原子吸收光谱分析-下

合集下载

原子吸收光谱分析

原子吸收光谱分析

原子吸收光谱分析一、光谱基本原理原子吸收光谱是利用原子在特定波长的光照射下,原子从基态跃迁到激发态,吸收光能的原理。

根据波长的选择,原子吸收光谱可分为光电、可见、紫外和X射线等光谱。

其中,紫外-可见光谱(UV-Vis)是应用最广泛的分析方法。

原子吸收光谱依靠光源、样品和检测器共同完成分析。

在光源方面,通常使用中空阴极灯、氢、氩等气体放电灯作为发射源;在样品中,需要有吸收光线的元素,如金属、无机盐或有机物中的元素;检测器则根据不同光谱区域的吸收信号进行测量。

二、仪器构成原子吸收光谱分析仪器主要包括光源、光学系统、样品室和信号接收装置。

光源通常采用中空阴极灯,通过通电使高纯度金属蒸发产生原子,金属原子处于激发态时吸收特定波长的光,从而完成光谱分析。

光学系统包括一个反射镜和一个衍射光栅,用于选择特定波长的光进入样品池。

样品室通过控制进样量和流速将待测样品引入到光路中,使其与待测元素发生反应。

信号接收装置一般采用光电倍增管或CCD相机,将吸收的光信号转化为电信号,并通过放大和分析处理,最终得到光谱图谱。

三、应用原子吸收光谱分析在许多领域都有广泛应用。

在环境领域,可以用于测定水、土壤和空气中的重金属、汞、铅等元素的含量,以评估环境的污染程度。

在食品安全和农业领域,可以用来检测食品中的农药残留、微量元素含量等。

在药物和化学品的质量控制中,原子吸收光谱也被广泛应用,用于检测药品中的微量金属离子、无机盐等。

此外,原子吸收光谱还用于地质勘探、金属材料分析、放射性元素检测等领域。

四、未来发展随着科学技术的不断发展,原子吸收光谱分析也在不断完善。

一方面,研发更先进的光源和光学系统,提高光源的稳定性和精确性,加强光学系统的分辨率和选择性。

另一方面,开发更灵敏的检测器,提高信号接收装置的灵敏度和快速性。

此外,利用微纳米技术,制备新型材料,提高原子吸收光谱的灵敏度和选择性。

同时,结合化学计量学、机器学习等技术手段,用于光谱数据处理和解析,进一步提高分析的准确性和效率。

原子吸收光谱法实验报告

原子吸收光谱法实验报告

原子吸收光谱法实验报告实验报告:原子吸收光谱法一、实验目的1.了解原子吸收光谱法的原理和仪器设备。

2.掌握使用原子吸收光谱法进行测定的方法和步骤。

3.学习如何分析、处理实验数据,得出准确的样品含量。

二、实验原理原子吸收光谱法是一种常用的分析方法,其基本原理是:当原子或离子吸收具有特定波长的光时,会产生吸收线,其强度与物质浓度成正比。

在实验中,使用的是原子吸收分光光度计,它由光源、光栅、光程系统、光电转换器等组成。

三、实验步骤1.仪器准备:打开仪器电源,启动仪器,预热10分钟。

2.样品制备:根据实验要求,稀释待测样品,使其浓度适合于测定。

3.设置光谱仪参数:选择合适的光谱波长,进入光谱扫描模式,设置光谱仪参数。

4.标定曲线制备:准备一系列浓度不同的标准溶液,并分别测定其吸光度,得到吸光度与浓度之间的线性关系。

5.测定样品的吸光度:依次将各个浓度样品和待测样品放入进样池中,分别测定其吸光度。

6.作图和计算:根据标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

四、数据处理与结果分析根据实验操作,记录下各个浓度样品和待测样品的吸光度数据。

使用标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

根据实验结果,我们可以得出待测样品中所含物质的浓度。

如果待测样品的浓度超出了标定曲线的范围,可以通过稀释样品重新测定,以确保结果的准确性。

五、实验总结通过本次实验,我深入了解了原子吸收光谱法的原理和仪器设备,掌握了使用该方法进行测定的步骤和技巧。

实验中,需要注意的是样品的制备和标定曲线的制备,这两个步骤对于后续的测定至关重要。

实验中可能出现的误差主要包括仪器误差、操作误差和样品制备误差等。

在实验过程中,我们需要严格控制这些误差,以确保结果的准确性和可靠性。

同时,我们也要注意实验数据的处理与分析,避免统计和计算上的错误。

原子吸收光谱定量分析方法

原子吸收光谱定量分析方法

原子吸收定量分析方法一、定量分析方法(P145)⑴标准曲线法:配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。

(2)标准加入法当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。

取若干份体积相同的试液(cX),依次按比例加入不同量的待测物的标准溶液(cO):浓度依次为:cX,cX+cO,cX+2cO,cX+3cO,cX+4cO …分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 …直线外推法:以对浓度做图得一直线,图中cX点即待测溶液浓度。

