珩磨孔

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、珩磨孔

1.珩磨原理及珩磨头

珩磨是利用带有磨条(油石)的珩磨头对孔进行精整、光整加工的方法。珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。在相对运动过程中,磨条以一定压力作用于工件表面,从工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。

2.珩磨的工艺特点及应用范围

1)珩磨能获得较高的尺寸精度和形状精度,加工精度为IT7~IT6级,孔的圆度和圆柱度误差可控制在3~5μm的范围之内,但珩磨不能提高被加工孔的位置精度。

2)珩磨能获得较高的表面质量,表面粗糙度Ra为0.2~0.025μm,表层金属的变质缺陷层深度极微(2.5~25μm)。

3)与磨削速度相比,珩磨头的圆周速度虽不高,但由于砂条与工件的接触面积大,往复速度相对较高,所以珩磨仍有较高的生产率。

珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,孔径范围一般为φ15~500㎜或更大,并可加工长径比大于10的深孔。但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等断续表面。

珩磨工艺(图)

作者:邦得资讯 | 来源:互联网 | 日期:2007-04-09 21:09 | 点击84 次

用镶嵌在珩磨头上的油石(也称珩磨条)对精加工表面进行的精整加工(见切削加工)。珩磨主要用于加工孔径为5~500毫米或更大的各种圆柱孔﹐如缸筒﹑阀孔﹑连杆孔和箱体孔等﹐孔深与孔径之比可达10﹐甚至更大。在一定条件下﹐珩磨也能加工外圆﹑平面﹑球面和齿面等。圆柱珩磨的表面粗糙度一般可达R0.32~0.08微米﹐精珩时可达R0.04微米以下﹐并能少量提高几何精度﹐加工精度可达IT7~4。平面珩磨的表面质量略差。

珩磨一般采用珩磨机﹐机床主轴与珩磨头一般是浮动联接﹔但为了提高纠正工件几何形状的能力﹐也可以用刚性联接。珩孔时﹐珩磨头外周一般镶有2~10根油石﹐由机床主轴带动在孔内旋转﹐并同时作直线往复运动﹐这是主运动﹔同时通过珩磨头中的弹簧或液压力控制油石均匀外涨﹐对被加工的孔壁作径向进给。图1 内圆珩磨示意图

为内圆珩磨示意图。珩磨头每分钟往复次数与转数之比应取非整数﹐使磨料在工件表面形成的加工痕迹成为交叉的网纹而不相重复。图2 珩磨运动轨迹

为单条油石在孔内珩磨时的运动轨迹。油石上下往复一次﹐工件回转一圈多。粗珩油石的磨料粒度为120~180﹐精珩用W28以下的细粒度油石。油石宽为3~20毫米﹐长度约为孔长的1/3~3/4。油石在孔内往复移动时﹐两端超越孔外的长度不宜大于油石全长的1/3﹐否则易产生喇叭口﹔但超程小于油石长度1/4时﹐又会使孔呈鼓形。外圆﹑平面的珩磨原理和操作要求与内圆珩磨相同。

珩磨余量一般不超过0.2毫米。珩磨的圆周速度﹐对钢材加工约为15~30米/分﹐对铸铁或有色金属加工可提高到50米/分以上﹔珩磨的往复速度不宜超过15~20米/分。油石对孔壁的压力一般为0.3~0.5兆帕﹐粗珩时可达1兆帕左右﹐精珩可小于0.1兆帕。由于珩磨时油石与工件是面接触﹐每颗磨粒对工件表面的垂直压力只有磨削时的1/50~

1/100﹐加上珩磨速度低﹐故切削区的温度可保持在50~150℃范围内﹐有利于减小加工表面的残余应力﹐提高表面质量。为了冲刷切屑﹐避免堵塞油石﹐同时降低切削区温度和降低表面粗糙度﹐珩磨时采用的切削液要有一定的工作压力并经过滤。切削液大都采用煤油﹐或煤油加锭子油﹐也有采用极压乳化液的。

20世纪70年代开始采用金属结合剂的金刚石油石和立方氮化硼油石﹐用以加工淬火钢或铸铁时﹐磨耗量仅为普通油石的1/150~1/250﹐同时油石对工件的压力也可提高2~3倍﹐从而使珩磨的效率和表面质量进一步得到提高。

1 问题的提出

气缸孔是发动机燃烧室的重要组成部分,加工精度要求很高,通常采用珩磨工艺对缸孔进行精加工。东风汽车公司柴油发动机厂引进生产的康明斯B系列柴油发动机的缸孔孔径为Ø102.02±0.01mm,缸体材料为铸铁(HT25-47,HB179-241);图纸设计要求缸孔圆柱度为0.015mm;珩磨网纹清晰均匀,网纹交叉角与水平线夹角为25°~30°;缸孔表面粗糙度为Ra0.25~0.65µm,Rtm2.8~7.0µm,深度0.002mm处的轮廓支承长度率tp=78%~98%。原缸孔珩磨工艺是在立式三轴珩磨机上采用非均布、中心对称结构的珩磨头和绿碳化硅精珩磨条进行二级珩磨加工(粗珩+平顶珩磨),但在生产中存在以下问题:①加工效率低。珩磨工序的加工节拍为3'30",已成为制约发动机生产线扩大生产能力的“瓶颈”工序。②缸孔表面粗糙度Ra、Rtm和tp值偏离中值的波动较大,甚至超出了技术要求范围,导致在一段时间内不得不对表面粗糙度指标值进行调整。③缸孔网纹均匀性发生波动,出现缸孔划伤现象。

针对上述问题,我们对缸孔珩磨工艺进行了系统研究,并提出了工艺改进方案,以期达到缩短缸孔珩磨工序加工时间、提高加工效率、稳定珩磨表面的微观几何精度、保证珩磨网纹质量要求和交叉角度、提高缸孔圆柱度精度的目的。

2 缸孔珩磨工艺分析

工艺特点

珩磨加工原理是通过在油石与工件表面之间施加一定压力,并以较低速度实现油石与工件表面之间的预定合成运动(如旋转运动、直线运动等),以获得几何精度高、表面质量好的工件表面。内孔珩磨具有以下特点:

图1 搭接长度L0

珩磨内孔时,两块(或两块以上)油石与工件内孔在面接触状态下以较低的压力和速度进行多刃面接触切削,其切削方式相当于三块平板相互对研,油石在切除孔壁余量的同时,其自身表面也得到修整。

为使油石磨削轨迹平滑衔接,油石每绕珩磨头轴线旋转一周,均与前一转磨削轨迹在轴向上有一段搭接长度L0(见图1)。L0越大,油石对内孔的修整效果越好,加工精度越高,但磨削效率越低。

珩磨头在每一次轴向往复行程内的转数为非整数K+b/360(K为整数),即珩磨头在每一上下往复行程内相对于工件沿圆周方向错开一个小角度b,这种复杂运动使珩磨头上的每一磨粒在孔壁上的磨削轨迹不会重复。由于孔壁上每一点与油石表面上每一点相互干涉的机会相等,因此可保证孔壁珩磨网纹的均匀性。

相关文档
最新文档