2014年高考新课标1理科数学真题及答案详解

合集下载

2014年新课标Ⅰ卷高考理科数学试卷真题及解析

2014年新课标Ⅰ卷高考理科数学试卷真题及解析

数f ( x), 则y f ( x)在[0, ]上的图像大致为( C )
y
y
1
1
NP
x 0 MA
0
πx 0
πx
A
B OM OP cos x cos x
y
y
f ( x) MN OM sin x
1
1
sin x cos x 1 sin 2 x
0
πx 0
πx
2
C
D
7.执行下图的程序框图, 若输入的a, b, k分别为1, 2, 3, 则
p3 : ( x, y) D, x 2 y 3, p4 : ( x, y) D, x 2 y 1.
其中真命题是( C )
y
A. p2 , p3
B. p1 , p4
C . p1 , p2
D. p1 , p3
作可行域如图所示, x y 1 直线OA的方程为x 2 y 0, 所以( x, y) D, x 2 y 0 O p1 , p2正确
输出M
n n1 b M a b M a 1 b
结束
8.设 (0, ), (0, ), 且 tan 1 sin , 则( B )
2
2
cos
A.3
2
C.3
2
B.2
2
D.2
2
tanα sinα 1 sin β , sinαcos β cos α cos αsin β cosα cos β
2i(1 i) 2i
1 i
D. 1 i
3.设函数f ( x), g( x)的定义域都为R, 且f ( x)是奇函数,
g( x)是偶函数, 则下列结论正确的是( )
A. f ( x)g( x)是偶函数

2014年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)(附详细答案)

2014年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)(附详细答案)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)?g(﹣x)=﹣f(x)?g(x),故函数是奇函数,故A错误,|f(﹣x)|?g(﹣x)=|f(x)|?g(x)为偶函数,故B错误,f(﹣x)?|g(﹣x)|=﹣f(x)?|g(x)|是奇函数,故C正确.|f(﹣x)?g(﹣x)|=|f(x)?g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|?|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,+cosα,即sinαcosβ=cosαsinβsin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:?(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,?(x,y)∈D,x+2y≥2,故p2:?(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:?(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:?(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3?+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20 .(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC?(2+b)(a﹣b)=(c﹣b)c?2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc?b2+c2﹣bc=a2?b2+c2﹣bc=4?bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λSn=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,∴a n+1(a n+2﹣a n)=λan+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λSn=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO?平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年高考新课标1全国卷理科数学试题及答案

2014年高考新课标1全国卷理科数学试题及答案

2014年普通高等学校招生全国统一考试全国新课标1理科数学第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ). A .[]2,1-- B .[)1,2- C .[]1,1- D .[)1,22.32(1)(1)i i +=-( ). A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ).A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()g x f x 是奇函数D .()()f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ).A .203B . 72C . 165D .158 8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A .32παβ-=B . 32παβ+=C .22παβ-=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( ).A .2p ,3PB .1p ,2pC .1p ,4pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =( ).A .72B . 3C .52D .211.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ).A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( ).A .62B .6C .42D .4第Ⅱ卷本卷包括必考题和选考题两个部分。

2014年高考全国卷1理科数学试题及标准答案-(word版)

2014年高考全国卷1理科数学试题及标准答案-(word版)

2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1. 已知集合A ={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3. 设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-= B .22παβ-=C .32παβ+=D .22παβ+= 9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72B .52C .3D .2 11. 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4第Ⅱ卷。

2014年高考新课标1全国卷理科数学试题及答案

2014年高考新课标1全国卷理科数学试题及答案

2014年普通高等学校招生全国统一考试全国新课标1理科数学第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( )。

