常用电平接口
电平标准
一些电平标准下面总结一下各电平标准,和新手以及有需要的人共享一下^_^.现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
所以后来就把一部分“砍”掉了。
也就是后面的LVTTL。
LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。
3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。
2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。
更低的LVTTL不常用就先不讲了。
多用在处理器等高速芯片,使用时查看芯片手册就OK了。
TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; TTL电平输入脚悬空时是内部认为是高电平。
要下拉的话应用1k以下电阻下拉。
TTL输出不能驱动CMOS输入。
CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。
Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。
相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。
对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。
常用电平标准的讨论(TTL,ECL,PECL,LVDS,CMOS,CML,GTL,HSTL,SSTL)
常用电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML, GTL, HSTL, SSTL)部分资料上说它们的逻辑标准,门限都是一样的,就是供电大小不同,这两种电平的区别就是这些么?是否LVTTL电平无法直接驱动TTL电路呢?另外,"因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
" 中,关于改善噪声容限和系统功耗部分大家还有更深入的解释么?简单列个表把Voh Vol Vih Vil VccTTL 2.4 0.4 2.0 0.8 5CMOS 4.44 0.5 3.5 1.5 5LVTTL 2.4 0.4 2.0 0.8 3.3LVCMOS 2.4 0.5 2.0 0.8 3.3SSTL_2 1.82 0.68 1.43 1.07 2.5根据上表所示,LVTTL可以驱动TTL,至于噪声,功耗问题小弟就不理解了,希望高手赐教!TTL 和LVTTL 的转换电平是相同的, TTL 产生于1970 年代初, 当时逻辑电路的电源电压标准只有5V 一种, TTL 的高电平干扰容限比低电平干扰容限大. CMOS 在晚十几年后才形成规模生产, 转换电平是电源电压的一半. 1990 年代才产生了3.3V/2.5V 等不同的电源标准, 于是重新设计了一部分TTL 电路成为LVTTL.LVTTLTTL 和LVTTL 的转换电平是相同的, TTL 产生于1970 年代初, 当时逻辑电路的电源电压标准只有5V 一种, TTL 的高电平干扰容限比低电平干扰容限大. CMOS 在晚十几年后才形成规模生产, 转换电平是电源电压的一半. 1990 年代才产生了3.3V/2.5V 等不同的电源标准, 于是重新设计了一部分TTL 电路成为LVTTL.ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL电路不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL电路的最大优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。
各种接口电平标准
1.什么是ECL电平?(1)ECL电平特点及其应用ECL(Emitter-Coupled Logic)即射极耦合逻辑,是带有射随输出结构的典型输入输出接口电路,如图2所示。
图2 ECL驱动器与接收器连接示意ECL电路的最大特点是其基本门电路工作在非饱和状态,因此ECL又称为非饱和性逻辑。
也正因为如此,ECL电路的最大优点是具有相当高的速度。
这种电路的平均延迟时间可达几个ns数量级甚至更少。
传统的ECL以VCC为零电压,VEE为-5.2 V电源,VOH=VCC-0.9 V=-0.9 V,VOL=VCC-1.7 V=-1.7 V,所以ECL电路的逻辑摆幅较小(仅约0.8 V)。
当电路从一种状态过渡到另一种状态时,对寄生电容的充放电时间将减少,这也是ECL电路具有高开关速度的重要原因。
另外,ECL电路是由一个差分对管和一对射随器组成的,所以输入阻抗大,输出阻抗小,驱动能力强,信号检测能力高,差分输出,抗共模干扰能力强;但是由于单元门的开关管对是轮流导通的,对整个电路来讲没有“截止”状态,所以电路的功耗较大。