(3)稀释法:⑷内标法:在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。

内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量二、灵敏度和检出限(1)灵敏度1、定义:在一定浓度时,测定值(吸光度)的增量(△ A)与相应的待测元素浓度(或质量)的增量(△ c或A m)的比值(即分析校正曲线的斜率)PS:习惯上用特征浓度和特征质量表征灵敏度2、特征浓度定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度3、特征质量定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。

(2)检出限定义:适当置信度下,能检测出的待测元素的最低浓度或最低质量。

用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

(3)测定条件的选择1.分析线的选择每种元素都有几条可供选择使用的吸收线。

一般选待测元素的共振线作为分析线,可以得到最好的灵敏度。

在测量高含量元素时,也可选次灵敏线。

2.单色器光谱通带的选择(调节狭缝宽度)光谱通带的选择以排除光谱干扰和具有一定透光强度为原则。

原子吸收光谱分析_图文_图文

原子吸收光谱分析_图文_图文
②火焰温度越高,产生的激发态原 子越多;
③火焰温度取决于燃气与助燃气类 型及比例。 常用火焰包括:空气-乙炔(2300℃)、
氧化亚氮-乙炔(3000 ℃) 等。
火焰类型:
化学计量火焰:
温度高,干扰少,稳定,背景低,常用。
富燃火焰:
还原性火焰,燃烧不完全.适于 测定较易形成难熔氧化物的元素Mo 、Cr 、稀土等。
自然宽度
(2) 谱线变宽
无外界影响下谱线具有的宽度。
多普勒变宽(热变宽)Δ D
由原子热运动导致。 多普勒效应:一个运动着的原子发出的光,如果运动方向 离开观察者(接受器),则其频率较静止原子所发的频率低; 反之,则高。
因此,多普勒变宽与元素原子质量、温度和谱线频率有关。
谱线频率越大、原子质量越小、温度越高,Δ D越大。
8.4 定量分析方法
1. 标准曲线法
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度c作标准曲线:
A = lg(I0/I) = kcL 在相同条件下测定试样的吸光度A数据,在标准曲线上查出 对应的浓度值。
注意在高浓度时,标准曲线易 发生弯曲。向浓度轴弯曲(负偏离 )由自吸、压力变宽等影响所致; 光谱干扰(背景干扰)引起正偏离
A = logI0/It = log 1/T = kbc
A为吸光度; k是吸收系数,与入射光波长、物质的性质和溶液 的温度等因素有关;
It/I0称为透光率,用T表示。
朗伯-比耳定律的适用条件:入射光为单色光。
原子吸收与分子吸收
KMnO4溶液的吸收曲线 分子吸收光谱--带状光谱
原子结构较分子结构简单,理 论上应产生线状光谱吸收线。
2. 标准加入法

原子吸收光谱

原子吸收光谱

原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收分光光度法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。

此法是20世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。

该法主要适用样品中微量及痕量组分分析。

中文名原子吸收光谱外文名Atomic Absorption Spectroscopy简称AAS应用领域地质、冶金、机械、化工别称原子吸收分光光度分析检测器光电倍增管基本原理原子吸收光谱原理图每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。

当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。

特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:式中K为常数;C为试样浓度;I0v为原始光源强度;Iv为吸收后特征谱线的强度。

按上式可从所测未知试样的吸光度,对照着已知浓度的标准系列曲线进行定量分析。

由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。

由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。

原子吸收光谱位于光谱的紫外区和可见区。

基本定义(Atomic Absorption Spectrometry,AAS)又称原子吸收分光原子吸收分光光度计基本构造示意图光度分析。

原子吸收光谱分析是基于试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该元素含量的一种仪器分析方法。

原子吸收光谱法(AAS)

原子吸收光谱法(AAS)

局限性:测不同的元素需不同的元 素灯,不能同时测多元素,难熔元 素、非金属元素测定困难。
原子吸收光谱法基本原理
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 激发态基态,发射出一定频率的辐射。 产生共振吸收线(也简称共振线) 发射光谱
原子吸收光谱法基本原理
A kc
原子吸收分光度计
原子吸收分光度计
原子吸收分光度计
光源
原子化器
单色器
检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
光 源
提供待测元素的特征光谱。获得较高的 灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态:
跃迁吸收能量不同——具有特征性。
(2)各种元素的基态第一激发态
最易发生,吸收最强,最灵敏线。特征谱线。
(3)利用原子蒸气对特征谱线的吸收可以进行定量分析
原子吸收光谱法基本原理
从光源发射出具有待测元素特征 谱线的光,通过试样蒸气时,被蒸气 中待测元素的基态原子所吸收,吸收 的程度与被测元素的含量成正比。故 可根据测得的吸光度,求得试样中被 测元素的含量。
将待测试样在专门的氢化物生成器中产生氢
化物,送入原子化器中检测。
单色器
•作用:将待测元素的吸收线与邻近线分开
•组件:色散元件 ( 棱镜、光栅 ) ,凹凸镜、 狭缝等
检测系统
•作用: 将待测元素光信号转换为电信号, 经放大数据处理显示结果。 •组件: 检测器、放大器、对数变换器、显 示记录装置。