A .[]2,1-- B 。

[)1,2- C 。

[]1,1- D 。

[)1,22。

32(1)(1)i i +=-( )。

A 。

1i + B .1i - C 。

1i -+ D .1i --3。

设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )。

A .()()f x g x 是偶函数 B 。

()()f x g x 是奇函数C 。

()()g x f x 是奇函数D 。

()()f x g x 是奇函数4。

已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A 。

3B 。

3C 。

3mD 。

3m5。

4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )。

A 。

18B .38C .58D 。

786。

如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ).A 。

203B . 72C . 165D .158 8。

设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )。

A .32παβ-=B . 32παβ+=C .22παβ-=D 。

22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )。

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为_________.(用数字填写答案)14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为_________.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为_________.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x<2},则A∩B={x|﹣2≤x≤﹣1},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.解答:解:==﹣(1+i)=﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.解答:解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C 的一条渐近线的距离为=.故选:A.点评:本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;概率与统计.分析:求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.解答:解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.点评:本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.考点:程序框图.专题:概率与统计.分析:根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.解答:解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=考点:三角函数的化简求值.专题:三角函数的求值.分析:化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.解答:解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A,B后验证C,当时,sin(α﹣β)=sin()=cosα成立.故选:C.点评:本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D在x+2y≥﹣2 区域的上方,故A:∀(x,y)∈D,x+2y≥﹣2成立;在直线x+2y=2的右上方区域,:∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.解答:解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴直线PF的斜率为﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.点评:本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,由于而f(0)=1>0,x→+∞时,f(x)→﹣∞,可知:存在x0>0,使得f(x0)=0,要使满足条件f(x)存在唯一的零点x0,且x0>0,则必须极小值>0,解出即可.解答:解:当a=0时,f(x)=﹣3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=>0,列表如下:x (﹣∞,0)0f′(x)+0 ﹣0 +f(x)单调递增极大值单调递减极小值单调递增∵x→+∞,f(x)→+∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=<0,列表如下:0 (0,+∞)x(﹣∞,)f′(x)﹣0 + 0 ﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<﹣2.综上可知:a的取值范围是(﹣∞,﹣2).故选:C.点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:画出图形,结合三视图的数据求出棱长,推出结果即可.解答:解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.点评:本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.解答:解:(x+y)8的展开式中,含xy7的系数是:=8.含x2y6的系数是=28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20点评:本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.考点:进行简单的合情推理.专题:推理和证明.分析:可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.解答:解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.点评:本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量之间的关系,利用圆直径的性质,即可得到结论.解答:解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为临边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°点评:本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得b2+c2﹣bc=4.再利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得它的面积的值.解答:解:△ABC中,∵a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,∴利用正弦定理可得4﹣b2=(c﹣b)c,即b2+c2﹣bc=4.再利用基本不等式可得4≥2bc﹣bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为==,故答案为:.点评:本题主要考查正弦定理的应用,基本不等式,属于中档题.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.考点:数列递推式;等差关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.解答:(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:①当λ=0时,a n a n+1=﹣1,假设{a n}为等差数列,设公差为d.则a n+2﹣a n=0,∴2d=0,解得d=0,∴a n=a n+1=1,∴12=﹣1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.点评:本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.考点:正态分布曲线的特点及曲线所表示的意义;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.解答:解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.点评:本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.考点:用空间向量求平面间的夹角;空间向量的夹角与距离求解公式.专题:空间向量及应用.分析:(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.解答:解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为点评:本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设F(c,0),利用直线的斜率公式可得,可得c.又,b2=a2﹣c2,即可解得a,b;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出S△OPQ.通过换元再利用基本不等式的性质即可得出.解答:解:(Ⅰ)设F(c,0),∵直线AF的斜率为,∴,解得c=.又,b2=a2﹣c2,解得a=2,b=1.∴椭圆E的方程为;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时,,.∴|PQ|===,点O到直线l的距离d=.∴S△OPQ==,设>0,则4k2=t2+3,∴==1,当且仅当t=2,即,解得时取等号.满足△>0,∴△OPQ的面积最大时直线l的方程为:.点评:本题综合考查了椭圆的标准方程及其性质、斜率计算公式、椭圆的方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于难题.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x ﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.点评:本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.考点:与圆有关的比例线段.专题:选作题;几何证明.分析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE 为等边三角形.解答:证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.点评:本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.考点:基本不等式;基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:(Ⅰ)由条件利用基本不等式求得ab≥4,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.解答:解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)由(1)可知,2a+3b≥2=2≥4>6,故不存在a,b,使得2a+3b=6成立.点评:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.参与本试卷答题和审题的老师有:lincy;caoqz;wyz123;刘长柏;sxs123;wfy814;孙佑中;minqi5;清风慕竹;maths;qiss(排名不分先后)菁优网2014年6月23日。

2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷试卷及参考答案与试题解析

2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷试卷及参考答案与试题解析

2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷全国1卷试卷及参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[1,2)B.[-1,1]C.[-1,2)D.[-2,-1]2.(5分)=( )A.1+iB.1-iC.-1+iD.-1-i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A. B. C. D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A. B. C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B. C. D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则( )A.3α-β=B.3α+β=C.2α-β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p 1:∀(x,y)∈D,x+2y≥-2 p2:∃(x,y)∈D,x+2y≥2p 3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤-1其中真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )A. B.3 C. D.211.(5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)D.(-∞,-2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(Ⅰ)证明:an+2-an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.20.(12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB =CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[1,2)B.[-1,1]C.[-1,2)D.[-2,-1]【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x-3)(x+1)≥0,解得:x≥3或x≤-1,即A=(-∞,-1]∪[3,+∞),∵B=[-2,2),∴A∩B=[-2,-1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=( )A.1+iB.1-iC.-1+iD.-1-i【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==-(1+i)=-1-i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(-x)=-f(x),g(-x)=g(x),f(-x)•g(-x)=-f(x)•g(x),故函数是奇函数,故A错误,|f(-x)|•g(-x)=|f(x)|•g(x)为偶函数,故B错误,f(-x)•|g(-x)|=-f(x)•|g(x)|是奇函数,故C正确.|f(-x)•g(-x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2-my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A. B. C. D.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况, 周六、周日都有同学参加公益活动,共有24-2=16-2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A. B. C.D.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B. C. D.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则( )A.3α-β=B.3α+β=C.2α-β=D.2α+β=【分析】化切为弦,整理后得到sin(α-β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α-β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α-β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α-β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p 1:∀(x,y)∈D,x+2y≥-2 p2:∃(x,y)∈D,x+2y≥2p 3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤-1其中真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p3【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可. 【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x-2y=4相交的上部角型区域,p1:区域D在x+2y≥-2 区域的上方,故:∀(x,y)∈D,x+2y≥-2成立;p 2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p 3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y≤3错误;p 4:x+2y≤-1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤-1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )A. B.3 C. D.2【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为-=-2,∵F(2,0),∴直线PF的方程为y=-2(x-2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)D.(-∞,-2)【分析】由题意可得f′(x)=3ax2-6x=3x(ax-2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3-3x2+1,∴f′(x)=3ax2-6x=3x(ax-2),f(0)=1;①当a=0时,f(x)=-3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3-3x2+1在(-∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3-3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3-3x2+1在(-∞,0)上没有零点;而当x=时,f(x)=ax3-3x2+1在(-∞,0)上取得最小值;故f()=-3•+1>0;故a<-2;综上所述,实数a的取值范围是(-∞,-2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6B.6C.4D.4【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x-y)(x+y)8的展开式中x2y7的系数为-20 .(用数字填写答案)【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x-y)(x+y)8的展开式中x2y7的系数为:8-28=-20.故答案为:-20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°. 【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.【分析】由正弦定理化简已知可得2a-b2=c2-bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA-sinB)=(c-b)sinC⇒(2+b)(a-b)=(c-b)c⇒2a-b2=c2-bc,又因为:a=2,所以:,△ABC面积,而b2+c2-a2=bc⇒b2+c2-bc=a2⇒b2+c2-bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(Ⅰ)证明:an+2-an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.【分析】(Ⅰ)利用an an+1=λSn-1,an+1an+2=λSn+1-1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{an}为等差数列,设公差为d.可得λ=an+2-an=(an+2-an+1)+(an+1-an)=2d,.得到λSn=,根据{an}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵an an+1=λSn-1,an+1an+2=λSn+1-1,∴an+1(an+2-an)=λan+1∵an+1≠0,∴an+2-an=λ.(Ⅱ)解:①当λ=0时,an an+1=-1,假设{an}为等差数列,设公差为d.则an+2-an=0,∴2d=0,解得d=0,∴an =an+1=1,∴12=-1,矛盾,因此λ=0时{an}不为等差数列.②当λ≠0时,假设存在λ,使得{an}为等差数列,设公差为d.则λ=an+2-an=(an+2-an+1)+(an+1-an)=2d,∴.∴,,∴λSn=1+=,根据{an}为等差数列的充要条件是,解得λ=4.此时可得,an=2n-1.因此存在λ=4,使得{an}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544. 【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y 轴的正方向,的方向为z 轴的正方向建立空间直角坐标系,∵∠CBB 1=60°,∴△CBB 1为正三角形,又AB =BC, ∴A(0,0,),B(1,0,0,),B 1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(-1,,0),设向量=(x,y,z)是平面AA 1B 1的法向量,则,可取=(1,,), 同理可得平面A 1B 1C 1的一个法向量=(1,-,),∴cos <,>==,∴二面角A -A 1B 1-C 1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,-2),椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的右焦点,直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P,Q 两点,当△OPQ 的面积最大时,求l 的方程. 【分析】(Ⅰ)通过离心率得到a 、c 关系,通过A 求出a,即可求E 的方程; (Ⅱ)设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2)将y =kx -2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ 的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ) 设F(c,0),由条件知,得又,所以a =,b 2=a 2-c 2=1,故E 的方程.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2)将y=kx-2代入,得(1+4k2)x2-16kx+12=0,当△=16(4k2-3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x-2或y=-x-2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min >h(x)max,利用导数可分别求得g(x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>-,∴f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=-.设函数h(x)=xe-x-,则h′(x)=e-x(1-x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB =CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x-2,代入②并整理得:2x+y-6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值. (Ⅱ)根据 ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年高考理科数学全国卷1-答案