如果省掉ECL电路中的负电源,采用正电源的系统(+5 V),可将VCC接到正电源而VEE 接到零点。
这样的电平通常被称为PECL(Positive Emitter Coupled Logic)。
如果采用+3.3 V 供电,则称为LVPECL。
当然,此时高低电平的定义也是不同的。
它的电路如图3、4所示。
其中,输出射随器工作在正电源范围内,其电流始终存在。
这样有利于提高开关速度,而且标准的输出负载是接50Ω至VCC-2 V的电平上。
在使用PECL电路时要注意加电源去耦电路,以免受噪声的干扰。
输出采用交流耦合还是直流耦合,对负载网络的形式将会提出不同的需求。
直流耦合的接口电路有两种工作模式:其一,对应于近距离传送的情况,采用发送端加到地偏置电阻,接收端加端接电阻模式;其二,对应于较远距离传送的情况,采用接收端通过电阻对提供截止电平VTT和50Ω的匹配负载的模式。
422与485电平
422与485电平在现代工业控制领域中,422和485电平是常见的串行通信接口标准。
它们在不同的应用场景下具有各自的特点和优势。
本文将为您介绍422和485电平的定义、特点以及它们在工业控制中的应用。
一、422电平的定义和特点422电平是一种常见的低压差分电平标准,具有以下定义和特点:1. 定义:422电平是指采用两根传输线(即A线和B线)进行数据传输的一种串行通信接口标准。
其中,A线为高电平信号,B线为低电平信号。
数据的传输是通过两个线之间的电压差来实现的。
2. 特点:(1)传输速率较高:422电平可以支持较高的数据传输速率,通常可以达到最高10Mbps。
(2)距离短:受到电压差分传输方式的影响,422电平在传输距离上相对较短,通常在几十米范围内。
(3)抗干扰性强:422电平采用差分传输方式,可以有效地抵御外界干扰信号。
(4)通信线数少:422电平仅使用两根传输线,便于布线和连接。
二、485电平的定义和特点485电平是一种常见的差分电平标准,与422电平相似,但具有一些不同的定义和特点:1. 定义:485电平是指采用两根传输线(即A线和B线)进行数据传输的一种差分串行通信接口标准。
其中,A线为高电平信号,B线为低电平信号。
数据的传输同样是通过两个线之间的电压差来实现的。
2. 特点:(1)传输速率较高:485电平支持较高的数据传输速率,通常可以达到最高10Mbps。
(2)传输距离较远:由于485采用差分传输方式,在传输距离上相对于422电平更远,通常可以达到数百米甚至千米。
(3)抗干扰性强:485电平同样采用差分传输方式,可以有效地抵御外界干扰信号。
(4)可多点通信:485电平支持多个设备在同一总线上通信,简化了系统结构并提高了系统的扩展性和灵活性。
三、422和485电平在工业控制中的应用422和485电平在工业控制领域中得到广泛应用,主要用于各类传感器、仪器仪表、PLC控制器等设备之间的数据通信。
usb接口数据线上的电平标准
USB接口数据线上的电平标准一、 USB接口的电平标准USB(Universal Serial Bus)是一种用于连接计算机和外部设备的串行总线标准。
USB接口数据线上的电平标准对于USB设备的正常连接和通讯起着至关重要的作用。
USB接口的电平标准分为USB 2.0和USB 3.0两种版本,下面将分别介绍它们的电平标准。
1. USB2.0电平标准USB 2.0是一种常见的USB接口标准,其电平标准主要包括数据线电压、数据传输速度、数据线电流和数据线的阻抗。
(1)数据线电压:USB 2.0规定了数据线的高电平和低电平的电压范围,分别为0.0V-0.3V和2.8V-3.6V。
数据线的电压范围对于设备的正常通讯起着至关重要的作用,如果电压超出了规定范围,可能会导致设备无法正常工作。
(2)数据传输速度:USB 2.0标准规定了数据传输速度为最高480Mbps,这一速度已经能够满足大多数外部设备和计算机的数据传输需求。
(3)数据线电流:USB 2.0规定了数据线的电流最大为500mA,这一电流可以满足大部分外部设备的供电需求。
(4)数据线阻抗:USB 2.0标准规定了数据线的阻抗为90ohms,这一阻抗值对于保证数据传输信号质量起着至关重要的作用。
2. USB3.0电平标准USB 3.0是USB接口的下一代标准,其电平标准相比USB 2.0有了很大的提升。
USB 3.0的电平标准主要包括数据线电压、数据传输速度、数据线电流和数据线的阻抗。
(1)数据线电压:USB 3.0规定了数据线的高电平和低电平的电压范围,分别为0.0V-0.3V和2.8V-3.6V。
与USB 2.0相比,USB 3.0的电压范围并没有变化。
(2)数据传输速度:USB 3.0标准规定了数据传输速度为最高5Gbps,这一速度是USB 2.0的10倍,能够更好地满足高速数据传输的需求。