第六章原子吸收光谱分析法

第六章原子吸收光谱分析法
激发态原子数Ni与基态原子数No之比较小,<1%. 可以用基 态原子数代表待测元素的原子总数N。
例题 计算2000K和3000K时, Na589.0nm的激发态 与基态原子数之比各为多少?已知gi/g0=2
解:
Ei
hc
4.136 1015eV s 3 1010cm s1 589.0nm 107 cm nm1
AAS的基本原理
赫鲁兹马克(Holtzmark)变宽(R或R): 同种原子碰撞,又称为共振变宽, R随着待测
元素原子密度升高而增大,在原子吸收法中,测定 元素的浓度较低,R一般可以忽略不计 。
自吸变宽:
光源辐射共振线被光源周围较冷的同种原子所吸 收的现象叫做自吸,自吸现象使谱线强度降低,同 时导致谱线变宽。
AAS的基本原理
表征吸收线轮廓(峰)的参数: 中心频率O(峰值频率) :最大吸收系数对应的频率 中心波长λ(nm) :最大吸收系数对应的波长
半宽度ΔO(吸收线宽度):峰值吸收值一半处的频率
原子吸收线的宽度约为10-3-10-2nm(折合成波长)。
AAS的基本原理
3.吸收峰变宽原因
自然变宽(N或N): 在无外界条件影响时,谱线的固有宽度称为自
AAS的基本原理
一、共振线
1.原子的能级与跃迁 基态第一激发态,吸收一定频率的辐射能量。产生的吸收
线叫共振吸收线(简称共振线) —— 吸收光谱 激发态基态,发射出一定频率的辐射。所释放的光线叫共
振发射线(也简称共振线) ——发射光谱 2.元素的特征谱线 1)各种元素的原子结构和外层电子排布不同 跃迁吸收能量不同——具有特征性 2)各种元素的基态第一激发态 最易发生、吸收最强、最灵敏线,特征谱线 3)利用特征谱线(共振线)可以进行定量分析。

原子吸收光谱分析-

原子吸收光谱分析-

谱线宽度得表示
吸收线在中心频率0 两侧具有一定得宽度 用半宽度Δ表征
I0为入射光强 I为透射光强 ν0为中心频率
I为透射光强 ν0为中心频率 Kν为吸收系数
吸收线Δ: 10-3~10-2nm 发射线Δ: 5×10-4~2×10-3nm
大家学习辛苦了, 还是要坚持 继续保持安静
吸收系数Kν将随光源得辐射频率ν而改变,这就是由
§8-2 原子吸收光谱法基本原理
一、原子吸收光谱得产生
正常情况下,原子处于基态。
当有辐射通过自由原子蒸气时,若辐射得频率等于 原子中得电子从基态跃迁到激发态所需要得能量频率 时,原子将从辐射场吸收能量,产生共振吸收,电子由基 态跃迁到激发态,同时使辐射减弱产生原子吸收光谱。
各种元素得原子结构不同,不同元素得原子从基态 激发至第一激发态时,吸收得能量也不同,所以各元素 得共振线都不相同,而具有自身得特征性。
提高原子化温度,减小化学干扰、使用高温火焰或提 高石墨炉原子化温度,可使难离解得化合物分解。
2)在同一温度下,电子跃迁得能级Ej越小,共振线波长 越长, Nj/N0值也愈大
常用得火焰温度一般低于3000K,元素激发能
一般低于10ev,大多数共振线得波长小于600nm,因
此对大多数元素来说, Nj/N0得数值均很小(<1%), 即火焰中得激发态原子数远小于基态原子数,也就
就是说火焰中99%以上得原子处于基态。
k
cxVx Vx
csVs Vs
0.670
k
cx
50 103 50 300 106 50.3103
cx 0.279mg / L
§8-5 干扰及其抑制
原子吸收光谱法得主要干扰有物理干扰、化学干 扰与光谱干扰三种类型。

仪器分析原子吸收光谱分析

仪器分析原子吸收光谱分析

∫ I =
e 0
I0e-KLd
∫ A = lg
e 0
I0
d
∫e 0
I0e-KLd
第14页,本讲稿共55页
对锐线光源,可以认为Kν= b×K0 为常数:
A
=
lg 1 e-bK0L
=
lg
eK0Lb
=
0.4343K0Lb
Under normal operation condition for AAS, line profile is mainly determined by Doppler broadening, hence,
这以公式表明:积分吸收值与单位原子蒸汽中吸收辐 射的基态原子数呈简单的线性关系,这是原子吸收光谱分析
法的重要理论依据。
第10页,本讲稿共55页
前面公式中: e为电子电荷;m为电子质量;c为光速;N0
为单位体积内基态原子数;f 振子强度,即能
被入射辐射激发的每个原子的平均电子数,它正 比于原子对特定波长辐射的吸收几率。
若能测定积分吸收,则可求出原子浓度。 但是,测定谱线宽度仅为10-3nm的积分吸收, 需要分辨率非常高的色散仪器,技术上很难实现。 所以,1955年瓦尔西提出采用锐线光源来解决 求积分吸收值的难题。参见下图:
第11页,本讲稿共55页
第12页,本讲稿共55页
由图可见,在使用锐线光源时,光源发射线半宽度 很小,并且发射线与吸收线的中心频率一致。这时发射 线的轮廓可看作一个很窄的矩形,即峰值吸收系数K 在
一、原子吸收线和原子发射线
A
B
A 产生吸收光谱
B 产生发射光谱
E3
E0 基态能级
E1、E2、E3、激发态能级
E2

