可再充电电池的发展情况,重点陈诉了目前的研究策略,并讨论了这些电源系统的综合理论,表征,电化学性能和安全性方面所面临的挑战。 关键词:锂电池固态电解质

引 言 充电式锂离子电池作为便携设备,娱乐设备,计算设备和通讯设备的关键部件,为当今信息、流动社会所必需。尽管全世界的电池销量在急剧的增长,但电池技术的基础理论却是发展缓慢,严重滞后。现有的这些电池技术理论(例如镍—镉、镍—金属氢化物或锂离子)的发展远远不能满足人们对高性能电池的需求。当然,储能技术的进步是不能与计算机工业发展的速度相提并论的(穆尔定律预测每两年内存容量增加了一倍)(图1)。虽说如此,然而过去的十几年中,电化学方面还是取得了一定的进展,出现了MeH –Ni 和锂离子电池的新兴技术。目前这些电池技术正在逐步取代大家所熟知的镍镉电池。 锂离子电池用电解质材料从其形态上讲主要有电解液(液态)、凝胶电解质(半固态)和固态电解质三种类型,电解质材料从技术发展方向上看大体存在着“液态→固态”的发展规律,但也不绝对。采用有机电解液的传统锂离子电池,因有过度充电、内部短路等异常时可能导致电解液发热,有自燃或甚至爆炸的危险。而将有机电解液代之以固态电解质的全固态电池,其安全性可大幅提高。在理想状态下,固态时锂的扩散速度(离子传导率)较液体电解液时高,理论上其可实现更高的输出。固态电解质及全固态锂离子电池是锂离子电池技术发展的一个重要方向。在理论上,由于不使用液态电解液,全固态锂离子电池具备可提高安全性及耐久性,可简化外壳,可通过卷对卷方式制造大面积的电池单元,可通过层叠多个电极、并使其在电池单元内串联以制造出V 12及V 24的大电压电池单元(传统的有机电解液,当电池电压接近V 4时电解液就开始分解,因此很难提高池的电压上限)等前所未有的特性,受到极大关注。 图1

固体聚合物电解质水电解池及其膜电极的研究

固体聚合物电解质水电解池及其膜电极的研究氢气是重要的能量载体,也是重要的化工原料。氢气在燃料电池及储能、化学工业及石油化学工业、贵金属冶炼、造船工业等领域具有十分重要的用途。 电解水制氢技术是获得高纯度氢气的最为重要的技术手段之一,目前应用最广泛的是碱性电解水技术,具有制氢规模大,投资成本低的优势,但是也存在使用具有腐蚀性电解液、产物纯度低、能量效率低等缺点。与其相比,近年来快速发展的固体电解质(SPE)电解水技术则具有电解池结构紧凑、电流密度高、能量效率高以及可输出超高纯度和高压强的产物气体等优点,被认为是最有发展潜力的一种电解水制氢技术,目前的SPE电极一般是将催化剂粘结(喷涂)在固体电解质的表面,存在由于催化剂结合不够牢固而引起的电极稳定性不高、使用寿命不够长、电解效率仍然偏低等缺点。 针对目前SPE电解水技术存在的问题,本论文提出和采用了一种离子交换-还原沉积制备应用于SPE电解池中的新型膜电极(MEA)的方法,制得一种高性能的SPE电解水电极;考察了前驱体的种类、金属沉积量、催化层结构、还原剂等等因素对于电极电解水性能的影响;并采用XRD、ICP-AES、SEM等对电极进行了表征。实验结果表明:还原沉积制备的电极中,催化剂层与固体电解质膜结合十分紧密,催化剂层均匀地分布在固体聚合物膜(PEM)表面,催化层厚度为1-2μm。 本文研究发现:在阳极催化层制备中引入铱,可使得形成的催化层具有棉花球状的三维结构;在优化制备条件下制备的电极的阳极层为双金属层结构,Pt载量为1.4 mg/cm2,Ir载量为0.4mg/cm2,阴极层催化剂载量为Pt含量1.0 mg/cm2。在常压和75℃下,双金属层阳极SPE电极的电解电压为1.76 V时,电流密度可达505 mA/cm2,电解效率可高达84%(vs.HHV)。