(3)数据线电流:USB 3.0规定了数据线的电流最大为900mA,相比USB 2.0有了一定的提升,可以更好地满足外部设备的供电需求。
常用差分接口电平转换
常⽤差分接⼝电平转换CML、PECL及LVDS间的互相连接简介:随着⾼速数据传输业务需求的增加,如何⾼质量的解决⾼速IC芯⽚间的互连变得越来越重要。
低功耗及优异的噪声性能是要解决的主要问题。
芯⽚间互连通常有三种接⼝:PECL (Positive Emitter-Coupled Logic)、LVDS(Low-Voltage Differential Signals)、CML (Current Mode Logic)。
在设计⾼速数字系统时,⼈们常会遇到不同接⼝标准IC芯⽚间的连接,为解决这⼀问题,我们⾸先需要了解每⼀种接⼝标准的输⼊输出电路结构,由此可以知道如何进⾏直流偏置,接什么样的负载。
该⽂章正是针对该问题展开讨论,作为例⼦,⽂中列举了⼀些MAXIM公司的产品。
1.PECL接⼝PEL是有ECL标准发展⽽来,在PECL电路中省去了负电源,较ECL电路更⽅便使⽤。
PECL 信号的摆幅相对ECL要⼩,这使得该逻辑更适合于⾼速数据的串性或并⾏连接。
PECL标准最初有MOTOROLA公司提出,经过很长⼀段时间才在电⼦⼯业界推⼴开。
1.1. PECL接⼝输出结构PECL电路的输出结构如图1所⽰,包含⼀个差分对和⼀对射随器。
输出射随器⼯作在正电源范围内,其电流始终存在,这样有利于提⾼开关速度。
标准的输出负载是接50Ω⾄VCC-2V 的电平上,如图1中所⽰,在这种负载条件下,OUT+与OUT-的静态电平典型值为VCC-1.3V,OUT+与OUT-输出电流为14mA。
PECL结构的输出阻抗很低,典型值为4~ 5 Ω,这表明它有很强的驱动能⼒,但当负载与PECL的输出端之间有⼀段传输线时,低的阻抗造成的失配将导致信号时域波形的振铃现象。
图1.PECL输出结构1.2. PECL接⼝输⼊结构PECL 输⼊结构如图2所⽰,它是⼀个具有⾼输⼊阻抗的差分对。
该差分对共模输⼊电压需偏置到VCC-1.3V ,这样允许的输⼊信号电平动态最⼤。
rs232和rs485电平标准
rs232和rs485电平标准一、引言RS232和RS485是两种常见的串行通信接口电平标准,广泛应用于计算机与外部设备的通信连接。
它们各自具有不同的电气特性和协议规范,适用于不同的应用场景。
本文将分别介绍RS232和RS485电平标准的原理、特点和应用。
二、RS232电平标准1.概述RS232是一种用于计算机与外部设备之间串行通信的接口标准,采用负逻辑电压传输数据。
它通常用于连接鼠标、键盘、打印机等设备。
2.电气特性RS232采用单端信号传输,即信号通过一根信号线传输。
其电气特性主要包括:*电压范围:通常使用-5V至-15V的电压范围传输数据。
*信号线:采用屏蔽双绞线,共有25根线,其中2根为控制线,12根为数据传输线。
*信号电平:采用负逻辑电压,即低电平代表0,高电平代表1。
常见的电压范围为-5V至-15V之间。
*共地问题:需要保证所有设备的地线连接一致,否则信号干扰严重。
3.协议规范RS232协议规范主要包括数据格式、传输速率、数据位、停止位和校验位等。
其中,数据位一般为7位,传输速率一般为9600bps到19200bps。
1.概述RS485是一种用于计算机与多个设备之间串行通信的接口标准,采用差分信号传输数据,具有更高的抗干扰能力和传输距离。
它通常用于连接网络设备、传感器等设备。
2.电气特性RS485采用差分信号传输,即信号通过两根信号线传输,通过比较两根线之间的电压差来传输数据。
其电气特性主要包括:*发送端:发送差分信号时,会控制两根信号线的电压差,使其在-2V至+2V之间变化。
*接收端:通过检测电压差来判断发送端的信号,具有更高的抗干扰能力和传输距离。
*共地问题:需要保证所有设备的地线连接一致,否则信号干扰严重。
3.协议规范RS485协议规范主要包括数据格式、传输速率、偏移量、半双工/全双工等。
其中,数据格式通常为1个起始位、8个数据位、1个可选的奇偶校验位和可选的停止位。
传输速率一般为10kbps到10Mbps之间。
电路设计中必须掌握的7个常用接口知识
电路设计中必须掌握的7个常用接口知识我们知道,在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。
下面就电路设计中7个常用的接口类型的关键点进行说明一下:(1)TTL电平接口:这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。
它的驱动能力一般最大为几十个毫安。
正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。
(2)CMOS电平接口:我们对它也不陌生,也是经常和它打交道了,一些关于CMOS的半导体特性在这里就不必啰嗦了。
许多人都知道的是,正常情况下CMOS的功耗和抗干扰能力远优于TTL。