2014年高考理科数学全国卷1-答案

])3,[+∞,所以[2,A B =--,集合B ,求A B .2(1i)2i(1i)i)2i1i ++=---=.则(4,P F =-,0(FQ x =-,根据抛物线定义得||3x QF ==【解析】由题易知点AC与AB的夹角为【提示】根据向量之间的关系,利用圆直径的性质,即可得到结论【考点】数量积表示两个向量的夹角16.【答案】3【解析】根据正弦定理和因为+10n a ≠,所以+2n n a a λ-=.(2)由题设11a =,1211a a S λ=-,可得21a λ=-,由(1)知31a λ=+,若{}n a 为等差数列,则2132a a a =+,解得4λ=,故+24n n a a -=.由此可得21{}n a -是首项为1,公差为4的等差数列,2143n n a -=-;2{}n a 是首项为3,公差为4的等差数列,2=41n a n -.所以21n a n =-,+1n n a a -=2.因此存在4λ=,使得数列{}n a 为等差数列. 【提示】根据等差数列知识完成证明,求出使得{}n a 为等差数列的参数λ 【考点】等差数列18.【答案】(1)200=平均数2150s =(2)(i )0.6826 (ii )68.26【解析】(1)抽取产品的质量指标值的样本平均数和样本方差2s 分别为:平均数1700.021800.091900.222000.332100.242200.082300.02200=⨯+⨯+⨯+⨯+⨯+⨯+⨯=.2222222(30)(20)(10)0020090220033102420008300025010s ---=⨯+⨯+⨯+⨯+⨯+⨯+⨯=........(2)(i )由(1)知(200,150)ZN ,从而187821222001222001220.682()6)(P Z P Z <<=-<<+=..... (ii )由(i )知,一件产品的质量指标值位于区间1878,2(212)..的概率为06826.,依题意知100,0682 ()6X B ~.,所以100068266826EX =⨯=...【提示】给出频率分布直方图求平均数和方差,利用正态分布求概率. 【考点】平均数和方差及正态分布19.【答案】(1)证明:连接1BC ,交1B C 于点O ,连接AO ,因为侧面11BB C C 为菱形,所以1B C ⊥1BC , 且O 为1B C 及1BC 的中点.又AB ⊥1B C ,所以1B C ⊥平面ABO . 由于AO ⊂平面ABO ,故1B C ⊥AO .又1B O CO =,故1AC AB =. (2)因为AC ⊥1AB ,且O 为1B C 的中点,所以AO CO =.又因为AB BC =,所以BOA BOC △△≌.故OA ⊥OB ,从而OA ,OB ,1OB 两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,||OB 为单位长,建立如图所示的空间直角坐标系O xyz -. 因为∠160CBB ︒=,所以1CBB △为等边三角形,10,B A ⎛= ⎝,1,0,AB ⎛= ⎝,1,BC ⎛-- ⎝设(,n x y =1B 的法向量,则即333333y x z --=1|||7n m n m =.所以结合图形知二面角221431k k -+.22||44341k d k PQ -=+,即72k =±时等号成立,满足72k =±,知,∠D=∠E,所以△ADE为等边三角形.。

2014年全国高考数学(理科)试题及答案-新课标1卷(解析版)

2014年全国高考数学(理科)试题及答案-新课标1卷(解析版)

2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<, ∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i+=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d = A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作M D ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x = 1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ =∴34PQ PF=,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。