原子吸收光谱法原理简述

原子吸收光谱法原理简述

原子吸收光谱法原理简述
原子吸收光谱法是一种用于分析物质中金属元素含量的方法。

它的原理简述如下:
当金属原子处于基态时,它们会吸收特定波长的光。

原子吸收光谱法利用这一特性来测量样品中金属元素的含量。

首先,样品被转化成气态原子或原子的气态化合物,然后通过光源发出的特定波长的光照射样品。

如果样品中含有被检测的金属元素,这些原子会吸收光,使得光源透过样品时的光强度减弱。

测量光源透过样品前后的光强度差异,就可以确定金属元素的含量。

原子吸收光谱法的原理基于不同金属元素吸收光的特性。

每种金属元素都有特定的吸收光谱线,这些谱线对应着特定波长的光。

因此,通过测量样品对不同波长光的吸收情况,可以确定样品中不同金属元素的含量。

此外,原子吸收光谱法还遵循比尔-朗伯定律,即吸收光强度与浓度成正比。

因此,可以通过测量吸收光强度的变化来确定金属元素的浓度。

总的来说,原子吸收光谱法利用金属原子对特定波长光的吸收特性,通过测量样品对光的吸收来确定其中金属元素的含量。

这一方法在分析化学和环境监测等领域有着广泛的应用。

原子吸收光谱

原子吸收光谱

原子吸收光谱原子吸收光谱是一种用于研究原子结构和元素分析的重要技术手段。

它通过测量原子在特定波长的光线下吸收的能量来分析样品中不同元素的存在和浓度。

本文将介绍原子吸收光谱的原理、仪器构成、应用领域以及未来的发展。

一、原理原子吸收光谱的原理基于原子的能级结构和光的波长选择性吸收。

当原子吸收特定波长的光时,其外层电子被激发到高能级,形成激发态。

随后,这些激发态电子会自发地退回到基态,并以辐射的形式释放出能量。

原子吸收光谱利用了这种特性,通过测量样品吸收光线的强度来确定其中的元素浓度。

二、仪器构成原子吸收光谱需要以下主要部件:光源、样品室、分光仪和检测器。

光源产生波长可控的光线,样品室用于容纳待测样品并将光线传输到样品中。

分光仪将光线按波长进行分离,使不同波长的光分别照射到检测器上。

检测器测量各个波长光线的衰减情况,并将其转化为电信号进行记录和处理。

三、应用领域原子吸收光谱在环境监测、食品安全、地质研究等领域具有广泛应用。

在环境监测中,原子吸收光谱可用于测定大气中的有害物质含量,帮助评估空气质量。

在食品安全领域,原子吸收光谱可用于检测食品中的重金属元素污染,保障公众健康。

在地质研究中,原子吸收光谱可用于测定岩石或土壤样品中的微量元素,揭示地质过程和资源分布。

四、发展趋势随着技术的不断进步,原子吸收光谱正朝着更高灵敏度、更快速的方向发展。

新型的原子吸收光谱仪器采用了更先进的光源和检测器,使得测量结果更加准确和可靠。

同时,微流控技术的引入也使得样品前处理更简单、自动化程度更高。

未来,随着科学研究和实际应用的需求不断增加,原子吸收光谱将继续发展,并在更多领域发挥重要作用。

总结:原子吸收光谱作为一种重要的分析技术,在原子结构研究和元素分析等领域具有广泛应用。

它通过测量原子在特定波长光线下的能量吸收情况,来分析样品中的元素存在和浓度。

原子吸收光谱的仪器主要由光源、样品室、分光仪和检测器组成。

该技术在环境监测、食品安全和地质研究等领域有着广泛应用。

化学反应的原子吸收光谱分析

化学反应的原子吸收光谱分析

化学反应的原子吸收光谱分析原子吸收光谱分析,是一种利用原子对特定波长的光发生吸收的现象进行分析的方法。

通过测量样品溶液或气体中吸收光的强度,可准确测定其中的化学元素含量。

在化学反应中,原子吸收光谱分析是一项重要的技术,能够提供关于反应过程中元素浓度和化学物种变化的信息。

本文将详细介绍化学反应的原子吸收光谱分析的原理、应用和优势。

一、原理原子吸收光谱分析基于原子对特定波长光的吸收现象,其原理可以分为两个基本过程:光源激发和吸收现象。

1. 光源激发在原子吸收光谱分析中,常用的光源是空心阴极放电灯或恒流电源。

光源中的电极通电后,电极中的金属元素被激发形成原子或原子离子,并释放出特定波长的光。

2. 吸收现象样品溶液或气体中的化学元素原子或原子离子与光源发出的特定波长的光相互作用,产生吸收现象。

当光经过样品时,如果样品中存在与光源波长相对应的原子或原子离子,这些原子会吸收部分光的能量,使得吸收光的强度减小。

通过测量光的强度变化,可以推断样品中所含的元素及其浓度。

二、应用原子吸收光谱分析在化学反应中的应用广泛,以下是几个常见的应用领域:1. 反应动力学研究原子吸收光谱分析可用于研究化学反应的动力学过程。

通过监测反应物中某种元素的浓度随时间的变化,可以推断反应的速率常数、反应机理等信息。

2. 反应过程监测通过原子吸收光谱分析,可以实时监测反应过程中各种元素的浓度变化。

这对于了解化学反应过程中元素的转化情况、判断反应的进行程度等方面具有重要意义。

3. 催化剂研究原子吸收光谱分析可用于研究催化剂在反应过程中的作用机制。

通过测定反应物中的催化剂元素浓度变化,可以揭示催化剂对反应速率、选择性等方面的影响。

4. 有机合成原子吸收光谱分析在有机合成中的应用越来越广泛。

通过测定反应物和产物中有机元素的浓度,可评估有机合成反应的转化率和产物纯度。

三、优势原子吸收光谱分析具有以下优势:1. 灵敏度高原子吸收光谱分析的灵敏度通常为微克/升量级,可以准确测定样品中微量甚至痕量元素的含量。

原子吸收光谱分析法

原子吸收光谱分析法

对于物理干扰,最好的消除方法 就是配制与试样溶液组成相似的 标准溶液。也可用标准参加法来 进行测定。
三,测定条件的选择: 1.分析线的选择:一般选用共
振线作分析线。 2.灯电流:保正稳定和适当光
强度输出的条件下,尽量选 用较低的工作电流。
5.狭缝宽度:由于原子吸收光谱法谱 线的重叠较少,一般可用较宽的狭 缝,以增强光的强度。但当存在谱 线干扰和背景吸收较大时,那么宜 选用较小的狭缝宽度。
SCV0.0044(g/1% 吸 收 ) A
式中:S为绝对灵敏度;C为试液 中 待 测 元 素 的 浓 度 〔g能检 出的元素的最低浓度或最小质 量。
定义为:能给出信号强度 等于3倍噪声信号强度标准偏差 时所对应的元素浓度或质量。
当在正负电极上施加适当电 压〔一般为200~500伏〕时,在 正负电极之间便开始放电,这时, 电子从阴极内壁射出,经电场加 速后向阳极运动。
电子在由阴极射向阳极的过程中, 与载气〔惰性气体〕原子碰撞使其 电离成为阳离子。带正电荷的惰性 气体离子在电场加速下,以很快的 速度轰击阴极外表,使阴极内壁的 待测元素的原子溅射出来,在阴极 腔内形成待测元素的原子蒸气云。
三.光学系统: 分光系统一般用光栅来进行分光。
光谱通带: W=D×S×10-3
其中:W为光谱通带〔单位nm〕;D为 光 栅 的 倒 线 色 散 率 〔 单 位 nm/mm-1〕 ; S为狭缝宽度〔单位μm〕。
四.检测系统: 检测系统包括检测器、放大器、
对数转换器、显示器几局部。
原子吸收光谱法的分析过程:
计算式为:D c 3 ( g / m L )
A
或 D g 3 ( g )
A
式 中 D 为 检 出 极 限 〔μg/mL 或 g〕 ; σ 为 对 空 白 溶 液 进 行 不 少 于 10 次 测 量时的标准偏差;A为吸光度;g为 质量〔g〕。