但是!鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。
由于CMOS的工作电压目前已经可以很小了,有的FPGA 内核工作电压甚至接近1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。
众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器了。
由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。
此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。
(3)ECL电平接口:这可是计算机系统内部的老朋友啊!因为它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。
常用电平标准(TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、。。。
常⽤电平标准(TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、。
现在常⽤的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有⼀些速度⽐较⾼的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下⾯简单介绍⼀下各⾃的供电电源、电平标准以及使⽤注意事项。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很⼤空闲,对改善噪声容限并没什么好处,⼜会⽩⽩增⼤系统功耗,还会影响速度。
所以后来就把⼀部分“砍”掉了。
也就是后⾯的LVTTL。
LVTTL⼜分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。
3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。
2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。
更低的LVTTL不常⽤就先不讲了。
多⽤在处理器等⾼速芯⽚,使⽤时查看芯⽚⼿册就OK了。
TTL使⽤注意: TTL电平⼀般过冲都会⽐较严重,可能在始端串22欧或33欧电阻; TTL电平输⼊脚悬空时是内部认为是⾼电平。
要下拉的话应⽤1k以下电阻下拉。
TTL输出不能驱动CMOS输⼊。
CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。
Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。
相对TTL有了更⼤的噪声容限,输⼊阻抗远⼤于TTL输⼊阻抗。
电平标准(总结)
数字信号的标准现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。
一、TTL电平TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Logic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。
1.标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H>2V,输入L>0.8V;输出L=3.4V,输出L=0.2)。
2.S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.5V。
3.LS-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大Ⅰ类0.7V,Ⅱ、Ⅲ类0.8V,输出低电平最大Ⅰ类0.4V,Ⅱ、Ⅲ类0.5V,典型值0.25V。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
常用接口电平
电平标准一览TTL——Transistor-Transistor LogicHTTL——High-speed TTLLTTL——Low-power TTLSTTL——Schottky TTLLSTTL——Low-power Schottky TTLASTTL——Advanced Schottky TTLALSTTL——Advanced Low-power Schottky TTLFAST(F)——Fairchild Advanced schottky TTLCMOS——Complementary metal-oxide-semiconductorHC/HCT——High-speed CMOS Logic(HCT与TTL电平兼容)AC/ACT——Advanced CMOS Logic(ACT与TTL电平兼容)(亦称ACL)AHC/AHCT——Advanced High-speed CMOS Logic(AHCT与TTL电平兼容) FCT——FACT扩展系列,与TTL电平兼容FACT——Fairchild Advanced CMOS Technology1,TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
