飞机飞行控制课件
飞机飞行操纵系统
安全问题
安全标准
01
确保飞行操纵系统符合国际国内安全标准,系统进行严格质量
控制测试。
ቤተ መጻሕፍቲ ባይዱ
冗余设计
02
防止单一故障导致系统失效,采冗余设计,增加系统可靠性安
全性。
紧急备份系统
03
紧急情况提供备份操纵系统,确保飞行员能够控制飞机并采取
必紧急措施。
技术更新问题
持续研发
断投入研发资源,更新改进飞行操纵系统,满足航空工业发展需 求。
电动操纵系统
电动操纵系统通过电动机传动装置将飞行员操作指令传递 舵面,实现飞行姿态航向操纵。
电动操纵系统优点结构简单、可靠性高、维护成本低,且 易实现自动控制远程操控。现代飞机中,电动操纵系统已 经成主流飞行操纵系统之一。
气压操纵系统
气压操纵系统利气压差将飞行员操作指令传递舵面,实现飞行姿态航向操纵。
发展历程
飞机飞行操纵系统经历从简单机械式复杂电传式演变,技术 断升级换代,提高飞机安全性机动性能。
趋势
未飞行操纵系统发展将更加注重智能化、自主化、复合控制 等方面,提高飞机自主飞行能力适应复杂环境能力。随着无 驾驶技术断发展,无机飞行操纵系统也将成研究重方向。
02
飞行操纵系统种类
机械操纵系统
机械操纵系统最早飞行操纵系统,通过钢索、滑轮连杆等机 械部件将飞行员操作指令传递飞机各舵面,实现飞行姿态航 向操纵。
飞机飞行操纵系统
目 录
• 飞机飞行操纵系统概述 • 飞行操纵系统种类 • 飞行操纵系统关键技术 • 飞行操纵系统应 • 飞行操纵系统挑战与解决方案 • 未飞行操纵系统发展趋势
01
飞机飞行操纵系统概述
定与功能
定
飞机飞行操纵系统指控制飞机飞行姿 态轨迹操作系统,包括飞行控制系统 飞行操纵系统。
《飞机飞行控制》课件
02
人机界面必须设计得简单、直观、易操作,使飞行员能够快速
地获取飞行状态信息并发出控制指令。
人机界面也是飞行员紧急情况下进行人工操纵的通道,必须保
03
证在任何情况下都能迅速有效地发挥作用。
飞行控制系统的基
03
本原理
飞行动力学基础
飞行动力学是研究飞 行器在气动力作用下 的运动规律的科学。
飞行动力学主要研究 飞行器的飞行性能, 包括稳定性和操纵性 。
飞行控制系统硬件
飞行控制系统硬件是实现飞行控制功能的物理设备,包括传感器、控制 器、执行器等。
传感器用于检测飞机的状态参数,如姿态、速度、高度和角速度等;控 制器用于处理传感器信号并计算出控制指令;执行器用于接收控制指令
并操纵飞行控制面。
飞行控制系统硬件必须具有高可靠性和高精度性,以确保飞行的安全和 稳定。
调查结论
调查报告认为,波音公司在MCAS的设计和认证过程中存在严重失误,
同时美国联邦航空局(FAA)也未能有效监管。
波音737 MAX的飞行控制系统简介
飞行控制系统
波音737 MAX的飞行控制系统包括自动驾驶系统、飞行指引系统、机动特性增强系统等 。
MCAS系统
MCAS系统是一种自动防失速系统,旨在防止飞机机翼上的失速。当传感器检测到机翼上 的气流分离时,MCAS会自动调整机头的角度以减少机翼的失速。
它以空气动力学为基 础,研究飞行器在空 气中运动的力学规律 及其应用。
飞行控制系统的工作原理
飞行控制系
它通过接收飞行员输入的指 令,经过处理后发送控制指 令给执行机构,使飞行器按 照预定的轨迹和姿态飞行。
飞行控制系统通常由传感器、 控制器和执行机构三部分组成
飞行控制系统的历史与发展
第三章 飞机的飞行原理ppt课件
(1)飞机结冰增加机体重量;
(2)机翼机尾结成冰壳,损坏其流线外形;
(3)喷射发动机进口结冰,发动机丧失发动能力;
(4)天线结冰,致使无线电精选雷课件达ppt信号失灵等。
13
二、大气与飞行安全
乱流——飞机飞入对流性云区,如积云、积雨云、层积云, 由于空气发生上下对流垂直运动,使机身起伏不定,会使乘 客感觉不舒服、晕机呕吐、颠伤,严重时导致飞机结构损坏, 造成飞机失事。