(完整版)原子吸收光谱的定量分析

(完整版)原子吸收光谱的定量分析

(完整版)原子吸收光谱的定量分析
介绍
原子吸收光谱是一种常用的定量分析方法,用于测量样品中特定元素的浓度。

本文档旨在介绍原子吸收光谱的基本原理和定量分析的步骤。

原理
原子吸收光谱利用原子吸收特定波长的光来测量样品中特定元素的浓度。

当光通过样品中的原子气体时,原子会吸收与其原子结构相关的特定波长的光线。

通过测量吸收光的强度,可以确定样品中特定元素的浓度。

步骤
以下是进行原子吸收光谱定量分析的基本步骤:
1. 样品制备:将待分析的样品转化为原子气态。

常用的方法包括火焰法、电感耦合等离子体法等。

2. 选择波长:根据待分析元素的吸收峰进行波长选择。

可以通过参考相关文献或经验来确定。

3. 校准曲线:准备一系列浓度已知的标准溶液,测量它们的吸光度,并绘制校准曲线。

4. 测量样品:将样品引入原子吸收光谱仪器,测量其吸光度。

5. 数据分析:利用校准曲线,计算出样品中特定元素的浓度。

6. 重复测量:进行重复测量,确保结果的准确性和可靠性。

7. 结果报告:将测得的浓度结果整理并报告。

结论
原子吸收光谱是一种可靠的定量分析方法,能够有效测量样品中特定元素的浓度。

正确的样品制备、波长选择和数据分析步骤对于获得准确结果至关重要。

通过遵循上述步骤,可以进行原子吸收光谱的定量分析。

*注意:本文档仅为介绍原子吸收光谱的基本原理和步骤,具体实验细节和参数设置需要根据实际情况进行调整。

*。

物化地分析中的原子吸收光谱分析

物化地分析中的原子吸收光谱分析

物化地分析中的原子吸收光谱分析原子吸收光谱分析是物化地分析领域中常用的一种分析方法。

它利用原子在特定波长的光线照射下吸收光的特性,对样品中的化学元素进行定量检测和分析。

本文将从原子吸收光谱分析的基本原理、仪器设备和应用领域等方面进行论述。

一、原理与机制原子吸收光谱分析的基本原理是利用原子吸收特定波长的光线时的量子能级跃迁现象。

当样品中的化学元素被激发后,在特定波长的光线照射下,原子内部的电子会发生跃迁到高能级的激发态。

然后,激发态的原子会再次退回到基态,释放出特定波长的光信号。

通过测量吸收光强度的变化,可以推断出样品中化学元素的含量。

二、仪器设备原子吸收光谱分析需要使用专门的仪器设备来进行测量和分析。

常用的原子吸收光谱仪主要由光源、样品室、光路系统、检测系统和数据处理系统等部分组成。

光源通常采用中空阴极灯,能够发射特定波长的光线。

样品室用于容纳待测样品并与光源进行光路的连接。

光路系统包括光栅、滤光片等光学元件,用于选择特定波长的光线。

检测系统用于测量光线的强度变化,常见的检测方式有吸收法和发射法。

数据处理系统用于记录和分析测量结果,通常采用计算机进行数据处理。

三、应用领域原子吸收光谱分析在物化地分析中具有广泛的应用领域。

首先,在环境分析方面,原子吸收光谱分析可以用于监测和分析水体、大气和土壤中的污染物。

例如,通过测定水样中重金属的含量,可以评估水质的安全性。

其次,在食品安全领域,原子吸收光谱分析可以用于检测食品中有害金属元素的含量,如铅、镉等。

此外,在生物医药研究和制药工业中,原子吸收光谱分析也广泛应用于药物成分和微量元素的定量分析。

总结起来,物化地分析中的原子吸收光谱分析是一种基于原子能级跃迁的分析方法,通过测量样品中特定波长光线的吸收情况,来确定样品中化学元素的含量。

该方法具有广泛的应用领域,包括环境分析、食品安全和生物医药等领域。

随着科学技术的不断进步,原子吸收光谱分析仪器设备和分析方法也在不断更新,为物化地分析提供了更为准确和高效的工具。

原子吸收光谱分析_图文

原子吸收光谱分析_图文

二)原子化系统
原子化系统的作用是提供足够的能量, 使试液雾化、去溶剂、脱水、离解产生待测 元素的基态自由原子。
常用的原子化方法有火焰原子化法和无火 焰原子化法。
火焰原子化法是利用气体燃烧形成的火焰 来进行原子化的。火焰原子化装置包括雾化 器和燃烧器两部分。
a)雾化器:将试样溶液转为雾状。 b)雾化室:去除大雾滴并使气溶胶均匀。 c)燃烧器:产生火焰并使试样蒸发和原子化
要将原子吸收现象用于分析:
首先必须将试样溶液中的待测元素原子 化,同时还要有一个光强稳定的光源,并能 给出同种原子的特征光辐射。
然后根据吸光度对标准溶液浓度的关系 曲线,计算出试样中待测元素的含量。
二、原子吸收光谱分析的常规模式
• 特点:
• 测定的是特定谱线 的吸收(由于原子 吸收线的数量大大 少于原子发射线) 所以谱线重叠几率 小,光谱干扰少。
§8-2 原子吸收光谱法基本原理
一、原子吸收光谱的产生
正常情况下,原子处于基态。
当有辐射通过自由原子蒸气时,若辐射的频率 等于原子中的电子从基态跃迁到激发态所需要的能 量频率时,原子将从辐射场吸收能量,产生共振吸 收,电子由基态跃迁到激发态,同时使辐射减弱产 生原子吸收光谱。
各种元素的原子结构不同,不同元素的原子从基 态激发至第一激发态时,吸收的能量也不同,所以 各元素的共振线都不相同,而具有自身的特征性。
原子吸收光谱的频率ν或波长λ,由产生吸收跃 迁的两能级差ΔE决定:
ΔE = hν= hc/λ
式中:h为普朗克常数,c为光速。
二、原子吸收谱线的轮廓与谱线变宽
原子吸收光谱线很窄,但并不 是一条严格的理想几何线,而是占 据着有限的、相当窄的频率或波长 范围,即谱线实际具有一定的宽度 ,具有一定的轮廓。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体元素不同可能带来影响。
(2)标准溶液浓度应使 A ~ C 在直线的范围内, C
不能太大,一般控制A在0.2~0.8之间。
(3) 测定过程中应保持测定条件不变。 • 标准曲线法简便、快速,适用于组分比较简单的样 品,适用于大批量的样品分析。但样品的情况不清 或很复杂时分析误差较大,可用其他方法定量。
检测限 (Detection limit, DL)
• 检出限不仅与灵敏度有关,而且还考虑 到仪器噪声!因而检测限比灵敏度具有更 明确的意义,更能反映仪器的性能。只有 同时具有高灵敏度和高稳定性时,才有低 的检出限。
——测定条件的选择 • 分析方法的精密度和准确度除了与仪器的性能有 关外,还与测定条件有关,注意选择: 1、试样取量及处理
用有机溶剂
(二)化学干扰及其抑制
指待测元素与其它组分之间的化学作用所引起的干扰效应 ,主要 影响到待测元素的原子化效率,是选择性干扰,为主要干扰源
1. 化学干扰的类型
(1)待测元素与其共存物质作用生成难挥发的化合物,致使参 与吸收的基态原子减少。 a、铝、硅、硼、钛、铍在火焰中易生成难熔化合物 b、硫酸盐、磷酸盐与钙生成难挥发物。 (2)待测原子发生电离反应,生成离子,不产生共振吸收,总 吸收强度减弱,电离电位≤6eV的元素易发生电离,火焰温度越高 ,干扰越严重,(如碱及碱土元素)。
• 氘灯是连续光谱( 190-360nm ),它和空心阴极灯的锐线
光源通过切光器交替照射在原子化器上。 氘灯的能量被背景和被测元素吸收,但被测元素是线吸收,
它占整个连续光谱的吸收信号很小,可以忽略。因此可以
认为,氘灯测得的就是背景吸光度。 A氘=A背 • 空心阴极灯测得的是被测元素吸光度和背景吸光度,
例如:钙电离,在溶液中加入大量易电离的 钾或铯,有大量电子存在,抑制钙的电离,提高 测定灵敏度。 K ---- K+ + e
Ca2++ 2e --- Ca
此外还可采用萃取、沉淀、离子交换等分离 方法提前把干扰离子与待测元素分离,然后再测 定。
(三)光谱干扰及其抑制
这类干扰主要来自光源和原子化装置。
• 使用有机络合剂有利于提高原子化效率。
(3) 加入饱和剂(缓冲剂)
加入足够的干扰元素,使干扰趋于稳定。
例:用 N2O—C2H2 火焰测钛时,在试样和标准溶液 中加入300 mgL-1以上的铝盐,使铝对钛的干扰趋于 稳定。
(4) 加入消电离剂
加入的易电离的物质,抑制待测元素电离。 碱金属常作为消电离剂:CsCl、KCl、NaCl等
• (1)适当提高火焰温度使难挥发、难解离 的化合物较易原子化,采用 N2O- 乙炔火焰, T高,提高原子化效率
• (2)可适当控制火焰温度来抑制电离。
2. 消除化学干扰的常用方法 (1)加入释放剂
加入释放剂与干扰物质生成更稳定或更难挥发的化合物,使 待测元素释放出来,从而排除干扰。
例: Ca2+
• 可变磁场调节方式
3. 光谱线的重叠
•选用其它谱线
•分离干扰元素
Ax =KCx
Ao=K(Co+Cx)
Cx= Co Ax /(Ao- Ax)
标准加入法只能在一定程度上消除基体效应 带来的影响,但不能消除背景干扰。
• 注意:
(1) 测定应在直线范围内进行,只能测低含 量的样品 (2) 加入标准与待测物的浓度要在同一数量 级内,否则斜率过大或过小将引起很大的 误差。
标准曲线法
1 2
C1~C5浓度依次增大
3 4 5 样品
标液
A A A3
C4
A4
C5
A5
CX
AX
CX
C