常用电平及接口电平
目录一.常用逻辑电平标准 (2)1.1 COMS电平 (3)1.2 LVCOMS电平 (3)2.1 TTL电平 (4)2.2 LVTTL电平 (4)3.1 LVDS电平 (5)4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平 (5)5.1 CML电平 (6)6.1 VML电平 (6)7.1 HSTL电平 (6)7.2 SSTL电平 (7)二.常用接口电平标准 (7)1. RS232、RS485、RS422 (7)2 DDR1 ,DDR2,DDR3 (8)3 PCIE2. 0、PCIE3.0 (8)4 USB2.0, USB3.0 (10)5 SATA2.0, SATA3.0 (10)6 GTX高速接口 (11)一.常用逻辑电平标准附图1:附图2:附图3:附图4:1.1 COMS电平电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V输入高压(VIH) 3.5 V输入低压(VIL) 1.5 V输出高压(VOH) 4.44 V输出低压(VOL)0.5 V1.2 LVCOMS电平2.1 TTL电平2.2 LVTTL电平3.1 LVDS电平最高速率:3.125Gbps耦合方式:4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平最高速率:LVPECL为10+Gbps耦合方式:5.1 CML电平最高速率:10+Gbps耦合方式:VCC相同时CML与CML之间采用直流耦合,VCC不同时CML与CML 之间采用交流耦合6.1 VML电平电平参数条件最大值典型值最小值单位备注电源电压(VCC)V输入高压(VIH)V输入低压(VIL) V输出高压(VOH) 1.65 V输出低压(VOL) 0.85 V共模电压(VT) 1.25 V最高速率耦合方式VML电平与LVDS电平兼容,TLK2711输出是VML电平。
7.1 HSTL电平HSTL 最主要的应用是可以用于高速存储器读可。
常用电平介绍及相互转换
LDVS 输出结构:电路输出阻抗为 1 Nhomakorabea0ohm
LDVS 输入结构
输入差分阻抗为 100Ω, 为适应共模电压宽范围内的变化, 输入级还包括一个自动电平调整电路, 该电路将共模电压调整为一固定值,该电路后面是一个 SCHMITT 触发器。SCHMITT 触发器为防止不 稳定,设计有一定的回滞特性,SCHIMTT 后级是差分放大器
TTL:Transistor-Transistor Logic 三极管结构
因为 2.4V 与 5V 之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还 会影响速度。所以后来就把一部分“砍”掉了。也就是后面的 LVTTL。 LVTTL 又分 3.3V、2.5V 以及更低电压的 LVTTL(Low Voltage TTL)。 TTL 使用注意:TTL 电平一般过冲都会比较严重,可能在始端串 22 欧或 33 欧电阻; TTL 电平输 入脚悬空时是内部认为是高电平。要下拉的话应用 1k 以下电阻下拉。TTL 输出不能驱动 CMOS 输入。 另外,I/O 為 OC 門時,由於只能吸收大電流而不能向外部提供電流,需要外部上拉或者外部電 源。
ECL 电路的最大特点是其基本门电路工作在非饱和状态,因此 ECL 又称为非饱和性逻辑。也正因为如 此,ECL 电路的最大优点是具有相当高的速度。这种电路的平均延迟时间可达几个 ns 数量级甚至更 少。传统的 ECL 以 VCC 为零电压,VEE 为-5.2 V 电源,VOH=VCC-0.9 V=-0.9 V,VOL=VCC-1.7 V=-1.7 V,所以 ECL 电路的逻辑摆幅较小(仅约 0.8 V) 。当电路从一种状态过渡到另一种状态时,对寄生电 容的充放电时间将减少,这也是 ECL 电路具有高开关速度的重要原因。另外,ECL 电路是由一个差分 对管和一对射随器组成的, 所以输入阻抗大, 输出阻抗小, 驱动能力强, 信号检测能力高, 差分输出,
电平信号及接口电路
电平信号及接口电路———————————————————————————————————摘要:介绍了目前数字信号设计中,IC 芯片常用电平的原理、应用及各种电平信号相互转换的实现方法,PCB 布线技巧等。