精选课件ppt
6
一、大气的结构和气象要素
气压就是大气压强,度量气压的单位为帕斯卡,符号是 Pa。气压的大小和高度、温度、密度有关。一般情况下随 高度的升高而降低,依此规律可测量飞行高度。因而气压 也就成了重要的大气资料。
精选课件ppt
7
一、大气的结构和气象要素
能见度是指正常视力者能看清目标轮廓的最大水平距离。对 飞行员来说,最重要的是跑道能见度(着陆能见度),它是指飞 机在下降着陆过程中飞行员能看清跑道近端的最远距离。影响能 见度的因素很多,主要的是受大气透明度(如云、雾、烟、沙尘 及水滴等直接影响着大气的透明状况因素),夜间的灯光强度等。
17
三、大气飞行环境
平流层位于对流层顶的上面,其顶界由地面伸展到35一 40公里。由于这一层受地球表面影响较小,所以气温基本上 保持不变,大约为-56.51℃,故又称同温层。平流层中,几 乎没有水蒸气,所以没有雪、雾、云等气象现象;且空气比较 稀薄,风向稳定,空气主要是水平流动。
飞行器的飞行的理想环境是平流层。
精选课件ppt
10
一、大气的结构和气象要素
降水是云雾中的水滴或冰晶降到地面的现象。降水通常 指雨、雪、冰、雹等。
降水对飞行的影响: 1.降水使能见度减小。 2.过冷雨滴会造成飞机结冰。 3.降水影响了跑道的正常使用。
《民航飞机自动飞行控制系统》教学课件—06飞行指引仪系统
飞行指引仪系统第六章目 录CONTENTS 1飞行指引仪系统的组成3飞行姿态指引系统的使用飞行姿态指引系统的工作原理2飞行指引仪系统的组成第1节1 飞行指引仪系统的组成Ø不同型号的飞行指引仪系统组成略有不同。
通常,飞行指引仪系统由飞行指引计算机、姿态指引指示器、指引放大器、方式控制板、飞行方式通告牌等部件组成。
1.1 飞行指引计算机Ø飞行指引计算机(Flight Director Computer,FDC)是飞行姿态指引仪的核心部件。
它为姿态指引仪提供飞机的俯仰和横侧指令、故障旗收放指令和飞行指引通告牌指示。
Ø在某些飞机上,飞行指引计算机是单独的;在另一些飞机上,飞行指引计算机是与自动驾驶仪的计算机合为一体的,称为飞行控制计算机。
Ø姿态指引指示器是飞机姿态指示与飞机姿态指引的综合指示器。
为了便于驾驶员观察飞机上其他设备的指示,指示器内也综合有其他信息显示,如无线电高度表的指示、仪表着陆系统的指示等。
Ø飞行姿态指引指示器目前使用的有 3 种:ü机电式姿态指引指示器 ADI;ü电子姿态指引指示器 EADI:ü主飞行显示器。
带十字形和带八字形指引杆的姿态指引仪的指引信号Ø飞行指引的控制板用于驾驶员接通/断开飞行指引系统以及选择飞行指引的方式。
不同型号的飞行指引仪,其控制板也不同。
但总体来说,都具有飞行指引仪接通/断开电门和飞行指引仪方式选择电门。
Ø AP 接通电门(AP ENG)ü按下,如果接通的条件满足,就可以接通 AP;再按,断开 AP。
ØFD 接通电门(FD)ü按下,如果接通的条件满足,就可以接通 FD。
再按,断开 FD。
ØFD 的方式选择钮ü按下某一按钮,选择 FD 的指引方式。
不同的飞行指引仪其指引方式不同。
总体来说,将指引方式分为两大类,其中的一大类用于俯仰姿态的指引,另外一大类用于飞机横滚姿态的指引。
民用飞机自动飞行控制系统:第5章 飞行速度控制与航迹控制
• 实际上,用油门控制飞机速度时,需要俯仰角控
制系统同时工作,以保持飞机姿态不变。
• 油门自动调节器是控制发动机油门位移的伺服控
制系统 ;
• 发动机环节表示油门变化后,发动机推力变化的 动态过程。
• 油门杆速度控制系统主要用于低动压飞行状态, 可保证平飞速度稳定,也可保证用姿态角控制系 统来控制飞行轨迹。
2.自动拉平控制系统(自动拉平控制模式)
任务 将下滑时的垂直下降速度减小到允许的 着地下降速度。(约为(-0.3~-0.6)m/s) .