2014年高考数学新课标1卷(理科)答案word版

2014年高考数学新课标1卷(理科)答案word版

2014年普通高等学校招生全国统一考试(新课标I 卷)理科数学试题答案与解析1. 解析 由不等式2230x x --…解得3x …或1x -…,因此集合{1x x -?或}3x …,又集合{}22B x x =-剟,所以{}21AB x x =--剟,故选A.2. 解析()()()()()()3222221i 1i 1i 2i 1i 1i 1i1i 2i 1i 1i ++++=⋅+=⋅+=--+---,故选D. 3. 解析 由题意可知()()f x f x -=-,()()g x g x -=,对于选项A ,()()f x g x -⋅-=()()f x g x --,所以()()f x g x 是奇函数,故A 项错误;对于选项B ,()()()()()()f x g x f x g x f x g x --=-=,所以()()f x g x 是偶函数,故B 项错误;对于选项C ,()()()()f x g x f x g x --=-,所以()()f x g x 是奇函数,故C 项正确;对于选项D ,()()()()()()f x g x f x g x f x g x --=-=,所以()()f x g x 是偶函数,故D 项错误.选C.评注 本题考查函数奇偶性的定义及其应用,考查考生的知识应用能力及逻辑推理论证能力,准确理解函数奇偶性的定义是解决本题的关键.4. 解析 由题意知,双曲线的标准方程为22133x y m -=,其中23a m =,23b =,故c ==,不妨设F 为双曲线的右焦点,故)F .其中一条渐近线的方程为y x=,即0x =, 由点到直线的距离公式可得d ==,故选D.5. 解析 由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有42种情况,而4位同学都选周六有1种情况,而4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为442111472168p --===,故选D.6. 解析 由题图可知:当2x π=时,OP OA ⊥,此时()0f x =,排除A ,D ;当0,2x π⎛⎫∈ ⎪⎝⎭时,cos OM x =,设点M 到直线OP 的距离为d ,则sin dx OM=,即sin d OM x == sin cos x x ,所以()11sin cos sin 222f x x x x ==…,排除B ,故选C.7. 解析 第一次循环,32M =,2a =,32b =,2n =;第二次循环,83M =,32a =,83b =,3n =;第三次循环,158M =,83a =,158b =,4n =,退出循环,输出M 为158,故选D. 8. 解析 由1sin tan cos βαβ+=得sin 1sin cos cos αβαβ+=,即sin cos cos sin cos αβαβα=+,所以()sincos αβα-=,又cos sin 2ααπ⎛⎫=- ⎪⎝⎭,所以()sin αβ-sin 2απ⎛⎫=- ⎪⎝⎭,又因为0,2απ⎛⎫∈ ⎪⎝⎭,0,2βπ⎛⎫∈ ⎪⎝⎭,所以22αβππ-<-<,022αππ<-<,因此2αβαπ-=-,所以22αβπ-=,故选C. 9. 解析 不等式组1,24x y x y +⎧⎨-⎩……表示的平面区域D 如图阴影区域所示.设2z x y =+,作出基本直线0l :20x y +=,经平移可知直线l :2z x y =+经过点()2,1A -时z 取得最小值0,无最大值.对于命题1p :由于z 的最小值为0,所以(),x y D ∀∈,20x y +…恒成立,故22x y +-…恒成立,因此命题为真命题;由于,故,,因此命题为真命题;由于的最小值为,无最大值,故命题和错误,故选B.1p (),20x y Dx y ∀∈+…(),x y D ∃∈22x y +…2p 2z x y =+03p 4p 2y =0x-2y=410. 解析 因为,所以点在线段之间,过作,垂足为,由抛物线定义知,设抛物线的准线与轴的交点为,则,又易知,则,即. 所以,即.故选B.11. 解析 (1)当时,显然有两个零点,不符合题意.(2)当时,,令,解得,.当时,所以函数在与上为增函数,在上为减函数,因为存在唯一零点,且,则,即,不成立.当时,,所以函数在和上为减函数,在上为赠函数,因为存在唯一零点,且,则,即,解得或,又因为,故的取值范围为.故选C.12. 解析 由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面面,为等腰直角三角形,,取的中点,连接,,则 面,在等腰中,,所以在Rt AMD △中,,又在Rt ABC △中,,故该多面体的各条棱中,最长棱为,长度为,故选B.评注 本题考查空间几何体的三视图与直观图之间的互相转化,考查面面垂直性质定理的4FP FQ =Q PF Q QM l ⊥M QF QM=l x N 4FN =PQM PFN △△QM PQFNPF=344QM =3QM =3QF =0a =()f x 0a ≠()236f x ax x '=-()0f x '=10x =22x a =0a >20a>()3231f x ax x =-+(),0-∞2,a ⎛⎫+∞⎪⎝⎭20,a ⎛⎫⎪⎝⎭()f x 0x 00x >()00f <10<0a <20a<()3231f x ax x =-+2,a ⎛⎫-∞ ⎪⎝⎭()0,+∞2,0a ⎛⎫ ⎪⎝⎭()f x 0x 00x >20f a ⎛⎫> ⎪⎝⎭3284310a a a ⋅-⋅+>2a >2a <-0a <a (),2-∞-ABC ⊥BCD ABC △4AB BC ==BC M AM DM DM ⊥ABC BCD △BD=DC =4BC DM ==6AD==6AC =<AD 6MDCBA应用.同时考查考生的空间想象能力和运算求解能力.正确画出三棱锥的直观图是解决本题的关键.13. 解析 由二项展开公式可知,含27x y的项可表示为7762688x C xyy C x y ⋅-⋅,故()()8x y x y -+的展开试中27xy的系数为7612888882820C C C C -=-=-=-.14. 解析 由于甲、乙、丙三人去过同一城市,而甲没有去过B 城市,乙没有去过C 城市,因此三人去过同一城市应为A ,而甲去过的城市比乙多,但没有去过B 城市,所以甲去过的城市数应为2,乙去过的城市应为A .15. 解析 由()12AO AB AC =+可知O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以BAC ∠90=,所以AB 与AC 的夹角为90. 16. 解析 因为2a =,所以()()()2sin sin sin b A B c b C +-=-可化为()()()sin sin sin a b A B c b C +-=-由正弦定理可得()()()a b a b c b c +-=-,即222b c a bc +-=,由余弦定理可得2221cos 222b c a bc A bc bc +-===,又0πA <<, 故π3A =,又221424cos 222b c bc A bc bc+--==…,所以4bc …,当且仅当b c =时取等号,由三角形面积公式知11sin 22ABCS bc A bc ===△…故ABC △面积的最大值为评注 本题考查正弦定理、余弦定理、三角形面积公式以及基本不等式的应用,考查考生对知识的综合应用能力以及运算求解能力,能把2代换成a 是正确解决本题的关键. 