关键词:TTL 、CMOS 、ECL 、PECL 、LVPECL 、LVDS 、CML概述随着数据传输业务需求的增加,如何高质量的解决高速IC 芯片间的互连变得越来越重要。
从目前发展来看,芯片主要有以下几种接口电平:TTL (LVTTL )、CMOS 、ECL 、PECL 、LVPECL 、LVDS 等,其中PECL 、LVPECL 、LVDS 主要应用在高速芯片的接口,不同电平间是不能直接互连的,需要相应的电平转换电路和转换芯片,了解各种电平的结构及性能参数对分析电路是十分必要有益的,本文正是从各种电平信号的性能参数开始,结合参考资料对电平信号的互连进行介绍。
图1 常用电平信号图1展示了各种电平信号的差异:方波的振幅表示逻辑高低电平值,括号中的电压值表示电源电压值。
下面先介绍一下电路的相关基本概念: (1)输出高电平(VOH ):逻辑电平为1的输出电压,相应的输出电流用I OH 表示。
(2)输出低电平(VOL ):逻辑电平为0的输出电压,相应的输出电流用I OL 表示。
(3)输入高电平(VIH ):逻辑电平为1的输入电压,相应的输入电流用I IH 表示。
(4)输入低电平(VIL ): 逻辑电平为0的输入电压,相应的输入电流用I IL 表示。
(5)关门电平(V OFF ):保证输出为标准高电平V SH (出厂时厂家给出)的条件下所允许的最大输入低电平值。
(6)开门电平(V ON ):保证输出为标准低电平V SL (出厂时厂家给出)的条件下所允许的最小输入高电平值。
(7)低电平噪声容限(V NL ):是保证输出高电平的前提下,允许叠加在输入低电平上的最大噪声电压,其数值为关门电平V OFF 与输入最小低电平的差值。
常用逻辑接口电平标准简介及应用
1r _ L和 CMOS
1r 即 T a sso — rn it rL gc _L r n it r T a ss o o i,
L C S驱动和 接收器通常是简 单的对 V MO
称 上 下拉 结 构 , 要 满 足 V 和 V 的高 低 只 i o 电 平标 准 和 驱 动 电流 范 围 , 者 就 可 以相 二
仅约 O8V) 当电路从 . 。 摆 幅 提 供 更 大 的 电压 增 益 和 带 宽 , 时还 的逻辑摆幅较小 ( 同 可 以去 除共模 和偶次谐波 的干扰 , 而提 从
一
种状 态过渡到另一种状态时 , 对寄生 电
这也是 E L电路 C 供更高的数据传输 率。其缺点是差分信号 容 的充放 电时间将减 少,
比较高{%精度) 1 。
传 统 的 E L以 V c为零 电压 , E为 C c VE
一
差分信 号接 口标 准
52 V 电 源 , o= c 一 . V 一 . V, . V . V c 0 9 = 09
OL V c 17 = 17 所 C 差 分信号 较单 端信 号能 够 以低 电压 V = c 一 . V 一 . V, 以 E L 电路
与 L厂T \r L和 L C S 的 不 同 在 于 S T V MO SL
的接口标准共存是必然的。本文将介绍 目
前 常 用 的 单 端 和 差 分 接 口标 ; 其 相 互 隹及 间的 转化 和 应用 。
l 厂_L和 L 、rr VCMOS
随 着 技 术 和 工 艺 的 发 展 以及 设 备 低 是传输线终端匹配的,因此 S T S L具有输 功 耗 等 要 求 ,供 电 电压 越 来越 低 ,\_L L几 r
快点PCB∣电路中的这7个常用接口你掌握了吗?
快点PCB∣电路中的这7个常用接口你掌握了吗?快点∣中的这7个常用接口你把握了吗?我们知道,在电路系统的各个子模块举行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不全都(如检测光信号)等,这时我们应当考虑通过相应的接口方式来很好地处理这个问题。
下面就电路设计中7个常用的接口类型的关键点举行解释一下:(1)TTL电平接口:这个接口类型基本是老生常谈的吧,从上高校学习、数字电路开头,对于普通的电路设计,TTL电平接口基本就脱不了“干系”!它的速度普通限制在30MHz以内,这是因为BJT的输入端存在几个pF的输入的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“走失”。
它的驱动能力普通最大为几十个毫安。
正常工作的信号普通较高,要是把它和信号电压较低的ECL电路临近时会产生比较显然的串扰问题。
(2)电平接口:我们对它也不生疏,也是常常和它打交道了,一些关于CMOS的特性在这里就不必啰嗦了。
许多人都知道的是,正常状况下CMOS的功耗和抗干扰能力远优于TTL。
但是!鲜为人知的是,在高转换频率时,CMOS 系列事实上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。
因为CMOS的工作电压目前已经可以很小了,有的内核工作电压甚至临近1.5V,这样就使得电平之间的噪声容限比TTL小了无数,因此越发加重了因为电压波动而引发的信号推断错误。