方法 垂直下. 降速度随高度h的减小而降低。
.h(t) h(t) /
hh(t)0 h(t)h0et/
拉平段轨迹设计为指数曲线 。
h0 为拉平开始的起始高度;
Y 0tY dt 0tV dt
➢ 侧偏距控制系统副翼控制规律为
a K K KY Y
.
r cos
.
q sin
q tg ( 0)
V
.
Y V sin( )
V sin V
➢ 侧偏距修正过程
• 初始时刻:一定的侧偏距:Y0
一定的偏航角: 0
一定的滚转角:0 0(水平直线飞行)
• 在控制过程中,发动机油门控制系统将保持所需 要的飞行速度。
• 飞机质心偏离下滑线时的运动(几何)关系:
tg d / R ,近似, d / R
d V0 sin( ) V0 (+ )/57.3
t
t
d 0 ddt 0V ( ) / 57.3dt
• 耦合器用于改善整个系统的性能。
e Khh K 0
4 舵面提前回中—攻角增量近似为零
27飞行控制
27飞行控制系统1.升降舵载荷感觉定中机构的特点?P246升降舵一般采用动压载荷感觉装置,该装置除了具有弹簧式感觉定中机构的特性外,还可以将空速的信号引进感觉定中机构中,即随着飞行速度的增加,驾驶员的感觉力也会增加,这样就更加真实地模拟舵面的铰链力矩,使驾驶员在不同的空速情况下,准确控制飞机。
2.为什么采用非线性传动机构操纵系统?操纵系统中,如果没有特殊的机构来改变传动系数,舵偏角随杆行程的变化近似成直线关系,即线性关系。
飞行速度的不同要求操纵系统的传动系数也不同,同一架飞机上不可能安装多套传动系数各异的操作系统,因此在操作系统中设置了专门的非线性传动机构,即杆行程与舵面偏角之间成曲线关系。
3.什么是马赫配平?P247马赫配平装置是一套自动控制装置,当飞行马赫数达到产生下俯现象的数值时,马赫配平装置自动操纵升降舵向上偏转一个角度,从而避免自动下俯。
4.简述水平安定面的控制形式,其控制权限如何?1:人工操纵(安定面配平手轮);2:电动配平(安定面配平电门);3:自动驾驶操纵。
以上三种输入优选权是不同的:手动操纵的优先权最大,而自动驾驶仪的优先权最小。
5.升降舵压差感觉电门如何工作?压差电门监控两路升降舵动压感觉机构提供的与空速成正比的计量液压压力,当两个计量压力相差超过25%时,压差电门工作,压差指示灯亮。
6.电传系统优缺点?(P232)优点:(1)减轻了操纵系统的重量、体积,节省操纵系统设计和安装时间。
(2)消除了机械操纵系统中的摩擦、间隙、非线性因素以及飞机结构变形的影响。
(3)简化了主操纵系统与自动驾驶仪的组合(4)可采用小侧杆操纵机构。
(5)飞机操稳特性不仅得到根本改善,且可以发生质的变化。
缺点:(1)单通道可靠性不高;(2)电传操纵系统成本较高。
(3)系统易受雷击和电磁脉冲波干扰影响。
7.飞机的重要操纵面,各操纵什么运动?副翼操纵飞机产生绕纵轴转动的系统;升降舵操纵飞机绕横轴转动的系统;方向舵操作飞机产生绕立轴转动的系统。
飞机结构与系统(飞行操纵系统)课件
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持
。
飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。
《飞机飞行控制》课件
导航控制
飞行控制系统集成了先进的导航 技术,如惯性导航、卫星导航等 ,能够实时确定飞机位置和航向 ,确保飞机沿着预定航线飞行。
防碰撞警告系统
飞行控制系统通过与空中交通管 制系统的交互,实时监测周围空 域的飞机,当存在碰撞风险时, 及时发出警告,避免空中交通事
故的发生。
飞行控制系统在军事航空领域的应用
飞行控制系统的发展趋势与未来展望
智能化控制
随着人工智能技术的发展,未来的飞行控制系统将更加智能化,能 够自适应地处理各种复杂情况,提高飞行的安全性与效率。