17. 解析(I )由11n n n a a S λ+=-,得1211n n n a a S λ+++=-.两式相减得()121n n n n a a a a λ+++-=,由于10n a +≠,所以2n n a a λ+-=.(Ⅱ)11a =,1211a a S λ=-,则可得21a λ=-.由(Ⅰ)知,31a λ=+.令2132a a a =+,解得4λ=.故24n n a a +-=,由此可得{}21n a -是首项为1,公差为4的等差数列,{}2n a 是首项为3,公差为4的等差数列,241n a n =-.所以21n a n =-,12n n a a +-=.因此存在4λ=,使得数列{}n a 为等差数列.评注 本题主要考查n a 与n S 的关系及等差数列的定义,考查学生的逻辑思维能力及分析解决问题的能力.18.解析 (I )抽取产品质量指标值的样本平均数x 和样本方差2s 分别为1700.021800.091900.222000.332100.242200.08x =⨯+⨯+⨯+⨯+⨯+⨯+2300.02200⨯=()()()()()222222300.02200.09100.2200.33100.24200.08s =-⨯+-⨯+-⨯+⨯+⨯+⨯+()2300.02150⨯=(Ⅱ)(ⅰ)由(Ⅰ)知Z(200,150)N ,从而 (187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+=(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间()187.8,212.2的概率为0.6826依题意知(100,0.6826)XB ,所以1000.682668.26EX =⨯=19.解析 (Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,由于AO⊂平面ABO ,故1B CAO ⊥.又 1B O CO =,故1AC AB =.(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以AO CO = 又因为AB BC =,所以BOA BOC ∆≅∆故OA OB ⊥,从而OA ,OB ,1OB 两两互相垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz -. 因为160CBB ∠=,所以1CBB ∆为等边三角形.又AB BC =,则A ⎛ ⎝,()1,0,0B ,1B ⎛⎫ ⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭.1AB ⎛= ⎝,111,0,,A B AB ⎛== ⎝111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭设(),,n x y z =是平面11AA B 的法向量,则1110,0,AB A B ⎧⋅=⎪⎨⋅=⎪⎩n n,即0,0.y z x z =⎪=⎪⎩ 所以可取(=n .设m 是平面的法向量,则11110,0.A B B C ⎧⋅=⎪⎨⋅=⎪⎩m n,同理可取(1,=m则1cos ,7⋅==⋅n m n m n m ,所以二面角111A A B C --的余弦值为17.20.解析 (Ⅰ) 设(),0F c,由条件知2c =,得c =又c a =,所以2a =,2221b a c =-= ,故E 的方程2214x y +=.(Ⅱ)当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y .将2y kx =-代入2214x y +=,得()221416120k x kx +-+=.当216(43)0k ∆=->,即234k >时,1,2x =又点O 到直 线PQ的距离d =,所以OPQ △的面积12OPQS =△ .设t =,则0t >,24444OPQ t S t t t==++△.因为44t t+…,当且仅当2t =,k =时等号成立,且满足0∆>,所以当OPQ △的面积最大时,l的方程为:2y x =-或2y x =-. 21. 解析 (I )函数的定义域为,. 由题意可得,.故,. (II )由(I)知,,从而等价于. ()f x ()0,+∞()112e ln e e e xx x x a b b f x a x x x x--'=+-+()12f =()e f x '=1a =2b =()12e ln e xx f x x x -=+()1f x >2e eln x x x x -->设函数,则.所以当时,;当时,.故在上单调递减,在上单调递增,从而在上的最小值为.设函数,则.所以当时,;当时.故在上单调递增,在上单调递减,从而在上的最大值为. 综上,当时,,即.评注 本题主要考查导数的几何意义、利用导数研究函数的单调性及最值问题,考查等价转化思想及逻辑推理能力.22.解析 (Ⅰ) 由题设知得,,,A B C D 四点共圆,所以D ∠ CBE =∠,由已知得,CBE E ∠=∠,故D ∠E =∠.(Ⅱ)设BC 中点为N ,连接MN ,则由MB MC =,知MN BC ⊥, 所以O 在MN 上,又AD 不是O 的直径,M 为AD 中点,故OM AD ⊥, 即MN AD ⊥,所以AD BC ,故A CBE ∠=∠, 又CBE E ∠=∠,故A E ∠=∠.由(1)知,D E ∠=∠, 所以ADE△为等边三角形.23.解析 (Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩ (θ为参数).直线l 的普通方程为:260x y +-=.曲线C 上任意一点()2cos ,3sin P θθ,到l的距离为3sin 6d θθ=+-其中α为()ln g x x x =()1ln g'x x =+10,e x ⎛⎫∈ ⎪⎝⎭()0g'x <1,e x ⎛⎫∈+∞ ⎪⎝⎭()0g'x >()g x 10,e ⎛⎫ ⎪⎝⎭1,e⎛⎫+∞ ⎪⎝⎭()g x ()0,+∞11e e g ⎛⎫=- ⎪⎝⎭()2e e x h x x -=-()()e 1x h'x x -=-()0,1x ∈()0h'x >()1,x ∈+∞()0h'x <()h x ()0,1()1,+∞()h x ()0,+∞()11eh =-0x >()()g x h x >()1f x >锐角,且4tan 3α=.当()sin 1θα+=-时,PA 取最大值,最大值为5.当()sin 1θα+=时,PA24. 解析 (I 11a b =+,得2ab …,且当a b =时等号成立.故33a b +厖a b =时等号成立.所以33a b +的最小值为(II )由(I )知,23a b +….由于6>,从而不存在a ,b ,使得236a b +=.。

