一元一次不等式与一次函数(1) 教材分析

合集下载

一次函数与一元一次方程的关系--教学设计

一次函数与一元一次方程的关系--教学设计

《一元一次不等式与一次函数(1)》教案一、教学内容分析本节内容是在学生已有对一元一次方程、一元一次不等式和二元一次方程组等的认识之后,从变化和对应关系的角度,对一元一次不等式的运算进行更深入的讨论,是站在更高起点上的动态分析。

通过讨论一次函数与方程(组)及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用,构建和发展相互联系的知识体系。

二、教学目的1、知识与技能目标:(1)通过观察函数图象、求方程的解和不等式的解集,体会一元一次方程、一元一次不等式与一次函数的联系;(2)会用图象法解一元一次不等式。

2、数学思考目标:通过对一次函数与一元一次不等式关系的探究及相关实际问题的解决,体会数形结合的思想。

3、问题解决目标:能利用一次函数与一元一次不等式的内在关系,解决实际问题。

4、情感态度目标:培养学生的探究精神,体会事物之间的相互联系,进一步感受数学的价值。

三、教学重点重点:通过观察函数图象解一元一次不等式。

四、教学难点难点:一元一次方程、一元一次不等式与一次函数的内在联系。

五、教学准备学情分析:学生学习了一次函数、一元一次方程和二元一次方程组,已能初步理解函数与方程的联系,同时也具备了一定的数形结合的意识和能力,积累了利用一元一次不等式解决简单实际问题的经验。

教法分析:基于本节课的内容特点和初二年级学生的年龄特征,遵循“让学生主动积极参与学习,发挥其学习的主体性”的教学理念,我决定采用“启发引导、自主学习、合作探究”的教学模式,充分发挥教师的主导作用和学生的主体作用。

六、教学流程框图七、教学过程设计预计时间(分)教学内容教师活动学生活动教学评价5分钟1、创设情境、引入新知深圳市宝安中学在全市率先开展了“学会生存”的必修课,目前“中学生生存教育的理论与实践研究”已成为学校独立承担的全国教育科学“十一五”规划教育部重点资助课题。

在周一的“防止踩踏”疏散课上,初一(4)班的同学在警报响起3秒后疏散距离y(米)与时间x(秒)满足关系式是y=2x-5。

《一次函数与一元一次方程不等式》优秀教案

《一次函数与一元一次方程不等式》优秀教案

1923一次函数与方程、不等式
第1课时一次函数与一元一次方程、不等式
【学习目标】
1理解一次函数与一元一次方程、一元一次不等式之间的关系,会根据一次函数的图象解决一元一次方程和一元一次不等式的求解问题
2学习用函数的观点看待方程及不等式的方法,初步感受用全面的观点处理局部问题的思想
【学习重点】
用一次函数解一元一次方程、一元一次不等式
【学习难点】
理解一次函数与一元一次方程、一元一次不等式之间的关系
情景导入生成问题
旧知回顾:
2,4和点B0,-2,那么这条直线的解析式是B
A=-2+3B=3-2
C=-3+2 D=2-3
的函数同时满足两个条件:①图象过点2,1;②当>0时,随的增大而减小,这个函数的解析式为=-2+5答案不唯一写出一个即可
自学互研生成能力
错误!
【自主探究】
阅读教材,甲、乙两车同时从A城出发驶向B 城,m与行驶时间h之间的函数图象
1求甲车行驶过程中,与之间的函数解析式,并写出自变量的取值范围;
2当它们行驶了7小时,两车相遇,求乙车车速
解:1=错误!错误!错误!错误!2
=+b,当>5时,0,则=+b的图象必经过点B
A0,5 B5,0 C-5,0 D0,-5
=3-1与=-的交点在第四象限,则的取值范围为错误!<<1
课后反思查漏补缺
1收获:________________________________________________________________________
2存在困惑:________________________________________________________________________。