【CN109879316A】LLZO制备方法、热电池用准固态电解质及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910145492.6 (22)申请日 2019.02.27 (71)申请人 上海空间电源研究所 地址 200245 上海市闵行区东川路2965号 (72)发明人 叶丹宏 张维义 强杉杉 郑侠  李长江 胡华荣 越云博 刘凯特  (74)专利代理机构 上海航天局专利中心 31107 代理人 余岢 (51)Int.Cl. C01G 25/00(2006.01) H01M 6/22(2006.01) H01M 6/36(2006.01) (54)发明名称LLZO制备方法、热电池用准固态电解质及其制备方法(57)摘要本发明涉及LLZO制备方法、热电池用准固态电解质及其制备方法,准固态电解质制备方法包括:将Li 2CO 3、La 2O 3、ZrO 2、H 2C 2O 4和碱金属卤化物等原材料进行纯化处理;称取所需的Li 2CO 3、La 2O 3、H 2C 2O 4和ZrO 2研磨均匀后放入密封不锈钢罐中,在1200℃的条件下焙烧,自然冷却并粉碎球磨均匀后得到锂镧锆氧固态电解质(Li 7La 3Zr 2O 12,LLZO);将LLZO和碱金属卤化物共熔盐再次混合,在氩气保护下迅速升温至400-500℃后,通过反复抽真空和缓慢加压的方法,使共熔盐浸润到多孔LLZO中,自然冷却将产物球磨粉碎后即获得热电池用准固态电解质。本发明制备的准固态电解质具有晶界电阻小、离子迁移率高、 热稳定性好等优点。权利要求书1页 说明书5页 附图1页CN 109879316 A 2019.06.14 C N 109879316 A

高分子电解质及其应用

高分子电解质及其应用 聚电解质也称高分子电解质,是一类线型或支化的合成和天然水溶性高分子,其结构单元上含有能电离的基团。 基本介绍: 也称高分子电解质,是一类线型或支化的合成和天然水溶性高分子,其结构单元上含有能电离的基团。可用作增稠剂、分散剂、絮凝剂、乳化剂、悬浮稳定剂、胶粘剂等。不溶性体型聚电解质归入离子交换树脂 基本分类: 聚电解质按电离的基团可分为:①聚酸类:电离后成为阴离子高分子,如聚丙烯酸(见结构式a)、聚甲基丙烯酸(b)(见丙烯酸聚合物)、聚苯乙烯磺酸(c)、聚乙烯磺酸(d)、聚乙烯磷酸(e)等;②聚碱类:电离后成为阳离子高分子,如聚乙烯亚胺唚CH2-CH2-NH唹、聚 聚电解质分子式 乙烯胺(f)、聚乙烯吡啶(g)等。此外,还有无机类的聚磷酸盐(h)、聚硅酸盐(i)和天然的核酸、蛋白质。后二者因一分子中具有酸性和碱性两种可电离的基团,所以称为高分子两性电解质。 补充: 按来源:天然高分子电解质、化学改性高分子电解质、合成高分子电解质 按形态:高分子全固态电解质、分子凝胶电解质