2014年高考全国Ⅰ理科数学试题及答案(word解析版)

2014年高考全国Ⅰ理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年全国Ⅰ,理1,5分】已知集合{}2230A x x x =--≥,{}22B x x =-≤<,则A B =( )(A )[]2,1-- (B )[)1,2- (C )[]1,1- (D )[)1,2 【答案】A【解析】∵{}{}223013A x x x x x x =--≥=≤-≥或,{}22B x x =-≤<,∴{}21AB x x =-≤≤-,故选A .(2)【2014年全国Ⅰ,理2,5分】()()321i 1i +=-( )(A )1i + (B )1i - (C )1i -+ (D )1i -- 【答案】D【解析】∵32(1i)2i(1i)1i (1i)2i++==----,故选D . (3)【2014年全国Ⅰ,理3,5分】设函数()f x ,()g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函 数,则下列结论中正确的是( )(A )()()f x g x 是偶函数 (B )()()f x g x 是奇函数 (C )()|()|f x g x 是奇函数 (D )|()()|f x g x 是奇函数 【答案】C【解析】∵()f x 是奇函数,()g x 是偶函数,∴()f x 为偶函数,()g x 为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得()|()|f x g x 为奇函数,故选C .(4)【2014年全国Ⅰ,理4,5分】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )(A (B )3 (C (D )3m 【答案】A【解析】由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+)F ,一条渐近线y =,即0x =,则点F 到C 的一条渐近线的距离d =,故选A .(5)【2014年全国Ⅰ,理5,5分】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )(A )18 (B )38 (C )58(D )78【答案】D【解析】由题知()1F ,)2F 且220012x y -=,所以())120000,,MF MF x y x y ⋅=-⋅-2220003310x y y =+-=-<,解得0y <<,故选D . (6)【2014年全国Ⅰ,理6,5分】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( )(A ) (B ) (C ) (D )【答案】B【解析】如图:过M 作MD OP ⊥于D ,则sin PM x =,cos OM x =,在Rt OMP ∆中,cos sin 1cos sin sin 212x x OM PM MD x x x OP ⋅⋅===⋅=,∴()1sin 2(0)2f x x x π=≤≤,故选B . (7)【2014年全国Ⅰ,理7,5分】执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )(A )203(B )165 (C )72 (D )158【答案】D【解析】输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===;2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M =,故选D .(8)【2014年全国Ⅰ,理8,5分】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )(A )32παβ-= (B )22παβ-=(C )32παβ+=(D )22παβ+=【答案】B 【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+,()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<,∴2παβα-=-,即22παβ-=,故选B .(9)【2014年全国Ⅰ,理9,5分】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )(A )2p ,3p (B )1p ,4p (C )1p ,2p (D )1p ,3p 【答案】C【解析】作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,故选C . (10)【2014年全国Ⅰ,理10,5分】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )(A )72 (B )52(C )3 (D )2【答案】C【解析】过Q 作QM l ⊥于M ,∵4FP FQ =,∴34PQ PF =,又344QM PQ PF ==,∴3QM =, 由抛物线定义知3QF QM ==,故选C .(11)【2014年全国Ⅰ,理11,5分】已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >, 则a 的取值范围为( )(A )()2,+∞ (B )(),2-∞- (C )()1,+∞ (D )(),1-∞-【答案】B【解析】解法一:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭;且(0)10f =>,()f x 有小于零的零点,不符合题意.当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭要使()f x 有唯一的零点0x 且00x >,只需2()0f a>,即24a >,2a <-,故选B .解法二:由已知0a ≠,()3231f x ax x =-+有唯一的正零点,等价于3113a x x =⋅-有唯一的正零根,令1t x=,则问题又等价于33a t t =-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->, ()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,故选B .(12)【2014年全国Ⅰ,理12,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )(A ) (B ) (C )6 (D )4 【答案】C【解析】如图所示,原几何体为三棱锥D ABC -,其中4,AB BC AC DB DC =====6DA ==,故最长的棱的长度为6DA =,故选C .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分 (13)【2014年全国Ⅰ,理13,5分】8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) 【答案】20-【解析】8()x y +展开式的通项为818(0,1,,8)r r r r T C x y r -+==,∴777888T C xy xy ==,626267828T C x y x y ==, ∴8()()x y x y -+的展开式中27x y 的项为7262782820x xy y x y x y ⋅-⋅=-,故系数为20-.(14)【2014年全国Ⅰ,理14,5分】甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 . 【答案】A【解析】由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A .(15)【2014年全国Ⅰ,理15,5分】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【答案】090【解析】∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径,∴090BAC ∠=,∴AB 与AC 的夹角为090.(16)【2014年全国Ⅰ,理16,5分】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【解析】由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221c o s 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2014年全国Ⅰ,理17,12分】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(1)证明:2n n a a λ+-=;(2)是否存在λ,使得{}n a 为等差数列?并说明理由.解:(1)由题设11n n n a a S λ+=-,1211n n n a a S λ+++=-,两式相减()121n n n n a a a a λ+++-=,由于0n a ≠,所以2n n a a λ+-=.……6分(2)由题设11a =,1211a a S λ=-,可得211a λ=-,由(1)知31a λ=+假设{}n a 为等差数列,则123,,a a a 成等差数列,∴1322a a a +=,解得4λ=;证明4λ=时,{}n a 为等差数列:由24n n a a +-=知:数列奇数项构成的数列{}21m a -是首项为1,公差为 4的等差数列2143m a m -=-,令21,n m =-则12n m +=,∴21n a n =-(21)n m =- 数列偶数项构成的数列{}2m a 是首项为3,公差为4的等差数列241m a m =-,令2,n m =则2n m =, ∴21n a n =-(2)n m =,∴21n a n =-(*n N ∈),12n n a a +-=因此,存在存在4λ=,使得{}n a 为等差数列. ……12分(18)【2014年全国Ⅰ,理18,12分】从某企业的某种产品中抽取500件,测 量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(2)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<; (ii )某用户从该企业购买了100件这种产品,记X 表示100件产品中质量指标值为区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若2(,)ZN μδ,则()0.6826P Z μδμδ-<<+=,(22)P Z μδμδ-<<+=0.9544.解:(1)抽取产品质量指标值的样本平均数x 和样本方差2s 分别为:()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=.……6分 (2)(ⅰ)由(1)知(200,150)Z N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+=. ……9分 (ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知(100,0.6826)X B ,所以1000.682668.26EX =⨯=. ……12分 (19)【2014年全国Ⅰ,理19,12分】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (1)证明:1AC AB =;(2)若1AC AB ⊥,o 160CBB ∠=,AB BC =,求二面角111A A B C --的余弦值. 解:(1)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO⊥又 1B O CO =,故1AC AB =. ……6分 (2)因为1AC AB ⊥且O 为1B C 的中点,所以AO CO =,又因为AB BC =,所以BOA BOC ∆≅∆,故OA OB ⊥,从而OA ,OB ,1OB 两两互相垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz -. 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB BC =,则0,0,A ⎛ ⎝⎭,()1,0,0B ,1B ⎛⎫⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭,1AB ⎛= ⎝⎭,111,0,A B AB ⎛== ⎝⎭,111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭,设(),,n x y z =是平面的法向量,则11100nAB nA B ⎧=⎪⎨=⎪⎩,即00y x -=⎨⎪-=⎪⎩所以可取(1,3,n =,设m 是平面的法向量,则11110m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m =,则1cos ,7n m n m n m ==,所以二面角111A A B C --的余弦值为17. ……12分(20)【2014年全国Ⅰ,理20,12分】已知点()0,2A -,椭圆E :22221(0)x y a b a b+=>>,F 是椭圆的焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.解:(1)设(),0F c,由条件知2c=,得c c a =, 所以2a =,2221b a c =-=,故E 的方程2214x y +=. ……6分(2)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y ,将2y kx =-代入2214x y +=, 得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,1,2x = 从而21221434k PQ x k -=-=,又点O到直线PQ的距离d =,所以OPQ ∆的 面积12OPQ S d PQ ∆==,设243k t -,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,k =等号成立,且满足0∆>,所以当OPQ ∆的面积最大时,l 的方程为:2y x - 或2y =-..……12分 (21)【2014年全国Ⅰ,理21,12分】设函数()1ln x xbe f x ae x x-=+,曲线()y f x =在点()()1,1f 处的切线为(1)2y e x =-+. (1)求,a b ;(2)证明:()1f x >.解:(1)函数()f x 的定义域为()0,+∞,112()ln x x x x a b bf x ae x e e e x x x--'=+-+由题意可得(1)2,(1)f f e '==,故1,2a b ==. ……6分 (2)由(1)知,12()ln x xe f x e x x -=+,从而()1f x >等价于2ln x x x xe e ->-,设函数()ln g x x x =,则()ln g x x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫⎪⎝⎭单调减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g e e =-. (8)分设函数2()x h x xe e-=-,则()()1xh x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值为1(1)h e=-.综上:当0x >时,()()g x h x >,即()1f x > .……12分请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)【2014年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =. (1)证明:D E ∠=∠;(2)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ABC ∆为等边三角形. 解:(1)由题设得,A ,B ,C ,D 四点共圆,所以,D CBE ∠=∠又CB CE =,CBE E ∴∠=∠,所以D E ∠=∠ ……5分(2)设BC 的中点为N ,连结MN ,则由MB MC =知MN BC ⊥,故O 在直线MN 上,又AD 不是O 的直径,M 为AD 的中点,故OM AD ⊥,即MN AD ⊥, 所以//AD BC ,故A CBE ∠=∠,又CBE E ∠=∠,故A E ∠=∠,由(1)知,D E ∠=∠,所以ADE ∆为等边三角形. ……10分(23)【2014年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线22:149x y C +=,直线2:22x tl y t =+⎧⎨=-⎩(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 解:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=.……5分(2)曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为4cos 3sin 6|d θθ=+-,则||5sin()6|sin30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA当sin()1θα+=时,||PA . ……10分(24)【2014年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)若0a >,0b >且 11a b+=.(1)求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.解:(111a b +,得2ab ≥,且当a b ==时等号成立.故33a b +≥,且当a b ==时等号成立,所以33a b +的最小值为 ……5分(2)由(1)知,23a b +≥,由于6,从而不存在,a b ,使得236a b +=. ……10分。