一次函数与一元一次不等式的关系

一次函数与一元一次不等式的关系

一次函数与一元一次不等式的关系一次函数和一元一次不等式是初中数学中比较基础的知识点,两者之间也有着密切的联系。

本文将从定义、性质、图像等方面探讨一次函数和一元一次不等式之间的关系。

一、一次函数的定义一次函数是指形如 $y=kx+b$ 的函数,其中 $k$ 和 $b$ 都是常数,$x$ 和 $y$ 是变量。

其中,$k$ 称为斜率,表示函数图像的倾斜程度;$b$ 称为截距,表示函数图像与 $y$ 轴的交点。

二、一元一次不等式的定义一元一次不等式是指形如 $ax+b>0$ 或 $ax+b<0$ 的不等式,其中 $a$ 和 $b$ 都是实数,$x$ 是变量。

其中,$a$ 表示不等式左侧的系数,$b$ 表示不等式右侧的常数。

三、一次函数的性质1. 斜率为正,则函数是单调递增的;斜率为负,则函数是单调递减的。

2. 截距表示函数与 $y$ 轴的交点,当 $x=0$ 时,$y=b$。

3. 一次函数的图像是一条直线,可以通过两个点来确定。

四、一元一次不等式的性质1. 当 $a>0$ 时,不等式的解集为 $x>-b/a$;当 $a<0$ 时,不等式的解集为 $x<-b/a$。

2. 如果不等式中的 $<$ 变成了 $leq$ 或 $geq$,则解集不变。

3. 如果不等式中的 $>$ 和 $<$ 交换,不等式的解集也随之交换。

五、一次函数和一元一次不等式的关系1. 一次函数的图像可以用来表示一元一次不等式的解集。

例如,不等式 $2x+3>0$ 的解集可以表示成一次函数 $y=2x+3$ 在$y>0$ 区域的图像。

2. 一元一次不等式的解集也可以用来表示一次函数的定义域或值域。

例如,不等式 $3x-1<5$ 的解集为 $x<2$,则一次函数$y=3x-1$ 的定义域为 $(-infty, 2)$。

3. 一次函数的斜率和截距也可以用来确定一元一次不等式的形式。

八年级数学下册第19章一次函数 一次函数与一元一次方程不等式说课稿新版新人教版

八年级数学下册第19章一次函数 一次函数与一元一次方程不等式说课稿新版新人教版

一次函数与一元一次方程、不等式一、教材分析1、地位和作用本大节内容是在学生已有对一元一次方程、一元一次不等式和二元一次方程组等的认识之后,从变化和对应的角度,对一次运算进行更深入的讨论,是站在更高起点上的动态分析。

通过讨论一次函数与方程(组)及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用,构建和发展相互联系的知识体系。

本节课的主要内容是对前两小节内容的复习,但不是简单的回顾复习,而是居高临下的进行动态分析,使新旧知识融会贯通,加大学生对已经学习过的相关内容之间联系的认识,进一步体验函数的重要性,提高灵活分析问题和解决问题的能力。

2、教材的重点与难点:本节的教学重点是巩固一次函数与一元一次方程及一元一次不等式的关系;由于从图象的角度认识方程及不等式涉及到变化、对应以及数形结合的思想,这对学生来说有一定困难,所以本节的教学难点为从函数图象的角度认识一元一次方程及一元一次不等式。

二、目标分析:1、知识技能:充分利用图象巩固一次函数与一元一次方程及一元一次不等式的关系。

2、数学思考:通过对一次函数与一元一次方程及一元一次不等式的关系的探究及相关实际问题的解决,体会数形结合的思想。

3、解决问题:能利用一次函数与一元一次方程及一元一次不等式的关系,解决实际问题。

4、情感态度:(1)、通过对一次函数与一元一次方程及一元一次不等式的关系的探索,培养学生的探究精神,体会事物之间的相互联系;(2)、通过利用一次函数与一元一次方程及一元一次不等式的联系解决实际问题,进一步感受数学的价值。

三、学法分析1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

2、学生在小组合作学习中体验学习的快乐。

合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

四、教法分析本节课以启发激励为主,让学生在习题的逐层升华中乐学、会学、善学。

八年级下册数学教材分析_初二数学下册知识点

八年级下册数学教材分析_初二数学下册知识点

八年级下册数学教材分析_初二数学下册知识点数学教材分析是根据教材分析的一般模式从整体和局部两个层面进行八年级数学教材的分析,为大家整理了八年级下册数学教材分析,欢迎大家阅读!一、本册教材内容简析本学期教学内容总计六章。

第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。

第二章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。

第三章《图形的位移与转动》本章将在小学自学的基础上进一步重新认识平面图形的位移与转动,积极探索位移,转动的性质,重新认识并观赏位移,中心对称在自然界和现实生活中的应用领域。

第四章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。

第五章《分式与分式方程》本章通过分数的有关性质的总结创建了分式的概念、性质和运算法则,并在此基础上自学分式的化简表达式、求解分式方程及列于分式方程求解应用题,能够化解直观的实际应用领域问题。