注意在高浓度时,标准曲线易发生弯曲,压力变 宽影响所致;另外,或火焰中的各种干扰效应也会 导致曲线弯曲。
• 为保证测定结果的准确性,应注意以下几点: (1)标准溶液与样品的基体组成应尽可能一致,基
原子吸收光谱定量分析
一、定量分析方法
定量分析的基础是朗伯-比尔定律。A=KC, 在一定条件 下,A与C呈线形关系,可采用标准曲线法、标准加入法。
(一)标准曲线法
配一系列基体相同的不同浓度的标准溶液,以空白溶液
为参比,在选定的条件下测标准溶液的吸光度。以 A为纵
坐标, c 为横坐标,绘制 A - c 标准曲线,在相同条件下, 测样品的Ax,从标准曲线求出未知样品中待测元素的含量。
1.与光源有关的光谱干扰,主要有以下几种:
(1)在分析线附近有待测元素的谱线 可以通过调小狭缝的方法来抑制这种干扰。 (2)空心阴极灯内有单色器不能分离的干扰元素的辐射 换用纯度较高的单元素灯减小干扰 (3)灯的辐射中有连续背景辐射 将灯反接或更换灯
2. 背景吸收和抑制
——来自于原子化器的一种光谱干扰,它包括分子吸收和 光散射引起的干扰。
保护剂(通常是配位剂)的加入可使干扰元素不能与 待测元素结合。 • 例 : Al3+ 干 扰 Mg2+ 的 测 定 , 它 们 在 火 焰 中 生 成 MgO· Al2O3,加入保护剂8 –羟基喹啉,与干扰元素Al 生成对热稳定性较强的配合物,抑制了Al对Mg的干扰 • 例 : 为 消 除 PO43- 对 Ca2+ 测 定 的 干 扰 , 可 加 入 过 量 EDTA , EDTA 与 Ca2+ 生成稳定的配合物, CaY2- ,它 在火焰中易于原子化,抑制了PO43-对Ca2+测定的干扰
1~1.2以下的背景干扰提高测定灵敏度
• 许多仪器带有氘灯校正、自动扣除背景吸收, 但只适用于190~350 nm波段的背景吸收的扣 除,不能用于可见光。
③ 塞曼效应校正法
• 塞曼效应扣背景:利用谱线在磁场的分裂
(塞曼效应)是近年来发展起来的新技术,
它克服了氘灯法扣背景的局限性。
• Zeeman效应:在磁场作用下简并的谱线发
• 无 机 酸 的 分 子 吸 收 : H2SO4 、 H3PO4 在 250nm以下有强的分子吸收,测在紫外吸收 的元素时,一般用 HNO3 , HCl ,王水处理 样品,而不用H2SO4、H3PO4 • 火焰气体的吸收:火焰成分有 OH 、 CO 、 CN 、 CH ,它们都会出现分子吸收,但火 焰点燃后,通过“调零”方法即能克服这 些影响。
(二)标准加入法
当试样组成复杂时应采用标准加入法 取若干份体积相同的试液(cX),依次按比例加入不 同量的待测物的标准溶液(cO),定容浓度依次为: cX , cX +cO , cX +2cO , cX +3cO , cX +4cO ……
分别测得吸光度为:AX,A1,A2,A3,A4……
以A对浓度C做图得一直线,图中cX点即待测溶液浓度
5、单色器光谱通带选择——狭缝宽度
• 以排除光谱干扰和具有一定透光强度为原则进行 选择
• 对于谱线简单的元素,如碱金属,碱土金属,通 带可大些;以便提高信噪比和测量精密度,降低 检出限
• 对于谱线复杂的元素,如过渡金属、稀土金属用 较小的通带。以便提高仪器的分辨率,改善线性 范围,提高灵敏度
• 狭缝宽度——测不同狭缝A,不引起 A 减小的最 大狭缝宽度是最合适的狭缝宽度。
c. 用分离基体的方法来消除影响
扣除背景吸收的方法
通常用空白校正,氘灯校正、塞曼效应 校正等方法消除背景吸收。
① 空白校正法
配空白溶液(含除待测元素外的基体元 素)A空白(背景) 配待测溶液(待测元素+基体元素)A试 (待测元素 +背景) A校=A试(待测元素 +背景)- A空白(背景)
② 氘灯校正法
(2)光散射 • 原子化过程中产生的固体微粒散射光,造 成虚假吸收,使吸光度升高。 Io Iv
分子吸收、微粒散射都是带光谱,产生虚假 吸收,产生正误差。
(3)校正背景吸收的方法 a. 邻近线校正法:可以测量与分析线临近的非 吸收线的吸收(即背景吸收),再从分析线 的总吸收中扣除非吸收线的吸收。
b. 用与试样溶液有相似组成的标准溶液来校正
原子吸收光谱法的干扰及其抑制
• 原子吸收光谱法由于采用锐线光源,干扰 较少,但是在某些情况下,干扰不能忽略。
物理干扰
• 按干扰的性质和产生原因分为 化学干扰
光谱干扰
(一)物理干扰(基体效应)及其抑制
• 物理干扰——试样的物理性质对试样的雾化、蒸发和 原子化过程中引起的干扰效应。
• 这些物理性质是指溶液的粘度、蒸气压和表面张力。
生裂分的现象。 强磁场中
-