集成化与模块化设计
为了降低成本和提高可靠性,未来的飞行控制系统将采用集成化与 模块化设计,便于维护和升级。
自主可控技术
随着航空工业的发展,未来的飞行控制系统将更加注重自主可控技术 的研发和应用,以提高我国航空工业的竞争力。
融合技术
传感器融合技术是指将多个传感器的信息进行综合处理,以 获得更加准确和可靠的数据。在飞行控制系统中,传感器融 合技术能够提高飞机的导航精度和稳定性。
舵机与舵面
舵机
舵机是飞行控制系统中的执行机构, 能够根据控制系统的指令,精确地调 整舵面的角度,从而控制飞机的姿态 和轨迹。
舵面
舵面是飞机机翼和尾翼上的可动翼面 ,包括副翼、升降舵和方向舵等。通 过调整舵面的角度,可以改变飞机的 气动性能,实现飞机的姿态和轨迹控 制。
飞机飞行控制系统
03
的控制算法
线性控制算法
PID控制算法
通过比例、积分和微分三个环节 ,对飞机飞行过程中的误差进行 调节,以减小误差。
线性回归算法
通过对飞机飞行数据的线性回归 分析,预测飞行状态,为控制算 法提供参考。
非线性控制算法
民用飞机自动飞行控制系统:第8章 现代民机飞控系统实例ppt
2. 工作模态 .应急备份人工配平:由驾驶员手动机械配平; · 人工电子配平:驾驶员通过电子配平系统实现人
工配平; ·自动配平:由自动驾驶仪FCC自动实现的配平; ·马赫数配平:当襟翼收起,且自动驾驶仪断开,
备用或电子人工配平也没有使用时,水平尾翼 自动地随马赫数变化实现配平。
➢ 偏航阻尼器系统
• 利用面板上温度选择按钮,选择假设温度,实现 推力减免。较高温度对应给出较低的推力。
• TMS的工作状态和某些参数,可以在EADI和 EICAS上显示。
• 自动油门断开按钮位于油门杆上。
➢ 安定面配平系统 1. 功能
通过转动水平安定面,以保持飞机俯仰轴处于配 平的状态。 .B757的水平安定面是一个可转动的尾翼。
• 飞行指引(F/D) FCC产生指令信号,在EFIS的电子姿态指引 仪及电子水平状态指示器上,产生相应的舵面 操纵指令信号,驾驶员通过给出的指令信号操 纵飞机,此时舵机不工作。
8.1.4 B757 飞机自动飞行工作模式
针对不同阶段的飞行要求,设置了许多不同飞行 方式。驾驶员可以依据飞行要求,在方式控制板上 加以选择。
3. 自动油门伺服机构 .伺服机构的马达依TMC指令驱动油门; .一个测速反馈电机将速度信号反馈给TMC; .伺服机构的输出轴与齿轮箱耦合在一起,控制 油门杆的运动; .油门杆的运动速度为14°/s。 .油门动力杆的角度(PLA),通过传感器测量反 馈给自动油门杆系统。
4. 推力方式选择板(TMSP)
B777飞机电传飞行控制系统的特点:
➢采用传统的盘柱、方向舵进行控制;
➢采用3余度的数字式飞行控制计算机(三台计 算机,每台计算机内有三个支路,每个支路都 具有非相似的处理器),并行工作;
➢副翼、襟副翼、升降舵、方向舵的每片舵面上 都有两台主-主方式工作的电液作动器驱动; 扰流板作动器可以机械控制,也可在减速控制 时电传操纵控制;
【飞机系统PPT课件】自动飞行FCU:飞行控制组件
MENU
垂直
我们现在在廊桥口且飞机已通电。
MENU
这就是飞机通电后你将看到的FCU。
MENU
我们在MCDU上已为你作好了飞行计划。 注意显示窗中的短划线。它们表示系统已有足够的信息可按 照预先计划的剖面飞行。这将在以后的模块中进一步阐述。
MENU
另一方面,高度窗不会有短划线。该窗口中 的高度总是由飞行员设置。
MENU
我们现在详细地看一下飞行控制组件(FCU )的功能和控制器,这就是本模块的主题。
MENU
速度/马赫
速度/马赫
横向
速度/马赫
横向
垂直
速度/马赫
横向
自动驾驶/自动推力