第六章《平行四边形》本章将研究平行四边形的性质与认定,以及三角形中位线的性质,还将积极探索多边形的内角和,外角和的规律;经历操作方式,实验等几何辨认出之旅,享用证明之美。

二、各章教学目标及重点难点第一章、三角形的证明目标:1、经历积极探索、悖论、证明的过程,进一步体会证明的必要性,发展推理小说能力。

2、进一步了解作为证明基础的几条基本事实的内容,掌握综合法的证明方法;结合具体实例体会反证法的含义。

3、证明等腰三角形、等边三角形、直角三角形、线段的垂直平分线、角平分线的性质及定理和认定定理。

初中数学_《一元一次不等式与一元一次不等式组》单元起始课教学设计学情分析教材分析课后反思

初中数学_《一元一次不等式与一元一次不等式组》单元起始课教学设计学情分析教材分析课后反思

第十一章“一元一次不等式(组)”单元起始课教学设计一、教学理念:1、尊重学生的学习体验;2、注重知识的生成过程;3、突出学生的主体地位;4、让学生学习有价值的数学。

二、教学目标:1、了解不等式的意义和不等式的性质;2、理解不等式的解及解集的概念,会用数轴表示简单不等式的解集;3、经历建构研究不等式内容的框架图,体会“类比”是研究数学的重要方法,提升数学素养.二、重点:一元一次不等式的相关概念和性质的得出难点:不等式性质3三、教学过程(一)、解决问题,激发生成问题 1、幼儿园王老师给小朋友分糖果,如果每人分5块,还剩3块;如果每人分6块,则差5块. 有多少个小朋友?有多少块糖果?借助方程(组)可以解决生活中许多等量关系的问题,我们学过哪些与方程有关的知识点呢?(通过方程这个知识点建构一元一次方程的知识体系)问题2、幼儿园张老师给小朋友分糖果,如果每人分5块,还剩3块;如果每人分6块,则有一个小朋友不足6块. 有多少个小朋友?有多少块糖果?生活中还存在着不等量关系,如何表达呢?【类比等式,建构不等式的概念】1.根据你的理解,什么样的式子叫做不等式?(引导学生说出“用不等号连接表示不相等关系的式子,叫做不等式)2.如何用不等式表示生活中的不等关系?请举例说明。

3.表示不等关系的关键词有哪些?(二)类比联想,促进生成【类比等式,建构不等式的框架】刚才类比等式,我们得出了什么叫不等式,在本章,我们将系统地学习最简单的不等式-----一元一次不等式的相关内容,还有一元一次不等式组的知识。

请大家根据前面学习等式的经验,你认为我们将学习不等式的哪些内容呢?【板书课题:一元一次不等式(组)】可以从学习内容、过程、方法等多个角度谈谈你的看法。

(三)深入探究,自主生成【类比一元一次方程的相关概念,建构一元一次不等式的相关概念】活动1:观察下列不等式:该如何定义?活动2:类比一元一次方程的解的定义,什么是不等式的解呢?请举例说明。

沪科版数学八年级上册第12章一次函数一次函数与一元一次方程、一元一次不等式教学设计

沪科版数学八年级上册第12章一次函数一次函数与一元一次方程、一元一次不等式教学设计
生的合作意识和交流能力。
-设想:组织小组讨论,让学生在讨论中互相启发,共同解决问题,教师适时给予指导和评价。
3.运用信息技术手段,结合传统教学方式,提高课堂效果。
-设想:利用多媒体展示一次函数图像,结合板书解析,让学生在视觉和听觉上更好地理解数学概念。
4.设计分层作业,针对不同层次的学生制定合适的练习题,巩固所学知识。
1.基础知识巩固题:包括一次函数的定义、表达式、图像特点等相关知识点,让学生通过完成这类题目,进一步熟练掌握一次函数的基本概念。
-例题:已知一次函数的表达式为y = 2x + 3,求该函数的斜率和截距。
2.实践应用题:结合生活实例,让学生将实际问题抽象为一元一次方程、不等式,并运用一次函数的知识解决。
在小组讨论过程中,我会巡回指导,关注每个小组的讨论进度,适时给予提示和解答疑问,确保讨论的有效性。
(四)课堂练习
课堂练习是检验学生对知识掌握程度的重要环节。我会设计以下类型的题目:
1.基础题:直接应用一次函数的知识解决简单问题,巩固基本概念。
2.提高题:结合一元一次方程、不等式,让学生解决稍微复杂的问题,提高学生运用知识的能力。
-设想:根据学生的学习情况,设置基础题、提高题和拓展题,使每个学生都能在课后得到有效的巩固和提升。
5.重视课堂小结,引导学生总结所学知识,形成知识网络。
-设想:在课堂尾声,邀请学生分享学习心得,总结一次函数与一元一次方程、一元一次不等式之间的关系,帮助其他同学巩固记忆。
6.注重过程性评价,关注学生在学习过程中的表现,激发学生的学习积极性。
1.让学生用自己的语言概括一次函数的定义和图像特点。
2.回顾如何利用一次函数解决实际问题,总结数学建模的方法。
3.强调一次函数图像与方程、不等式之间的关系,培养学生的数形结合思想。