按离子类型:阳离子聚电解质、阴离子聚电解质、两性高分子电解质 按结构:主链带离子团的高分子电解质、侧链带梳状离子基团的高分子电解质、 中性单体与离子单体的共聚物 按传输离子:质子导电电解质、离子导电电解质 按高分子基团:醚类、酯类、胺类等 高分子电解质的制备 (1)阳离子聚电解质的合成: 1)单体共聚法:通过阳离子型单体的共聚反应获得阳离子聚电解质。该方法由于阳离子单体种类有限,合成工艺复杂和制备成本较高等缺点,应用受到限制。 2)高分子化学反应法:以天然或合成高分子为母体,通过高分子链上的基团与阳离子化试剂的化学反应,获得阳离子聚电解质的方法。与1)比较合成工艺相对简单,目前应用较多的有天然高分子如淀粉、纤维素等和合成高分子如PS、 PVC、聚乙烯醇等阳离子化改性物。 (2)阳离子聚电解质的合成 1)聚丙烯酸盐的合成:首先由丙烯酸或丙烯酸酯与金属的氢氧化物中和或皂化制备(甲基)丙烯酸的铵、钠、钾、镍等盐的单体,然后用水溶性氧化还原引发剂引发丙烯酸盐单体的自由基水溶液聚合。 2)聚苯乙烯磺酸盐的合成:有两条合成路线,一是苯乙烯磺酸盐聚合,二是苯 乙烯的磺化反应制备。 3)苯乙烯磺酸盐的合成:由乙烯磺酸盐钠单体在水溶液中自由基聚合制备。 4)羟甲基纤维素的合成:将富含纤维素的棉短绒或木质纸浆纤维用氢氧化钠溶液处理后,与氯乙酸钠在50-70度反应。可的羟甲基纤维素。 (3)两性高分子电解质的合成 1)阳离子单体与阴离子单体的共聚 2)离子对单体聚合:通过阴离子单体的银盐与阳离子单体的碘离子反应,或酸碱性不同单体间的中和反应制备离子对单体聚合,即可得到与溶液的PH值无关 的离子对两性高分子。 溶液性质

新型锂离子固体电解质正式版.doc

摘要 近年来,无机氧化物固体电解质以其安全性,较高的离子电导率吸引许多研究者的兴趣。本论文介绍了近年固体电解质的研究进展,本实验方法选用多数无机氧化物固体电解质的合成方法—传统固相合成法,在空气环境条件下合成Li2O-ZrO2-SiO2体系的无机固体电解质,通过X射线衍射鉴定从980℃到1060℃(每隔20℃)不同烧结温度下本体系无机固体电解质多晶态物相,应用电化学工作站测定AC阻抗,计算不同烧结温度下离子电导率,还测试了电解质片的收缩率,并采用阿基米德排水法测试固体电解质片的密度。阻抗结果显示这种材料在1000℃的烧结温度下,显示了最大的锂离子电导率2.6651×10-3Ω-1cm,收缩率和密度有较好的一致性,烧结温度在1020℃后密度稍微有些降低。比较其他无机氧化物电解质,本体系烧结温度较低,同时获得了较高的锂离子电导率,丰富了无机氧化物电解质体系。 关键词:固体电解质;LZSO(Li2O-ZrO2-SiO2);锂离子电导率

Abstaract In recent years, inorganic oxide solid electrolyte has attracted many researchers interests for its safety, high ionic conductivity. This paper describes research progress of solid electrolytes in recent years, most of the experimental method used in the synthesis of inorganic oxide solid electrolyte method - traditional solid-state synthesis, synthesis in air condition system Li2O-ZrO2-SiO2 inorganic solid electrolyte, by using the X-ray diffraction identified from the 980 ℃to 1060 ℃ (every 20 ℃) under different sintering temperature of the system of multi-crystalline inorganic solid electrolyte , AC impedance measured in air at room temperature by electrochemical work-station , calculated in different sintering temperature lithium ion conductivity, also tested shrinkage ratio of the solid electrolyte pellets, and measured bulk density of solid electrolyte pellets using Archimedes method. Impedance results showed that the material in the sintering temperature of 1000 ℃, showed the largest lithium-ion conductivity 2.6651×10-3Ω-1cm, the shrinkage ratio and bulk density are in good agreement, after 1020 ℃sintering temperature slightly lower density. Compared with other inorganic oxide electrolyte sintering temperature of the system is lower, while access to a high lithium ion conductivity and enriched inorganic oxide electrolyte system. Keywords:solid electrolyte;Li2O-ZrO2-SiO2 ;lithium ion conductivity

相关文档
最新文档