FCU可用于: 速度/马赫数的控制, 横向操纵, 垂直操纵,以及 自动驾驶仪和/或自动推力的选择。
让我们进一步看一下这些控制器。
转动 : 改变高度 压入 : 恢复垂直剖面 拉出 : 忽略垂直剖面
MENU
在EIS一章中我们已经学习了公制高度按钮。 在此我们提醒你,该按钮按入后,在ECAM系 统显示页面上的固定数据区将以米为单位显示 选择的高度。
MENU
我们现在来看一下垂直速度-飞行航迹角部分。
垂直速度-飞行航迹角选择旋钮有三个功能: 转动旋钮,用来改变垂直速度或飞行航迹角, 按入旋钮,使飞机立即改平, 拉出旋钮,选择垂直速度或飞行航迹角方式。
MENU
航向-垂直速度/航迹-飞行航迹角(HDG-V/S/TRKFPA)按钮用来切换航向-垂直速度方式和航迹-飞行 航迹角方式。
FCU显示窗中的HDG-V/S或TRK-FPA字样明确地 指示出了当前的选择。
请将航向-垂直速度方式改为航迹-飞行航迹角方式。
MEห้องสมุดไป่ตู้U
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/10
讲解:XX
26
根轨迹法
Root Locus
➢ 在复平面内判断反馈系
数变化引起的闭环特征 10
根变化情况
➢ 若特征方程
5
Imag Axis
(S)=D(S)+kN(S)=0
当k=0时,D(S)=0,对应 0 系统极点
当k=时,N(S)=0,对应
系统零点
-5
➢ Matlab:rlocus,rltool
讲解:XX
8
第三代战斗机
2021/3/10
讲解:XX
布局:翼身融合、边条 放宽静稳定性
武器:近距、超视距空 空导弹
作战方式:格斗、超视 距空战
模拟式和数字式电传控 制系统(FBW,fly by wire)。按其作用可以 分为两种:
➢ 控制增稳系统 ➢ 自动驾驶仪
9
典型电传飞控系统
2021/3/10
-10
2021/3/10
讲解:XX
-1.4
-1.2
➢ 飞行控制系统:在飞
行过程中,利用自动 控制系统,能够对飞 行器构形、飞行姿态 和运动参数实施控制 的系统。
2021/3/10
讲解:XX
12
本课程的目的
➢ 飞机引入飞行控制系统的飞行力学机理:
飞行控制系统如何改变飞机的模态特性; 不同的反馈改变不同的模态特性;
➢ 飞机、飞控、驾驶员组合的动力学特性分析:
讲解:XX
n
mk ,n
f 2m
21
纵向模态的物理成因
长周期
阻尼
频率
V X uu
L G
,
(CLaa)
Gsin
a>0
阻尼
M Iy
,
(Maa)
频率
q
Mq
2021/3/10
讲解:XX
短周期
22
Lbb<0
b>0
荷兰滚 频率
Nbb>0
Ybb<0
荷兰滚阻尼
p <0 p<0
滚转 收敛
Lpp>0
r>0 r>0
讲解:XX
18
传递函数
➢ 线性系统 ➢ 零初始条件下拉氏变换 ➢ 输出量比输入量 ➢ 优点:
将时域转换成频域 将微分方程转换为代数方程
2021/3/10
讲解:XX
19
弹簧振子系统
F y F k y fy m y yf ykyF(y)
mm m
y
f
k
m
F
(S2fSk)Y(S)F(S)
mm
荷兰滚阻尼
Nrr<0
荷兰滚模态
b<0
f<0 Npp>0
y>0
Lrr>0 p>0
螺旋模态
2021/3/10
b>0
讲解:XX
Gsinf>0
f>0
23
飞机的振荡模态
振荡模态
频率的决定因素 阻尼的决定因素
弹簧振子
弹簧系数
阻尼系数
短周期 长周期 荷兰滚
纵向静稳定导数
Ma
以Zu为主
航向静稳定性导数
Nb
纵向阻尼导数
2021/3/10
讲解:XX
➢ 后来设计的飞机
一般具有一定的 固有稳定性,但 没有保证。
➢ 1920年以后,飞
机的稳定性靠外 形布局及重心定 位来保证。
4
第一代战斗机