初中数学_11.5 一元一次不等式与一次函数(1)教学设计学情分析教材分析课后反思

初中数学_11.5 一元一次不等式与一次函数(1)教学设计学情分析教材分析课后反思

11.5《一元一次不等式与一次函数(1)》教学设计教学目标:知识与技能:了解一元一次不等式与一次函数的关系,会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较。

过程与方法:通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.训练学生能利用数学知识去解决实际问题的能力。

情感态度与价值观:体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.教学重点:通过观察函数图象确定不等式的解集。

教学难点:利用一次函数和不等式之间的关系解决实际问题.教学过程:第一环节:情境引入,明确目标(2分钟,学生做好探究新知的准备)上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?出示学习目标,做到有的放矢。

第二环节:知识准备。

1.什么是一次函数?它的图象是什么?2.一次函数与x轴、y轴的交点坐标是什么?3.函数y=2x-5与x轴的交点是,与y轴的交点是;画出它的图象。

第三环节:活动探究、合作学习(23分钟,教师引导学生新旧知识融合,小组探究、全班交流)导探激励问题一1.作出函数y=2x-5的图象,观察图象回答下列问题.(1)x取哪些值时,2x-5=0? (2)x取哪些值时,2x-5>0? (3)x取哪些值时,2x-5<0? (4)x取哪些值时,2x-5>3?(通过作函数图象、观察函数图象,进一步理解函数概念,并从中初步体会一元一次不等式与一次函数的内在联系。

)(1)当y =0时,2x -5=0,∴x =25, ∴当x =25时,2x -5=0. (2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图象上可知,y >0时,图象在x 轴上方,图象上任一点所对应的x 值都满足条件,当y =0时,则有2x -5=0,解得x =25.当x >25时,由y =2x -5可知 y >0.因此当x >25时,2x -5>0; (3)同理可知,当x <25时,有2x -5<0; (4)要使2x -5>3,也就是y =2x -5中的y 大于3,那么过纵坐标为3的点作一条直线平行于x 轴,这条直线与y =2x -5相交于一点B (4,3),则当x >4时,有2x -5>3.2.想一想如果y =-2x -5,那么当x 取何值时,y >0?首先要画出函数y=-2x-5的图象,如图:从图象上可知,图象在x 轴上方时,图象上每一点所对应的y 的值都大于0,而每一个y 的值所对应的x 的值都在A 点的左侧,即为小于-2.5的数,由-2x -5=0,得x =-2.5,所以当x 取小于-2.5的值时,y >0。

一元一次不等式与一次函数讲解

一元一次不等式与一次函数讲解

一元一次不等式与一次函数讲解一元一次不等式与一次函数是数学中非常重要的概念,它们在我们的生活中都有广泛的应用。

本文将从定义、性质、解法等多个方面介绍一元一次不等式与一次函数,帮助读者更加深入地理解这两个概念。

一、一元一次不等式一元一次不等式,简单来说,就是只有一个未知量的一次不等式。

比如:ax + b > c,其中a、b、c是已知实数,x是未知实数。

一元一次不等式常常用于解决一些实际问题,比如数量关系、利润计算等。

一、一元一次不等式的性质1. 对于一元一次不等式ax + b > c,如果a > 0,则当x > (c-b)/a时,不等式成立;如果a < 0,则当x < (c-b)/a时,不等式成立。

2. 对于一元一次不等式ax + b < c,如果a > 0,则当x < (c-b)/a时,不等式成立;如果a < 0,则当x > (c-b)/a时,不等式成立。