尽人皆知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要用法大的电解了。
因为CMOS电路通常驱动能力较弱,所以必需先举行TTL转换后再驱动ECL电路。
此外,设计CMOS接口电路时,要注重避开容性负载过重,否则的话会使得升高时光变慢,而且驱动器件的功耗也将增强(由于容性负载并不耗费功率)。
第1页共3页。
常用电平及接口电平
目录一.常用逻辑电平标准 (2)1.1 COMS电平 (3)1.2 LVCOMS电平 (3)2.1 TTL电平 (3)2.2 LVTTL电平 (3)3.1 LVDS电平 (3)4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平 (3)5.1 CML电平 (3)6.1 VML电平 (3)7.1 HSTL电平 (3)7.2 SSTL电平 (3)二.常用接口电平标准 (3)1. RS232、RS485、RS422 (3)2 DDR1 ,DDR2,DDR3 (3)3 PCIE2. 0、PCIE3.0 (3)4 USB2.0, USB3.0 (3)5 SATA2.0, SATA3.0 (3)6 GTX高速接口 (3)一.常用逻辑电平标准附图1:附图2:附图3:附图4:1.1 COMS电平电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V输入高压(VIH) 3.5 V输入低压(VIL) 1.5 V输出高压(VOH) 4.44 V输出低压(VOL)0.5 V共模电压(VT) 2.5 V最高速率传输延迟时间(25-50ns)耦合方式1.2 LVCOMS电平LVCOMS电平参数条件最大值典型值最小值单位备注电源电压(VCC) 3.6 3.3 2.7 V输入高压(VIH)0.7VCC V输入低压(VIL) 0.2VCC V输出高压(VOH) VCC-0.1 V输出低压(VOL)0.1 V共模电压(VT)0.5VCC V最高速率耦合方式2.2 LVTTL电平最高速率:3.125Gbps耦合方式:4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平最高速率:L VPECL为10+Gbps耦合方式:最高速率:10+Gbps耦合方式:VCC相同时CML与CML之间采用直流耦合,VCC不同时CML与CML 之间采用交流耦合6.1 VML电平电平参数条件最大值典型值最小值单位备注电源电压(VCC)V输入高压(VIH)V输入低压(VIL) V输出高压(VOH) 1.65 V输出低压(VOL)0.85 V共模电压(VT) 1.25 V最高速率耦合方式7.1 HSTL电平HSTL 最主要的应用是可以用于高速存储器读可。
PECL、LVDS和CML电平
PECL、LVDS和CML电平芯片间互连通常有三种接口:PECL(Positive Emitter-Coupled Logic)、LVDS(Low-Voltage Differential Signals)、CML(Current Mode Logic)。
各接口电平规范ECL、PECL、LVPECL使用注意:不同电平不能直接驱动。
中间可用交流耦合、电阻网络或专用芯片进行转换。
以上三种均为射随输出结构,必须有电阻拉到一个直流偏置电压。
(如多用于时钟的LVPECL:直流匹配时用130欧上拉,同时用82欧下拉;交流匹配时用82欧上拉,同时用130欧下拉。
但两种方式工作后直流电平都在1.95V左右。
)1.1. PECL接口输出结构PECL 电路的输出结构如图所示,包含一个差分对和一对射随器。
输出射随器工作在正电源范围内,其电流始终存在,这样有利于提高开关速度。
标准的输出负载是接50Ω至VCC-2V的电平上,如图中所示,在这种负载条件下,OUT+与OUT-的静态电平典型值为VCC-1.3V,OUT+与OUT-输出电流为14mA。
PECL 结构的输出阻抗很低,典型值为4~ 5 Ω,这表明它有很强的驱动能力,但当负载与PECL 的输出端之间有一段传输线时,低的阻抗造成的失配将导致信号时域波形的振铃现象。
PECL输出结构1.2. PECL接口输入结构PECL 输入结构如图2所示,它是一个具有高输入阻抗的差分对。
该差分对共模输入电压需偏置到VCC-1.3V,这样允许的输入信号电平动态最大。
MAXIM 公司的PECL 接口有两种形式的输入结构,一种是在芯片上已加有偏置电路,如MAX3867、MAX3675,另一种则需要外加直流偏置。
PECL输入电路结构2.1. CML接口输出结构CML 接口的输出电路形式是一个差分对,该差分对的集电极电阻为50Ω,如图中所示,输出信号的高低电平切换是靠共发射极差分对的开关控制的,差分对的发射极到地的恒流源典型值为16mA,假定CML 输出负载为一50Ω上拉电阻,则单端CML 输出信号的摆幅为Vcc~Vcc-0.4V。