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年高考试题(全国课标Ⅰ卷)数学(理科)试卷及答案

2014年高考试题(全国课标Ⅰ卷)数学(理科)试卷及答案

2014年普通高等学校招生全国统一考试全国课标Ⅰ理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= ( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-= ( ) A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 ( )A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 ( )7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = ( )A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 ( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是 ( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = ( )A .72 B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 ( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 ( )A .62B .42C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。

2014年高考新课标1全国卷理科数学试题及答案

2014年高考新课标1全国卷理科数学试题及答案

2014年普通高等学校招生全国统一考试全国新课标1理科数学 第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1。

已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ).A 。

[]2,1--B 。

[)1,2-C 。

[]1,1-D 。

[)1,22。

32(1)(1)i i +=-( ). A .1i + B .1i - C 。

1i -+ D 。

1i --3。

设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )。

A .()()f x g x 是偶函数B 。

()()f x g x 是奇函数C 。

()()g x f x 是奇函数D 。

()()f x g x 是奇函数4。

已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A 。

3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C 。

58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7。

执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )。

A .203 B . 72 C . 165 D 。

1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A 。

32παβ-=B . 32παβ+=C 。

22παβ-=D 。

22παβ+=9。

不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-。

2014年高考真题——数学理(全国Ⅰ卷)+Word版含答解析

2014年高考真题——数学理(全国Ⅰ卷)+Word版含答解析

2014年高招全国课标1(理科数学word 解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i +=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .B .3CD .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d = A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作M D ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭;且(0)10f =>,()f x 有小于零的零点,不符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B AA.]1,2[--B.]1,1[-C.)2,1[-D.)2,1[(2)=-+23)1()1(i i A.1+i B.-1+i C.1-i D.-1-i (3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B.|)(|)(x g x f 是奇函数C.)(|)(|x g x f 是奇函数D.|)()(|x g x f 是奇函数 (4)已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为A.3B.m 3C.3D.m 3 (5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.81 B.85 C.83 D.87(6)如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为(7)执行右面的程序框图,若输入的k b a ,,分别为1,2,3,则输出的M=A.320 B.516 C.27 D.815 (8)设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 A.32παβ-=B.22παβ-= C.32παβ+=D.22παβ+=(9)不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D ,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是A.23,p pB.14,p pC.12,p pD.13,p p (10)已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QFA.27B.25 C.3 D.2 (11)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.(),2-∞-C.()1,+∞D.(),1-∞- (12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A.B.第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)(14)甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________ (15)已知C B A ,,为圆O 上的三点,若()+=21,则AB 与的夹角为_______.(16)已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则A B C ∆面积的最大值为____________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .12.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=。