上述性质可以帮助我们更好地解决一元一次不等式的问题。

二、一次函数一次函数,是指一个函数的自变量只有一个,且函数的表达式是一个一次多项式。

一次函数通常表示成f(x) = kx + b的形式,其中k 和b为常数。

一次函数在实际问题中经常被用到,比如直线运动、物品价格变化等,因为它的表达式简单,易于计算,而且有明确的几何意义。

二、一次函数的性质1. 一次函数的图像是一条直线。

2. 当k > 0时,函数图像单调递增;当k < 0时,函数图像单调递减。

3. 如果k = 0,则函数是一个常函数,图像为一条水平直线;如果b = 0,则函数是一个零函数,图像过原点。

4. 一次函数的x轴截距为-b/k,y轴截距为b。

上述性质有助于我们更好地理解一次函数的性质,同时也为我们解决一些实际问题提供了帮助。

三、一元一次不等式的解法对于一元一次不等式ax + b > c,我们可以通过以下几个步骤来解决:1. 将不等式移项得到ax > c-b。

一次函数与一元一次方程,不等式

一次函数与一元一次方程,不等式

19.2.3 一次函数与方程、不等式龙湖中学郭燕一、教学目标1.知识与技能:①使学生理解并掌握一次函数与一元一次方程,一元一次不等式的相互联系。

②是学生能初步运用函数的图像来解释一元一次方程、一元一次不等式的解集,并通过函数图像来回答一元一次方程、一元一次不等式的解集。

2.过程与方法:通过对一次函数与一元一次方程,一元一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力。

3.情感态度与价值观:探究活动中,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。

二.教学重难点:1.重点:①理解一次方程,一元一次不等式与一次函数的转化关系及本质联系。

②掌握用图像求解方程不等式的方法。

2.难点:根据一次函数的图像求解方程和不等式三.教学过程:1.探究一次函数与方程的关系问题1(1)解方程2x-4=0(2)当自变量x取何值时,函数y=2x-4的值为0?(3)画出函数y=2x-4的图像,并确定它与x轴的交点坐标。

(4)第(1)(2)问题有何关系?(1)(3)呢?[从上述问题中,你能发现一次函数与一元一次方程的关系吗?]问题(2)(3)可以看作是同一个问题的两种形式,问题(1)(2)是从数的角度看,问题(3)是从形的角度看。

学生按要求探究,并总结结论从数的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的y为0时x 的值。

从形的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的图像与x轴交点的横坐标。

2.新知构建①填写表格,使得以下的一元一次方程问题与一次函数问题是同一问题。

你能从函数的角度解方程2x+1=3吗?学生独立思考后,画出一次函数y=2x+1的图像,从数的角度,y=2x+1的函数值为3时,自变量x 的值是这个方程的解;从图像上可以看出,直线y=2x+1上纵坐标为3的点的横坐标为1,是这个方程的解。

任何以x 为未知数的一元一次方程,都可以化成ax+b=0(a,b 为常数,a ≠0)的形式,因此,方程2x+1=3的解,也可以看成直线y=2x-2与x 轴交点的横坐标。

九年级数学《一次函数与一元一次不等式》说课稿-2019年教学文档

九年级数学《一次函数与一元一次不等式》说课稿-2019年教学文档

九年级数学《一次函数与一元一次不等式》说课稿【小编寄语】查字典数学网小编给大家整理了九年级数学《一次函数与一元一次不等式》说课稿,希望能给大家带来帮助!《一次函数与一元一次不等式》一、说教材1、地位和作用本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。

这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。

其中渗透了数形结合的思想,为后继学习奠定了基础。

2、教学目标知识与技能目标:(1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。

(2)感知不等式、函数、方程的不同作用与内在联系。

过程与方法目标:让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来, 通过自主交流合作解决问题,充分发挥学生的主体作用。