+
校正原理:原子化器加磁场后,随旋转偏振器
的转动,当平行磁场的偏振光通过火焰时,产 生总吸收;当垂直磁场的偏振光通过火焰时, 只产生背景吸收;
方式:恒定磁场调制方式和可变磁场调制方式。 优点:校正能力强(可校正背景A 1.2~2.0);
可校正波长范围宽:190 ~ 900nm ;
火焰法:达到最大吸光度的试样喷雾量
实验方法
石墨炉法:依赖于石墨管的大小,固体0.1-10mg,液体1500μ L。
2、分析线选择 •
无干扰,选共振线,激发能低,灵敏度高。 • 若主共振线附近有干扰线,为避免干扰,可选择灵敏度稍 低的其它共振线为分析线 • 测高含量元素时,可用元素次灵敏线作分析线。
3.灯电流的选择
• 在保证光强度和稳定情况下,尽量选用低工作电流。
• 灯电流过小时,光强不足,影响精密度;灯电流过大, 灵敏度下降,灯寿命缩短
• 4.原子化条件选择
• (1)火焰原子吸收法:依据不同试样元素选择不同火焰 类型。
• 调整喷雾器达到最佳雾化状态;改变燃助比选择最佳火 焰类型和状态;调节燃烧器高度,从原子密度最大处通 过入射光。 • (2)石墨炉原子吸收法:原子化程序要经过干燥,灰化, 原子化,除残四阶段,各阶段的温度及持续时间要通过 实验选择,进行升温程序的优化。
相关文档
最新文档