如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥. (Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.已知点A ()02-,,椭圆E:22221(0)x y a b a b +=>>F 是椭圆E的右焦点,直线AF 的斜率为3,O 为坐标原点 (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于P,Q 两点。

当OPQ ∆的面积最大时,求l 的直线方程.设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(Ⅰ)求,;a b (Ⅱ)证明:() 1.f x >请考生在(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的首题进行评分.(22)(本小题满分10分)选修4-1:几何证明选讲 如图,四边形ABCD 是的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠; (Ⅱ)设AD 不是的直径,AD 的中点为M ,且MB MC =,证明:ADE ∆为等边三角形.(23)(本小题满分10分)选修4—4,坐标系与参数方程已知曲线221:149x y C +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大值与最小值.(24)(本小题满分10分)选修4-5:不等式选讲若0,0a b >>,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.2014年普通高等学校招生全国统一考试全国课标1理科数学答案第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合{}{}2230,22A x x x B x x =--≥=-≤<,则A B = A .[]2,1-- B .[)1,2- C .[]1,1- D .[)1,2 解析:{}()(){}{}223031013A x x x x x x x x x =--≥=-+≥=≤-≥或,{}22B x x =-≤<又,A B =[]2,1--,故选A2.()()3211+-i i =A .1i +B .1i -C .1i -+D .1i --解析:()()()()()()3222111211211++++--i i i i i i i i i ===---,故选D3.设函数()(),f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()f x g x 是奇函数D .()()f x g x 是奇函数解析:()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,排除A()f x 是奇函数,()f x 是偶函数,()g x 是偶函数,则()()f x g x 是偶函数,排除B()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,C 正确()f x 是奇函数,()g x 是偶函数,()()f x g x 是奇函数,则()()f x g x 是偶函数,排除D ,故选C4.已知F 为双曲线()22:30C x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .B .3C D .3m解析:双曲线的焦点到渐近线的距离为虚半轴长b A 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .78解析:周六没有同学的方法数为1为1,所以周六、周日都有同学参加公益活动的概率为4422728P -==,故选D 6.如图,圆O 的半径为1,A 是圆上的定点,P 点,角x 的始边为射线OA ,终边为射线OP ,过点P OA 的垂线,垂足为M ,将点M 到直线OP ()f x ,则()y f x =在[]0,π的图像大致为解析:由已知1,sin ,cos OP PM x OM x ===,又()1122f x OP OM MP ⋅=,所以()1sin cos sin 22f x x x x ==,故选C 7.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = A .203 B .72 C .165 D .158解析:当2n =时,33,2,22M a b ===;当3n =时,838,,323M a b ===;当4n =时,15815,,838Ma b===;此时运算终止,158M =,故选D 8.设0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭且1sin tan cos βαβ+=,则A .32παβ-= B .32παβ+= C .22παβ-=D .22παβ+=解析: 由1sin tan cos βαβ+=得sin 1sin sin cos cos cos sin cos cos αβαβααβαβ+=∴=+ 即()sin cos αβα-=,所以()sin sin 2παβα⎛⎫-=- ⎪⎝⎭,由已知0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以,02222ππππαβα-<-<<-<,sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以,222ππαβααβ-=--=,故选C9.不等式组1,24x y x y +≥⎧⎨-≤⎩的解集记为D,有下面四个命题()()12:,,22,:,,22,p x y D x y p x y D x y ∀∈+≥-∃∈+≥()()34:,,23,:,,21,p x y D x y p x y D x y ∀∈+≤∃∈+≤-其中的真命题是 A .23,p p B .12,p p C . 14,p p D .13,p p 解析:令()()()()222x y m x y n x y m n x m n y +=++-=++-,所以122m n m n +=⎧⎨-=⎩,解得4313m n ⎧=⎪⎪⎨⎪=-⎪⎩,所以()()4122033x y x y x y +=+--≥,因而可以判断12,p p 为真,故选B10.已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF =A .72B .3C . 52D .2P解析:由已知2,2,P F x x =-=又4FP FQ =,则()442Q x -=-,1Q x ∴=,过Q 作QD 垂直于l ,垂足为D , 所以3QF QD ==,故选B11.已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A .()2,+∞B .()1,+∞C . (),2-∞-D .(),1-∞- 解析:当0a =时, ()231f x x =-+有两个零点,不满足条件当0a ≠时,()22'363f x ax x ax x a ⎛⎫=-=- ⎪⎝⎭,令()2'030f x ax x a ⎛⎫=⇒-= ⎪⎝⎭,解得20x x a==或,当0a <时,()3231f x ax x =-+在()22,0,,0a a ⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭和递增,递减,2241=fa a ⎛⎫-+ ⎪⎝⎭为极小值,()01=f 为极大值,若()f x 存在唯一的零点0x ,且00x >,只需22410,a 2=f a a ⎛⎫-+><- ⎪⎝⎭即为,当0a >时,()3231f x ax x =-+在()22,0,0,a a ⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭和递增,递减,()01=f 为极大值,2241=f a a ⎛⎫-+ ⎪⎝⎭为极小值,不可能有满足条件的极值,故选C12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A. B .6 C. D .4解析:几何体为如图所示的一个三棱锥P ABC -,底面等腰三角形,,A 4,AB BC C == 顶点B 到AC 的距离为4,面PAC ABC ⊥面,且三角形PAC 为以A 为直角的等腰直角三角形,所以棱PB最长,长度为6,故选B第Ⅱ卷本卷包括必考题和选考题两个部分。

相关文档
最新文档