➢ 多采用后掠翼布局 ➢ 武器以航炮为主
➢ 作战方式以尾后攻击为
主
➢ 超音速
➢ 操纵系统为机械传动方
式
2021/3/10
讲解:XX
5
2021/3/10
讲解:XX
25
反馈控制的特点
G(S) N(S) D(S)
W(S) N(S) D(S)kN(S)
➢ 采用反馈控制不改变传
递函数的分子多项式 N(S),仅改变分母多项 式(特征方程)
➢ 从物理角度讲,反馈控
制改变了模态特性,而 对模态比没有影响。就 是说,加入反馈后飞机 各运动参数之间的幅值 比和相位差不变。
m
零初值拉氏变换
G (S)Y F ((S S))S2f1SkS221S 2
mm
k , f
m 2 mk
2021/3/10
讲解:XX
20
弹簧振子的振荡成因
形成振荡的因素决
f
定了系统频率
频率
弹簧的 位移扰动
恢复力
弹簧系数k
阻尼
阻尼力 阻尼系数f
x
k
m
阻碍振荡的因素决 定了系统阻尼
2021/3/10
飞机综合评估
发动机……
2021/3/10
讲解:XX
14
内容
➢引论 ➢飞行控制系统概述(自学) ➢飞机的闭环动态特性 ➢人机闭环系统分析 ➢各类飞行控制系统的分析
2021/3/10
讲解:XX
15
考核
➢课堂、作业:40% ➢考试(闭卷):60%
2021/3/10
讲解:XX
Байду номын сангаас
16
背景知识
2021/3/10
讲解:XX
10
第四代战斗机
2021/3/10
讲解:XX
布局:隐身气动一体化设计 武器:先进格斗导弹、超远程空 空导弹、精确制导 火飞推一体化、主动控制技 术……
作战方式:?
11
驾驶员 vs 飞行控制系统
➢ 驾驶员的缺点
有限的反应速度 有限的感知能力 会紧张、疲劳
➢ 驾驶员的优点
学习能力 应付意外的能力
典型杆式操纵机构
2021/3/10
讲解:XX
6
第二代战斗机
2021/3/10
讲解:XX
三角翼、后掠翼 武器:第一代空空导弹 作战方式:视距内、尾 后攻击 M>2,H>20000m 操纵系统大量采用:
➢ 助力器 ➢ 马赫数配平机构 ➢ 增稳器 ➢ 阻尼器 ➢ 电液系统
7
典型助力器及力臂调节器
2021/3/10
飞机+控制系统特性的分析方法; 人机系统的特性分析;
➢ 选择飞行控制系统的控制律的基本原理:
常见控制系统类型及其分析、选择;
2021/3/10
讲解:XX
13
本课程的地位
➢ 以自动控制
原理、飞行 动力学为基 础的一门提 高课程; 飞机本体
➢ 从事飞行器
设计、飞行 动力学工作 的基础之一。
需求分析,任务分解 飞行控制 武器系统
Mq
以Xu为主
偏航阻尼导数等
Nr、Yb
2021/3/10
讲解:XX
24
闭环系统
单位负反馈(k=1)的传递函数
W(S) G(S) 1G(S)
若 G(S) N(S)
D(S)
则
X(S) _
G(S) k
Y(S)
W(S) N(S) D(S)N(S)
对于反馈系数为k的负反馈
W(S) N(S) D(S)kN(S)
飞机飞行控制
2021/3/10
讲解:XX
1
绪论
2021/3/10
讲解:XX
2
飞行控制的历史
2021/3/10
讲解:XX
➢ 1891年,海诺姆.
马克西姆设计并制 造的飞机已经装有 用于改善纵向稳定 性的控制系统。
➢ 早期的飞机基本上
没有固有稳定性, 靠飞行员的能力来 保证飞机的稳定。
3
飞行控制的历史
讲解:XX
17
控制过程的描述
➢ 飞行控制(驾驶员操纵飞机)过程的物理描述
开环操纵
com
杆 位 移
舵 偏 角
运 动 参 数
飞 行 员
控 制 系 统
飞 机 本 体
F s
e
闭环操纵
-
飞 行 员
杆 位 移 Fs
舵 偏 角
运 动 参 数
控 制 系 统
飞 机 本 体
e
内 环
外 环
测 量 及 显 示
2021/3/10