usb接口数据线上的电平标准
usb接口数据线上的电平标准
USB接口数据线上的电平标准是按照USB规范进行定义的。
根据USB 2.0规范,USB数据线上的电平标准为0V表示低电平,5V表示高电平。
具体来说,在数据传输时,低速设备的
数据线电平范围为0V至0.3V表示低电平,2.8V至5V表示高电平;全速设备和高速设备的数据线电平范围为0V至0.8V
表示低电平,2V至3.6V表示高电平。
而根据USB 3.0规范,USB 3.0数据线上的电平标准稍有不同。
USB 3.0规范中定义了逻辑1和逻辑0的电平范围,逻辑1的
电压范围为2.8V至3.6V,逻辑0的电压范围为0V至0.3V。
这些电平标准的制定是为了确保USB数据线的正常传输和可
靠性,以适应不同速度和类型的USB设备的通信需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们知道,在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。
下面就电路设计中7个常用的接口类型的关键点进行说明一下:
(1)TTL电平接口:这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。
它的驱动能力一般最大为几十个毫安。
正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。
(2)CMOS电平接口:我们对它也不陌生,也是经常和它打交道了,一些关于CMOS 的半导体特性在这里就不必啰嗦了。
许多人都知道的是,正常情况下CMOS的功耗和抗干扰能力远优于TTL。
但是!鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。
由于CMOS的工作电压目前已经可以很小了,有的FPGA内核工作电压甚至接近1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。
众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器了。
由于CMOS 电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。
此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。
(3)ECL电平接口:这可是计算机系统内部的老朋友啊!因为它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。
But,这是要付出代价的!它的致命伤:功耗较大!它引发的EMI问题也就值得考虑了,抗干扰能力也就好不到哪去了,要是谁能够折中好这两点因素的话,那么他(她)就该发大财了。
还有要注意的是,一般ECL集成电路是需要负电源供电的,也就是说它的输出电压为负值,这时就需要专门的电平移动电路了。
(4)RS-232电平接口:玩电子技术的基本没有谁不知道它的了(除非他或她只是电子技术专业的“门外汉”)。
它是低速串行通信接口标准,要注意的是,它的电平标准有点“反常”:高电平为-12V,而低电平为+12V。
So,当我们试图通过计算机与外设进行通信时,一个电平转换芯片MAX232自然是少不了的了。
但是我们得清醒地意识到它的一些缺点,例如数据传输速度还是比较慢、传输距离也较短等。
(5)差分平衡电平接口:它是用一对接线端A和B的相对输出电压(uA-uB)来表示信号的,一般情况下,这个差分信号会在信号传输时经过一个复杂的噪声环境,导致两根线上都产生基本上相同数量的噪声,而在接收端将会把噪声的能量
给抵消掉,因此它能够实现较远距离、较高速率的传输。
工业上常用的RS-485接口采用的就是差分传输方式,它具有很好的抗共模干扰能力。
(6)光隔离接口:光电耦合是以光信号为媒介来实现电信号的耦合和传递的,它的“好处”就是能够实现电气隔离,因此它有出色的抗干扰能力。
在电路工作频率很高的条件下,基本只有高速的光电隔离接口电路才能满足数据传输的需要。
有时为了实现高电压和大电流的控制,我们必须设计和使用光隔离接口电路来连接如上所述的这些低电平、小电流的TTL或CMOS电路,因为光隔离接口的输入回路和输出回路之间可以承受几千伏特的高压,足以满足一般的应用了。
此外,光隔离接口的输入部分和输出部分必须分别采用独立的电源,否则的话还是有电气联系,也就不叫隔离了。
(7)线圈耦合接口:它的电气隔离特性好,但是允许的信号带宽有限。
例如变压器耦合,它的功率传输效率是非常高的,输出功率基本接近其输入功率,因此,对于一个升压变压器来说,它可以有较高的输出电压,但是却只能给出较低的电流。
此外,变压器的高频和低频特性并不让人乐观,但是它的最大特点就是可以实现阻抗变换,当匹配得当时,负载可以获得足够大的功率,因此,变压器耦合接口在功率放大电路设计中很“吃香”。