情感与态度目标:让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。

3、教学重点、难点教学重点:理解一次函数与一元一次不等式的关系;教学难点:利用函数图象确定一元一次不等式的解集。

二、说教法1、学情分析我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。

他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。

2、教学方法鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。

在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。

三、说学法1.学生自主探索交流,思考问题,获取知识,真正成为学习的主体。

2.学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能。

1.5一元一次不等式与一次函数(1)--孙晋斌

1.5一元一次不等式与一次函数(1)--孙晋斌

第一章一元一次不等式和一元一次不等式组课时课题:第5节一元一次不等式与一次函数第一课时授课人:枣庄市第三十九中学孙晋斌课型:新授课教学目标:☆知识技能理解一元一次不等式与一次函数的关系,会根据函数图象求不等式的解集.☆数学思考学习用函数的观点看待不等式的方法,感受用全面的观点处理局部问题的方法.☆解决问题综合运用函数与不等式的关系解决问题,培养学生的识图能力,用数形结合的思想解决问题.☆情感态度培养学生严谨的科学态度、勇于探索的精神;通过从函数的角度看问题,让学生体会到解决问题的多元化,体味数学的价值.教学重点:一次函数与一元一次不等式关系的理解与应用.教学难点:利用一次函数图像确定一元一次不等式的解集.教法及学法指导:教法:“授人以鱼不如授人以渔”让学生经历了知识的形成与应用过程激发兴趣,唤起学生的学习热情,以启发探究式为主线、讲练结合.再通过教师提出问题,小组合作探究交流,得出结论的过程,让学生理解数学之间相互联系的知识奥妙,体验学习数学的乐趣.学法:学生通过动手操作、观察、交流、归纳等探究活动得到函数可以转化为不等式,不等式也可以转化函数的关系,从而体现一次函数与不等式之间的脉络关系.在教学过程中着重讲解如何用函数图象法确定不等式解集,主要采用分组学习和合作学习,让学生通过经历探究过程,真正成为课堂学习的主人.课前准备:教师准备:教材、三角板、制作教学课件.学生准备:铅笔、直尺、练习本和预习课本内容,总结自学到的知识.教学过程:一创设情境,引入新课【知识炼接】:抽奖游戏给我们的启示:【师】上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用.首先我们一起做游戏.【抽奖游戏】八.六班举行一次课堂抽奖活动,老师准备了写有-5—10之间各种有理数的卡片共9张,如下:1225,,,0.02,,2.5,2.786237π∙---,10,7.5681 请每个小组派一名同学从中抽取一张,用卡片上的数字乘以2.再减去5,,计算结果.结果大于零的小组加1分,结果等于零的小组得0分,结果小于零的小组扣1分. 【设疑引入】 【师】请大家想一想:1、你希望自己小组抽到写有哪些数字的卡片?你希望哪些卡片被别的小组抽走?2、如果用x 表示卡片上的数字y 表示同学们计算出的结果,你能写出y 关于x 的函数关系式吗?学生纷纷举手参与游戏,并思考怎样可以使自己小组得高分的方法? 【生1】我们希望抽到的数字越大越好,如10,7.5681等.【生2】我们可以列不等式,设抽到的数为x ,则有250x ->得到 2.5x >,所以只要卡片上的数字大于2.5就能得分.我们希望不大于2.5的卡片被别的小组抽走.【生3】我们会写函数关系式:25y x =-,只是不知道与不等式有什么关系?【师】大家的问题提得非常好! 这节课我们就来研究一元一次不等式与一次函数的关系. 请同学们看屏幕思考并画出25y x =-函数图像.【板书课题】 1.5一元一次不等式与一次函数【设计意图】通过“抽奖游戏”创设情境引入新课,一方面便于学生列出函数25y x =-关系式和函数图像,另一方面通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对前面知识的复习巩固,又为本节课的学习作铺垫.同时,游戏容易激发学生的兴趣,增强对知识的探索愿望,从而很快进入学习状态.二 自主交流、合作探究【合作探究一】探究一次函数与一元一次不等式的关系:【师】下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系.请同学们拿出你们做的函数图像25y x =-与老师的图像进行对比.并观察图像(图1)思考问题.【呈现问题】(1)x 取哪些值时,250x -= (3)x 取哪些值时,250x -<(2)x 取哪些值时,250x -> (4) x 取哪些值时, 253x ->?【活动方式】分小组进行讨论,小组之间交流,教师巡视、指导学生,等学生完成后,请各小组学生分别独立作答.(多媒体呈现函数图像帮助学生理解)【生1】(1)在图象上要找到250x -=的x 的值,也就是函数值0y =时所对应的x 的值,即函数25y x =-与x 轴的交点横坐标,则有:当0y =时,即250x -=,解得 2.5x =.所以 2.5x =是250x -=的x 的值.【生2】(如图2)要找的250x ->的x 的值,也就是函数值0y >时所对应的x 的值,从图象上可知,0y >时,图象在x 轴上方,图象上由交点(2.5,0)的横坐标向右的任一点所对应的x 值都满足条件,即:当 2.5x >时,由25y x =-可知 0y >.因此当 2.5x >时,250x ->.同理可知,当 2.5x <时,有250x -<.【生3】要使253x ->,(如图3)也就是25y x =-中的3y >,那么过纵坐标为3的点作一条直线平行于x 轴,这条直线与25y x =-相交于一点(4,3)B ,则当4x >时,有253x ->图3【知识提炼】:一元一次不等式的解集就是一次函数图像在x 轴上方或者下方的部分所对应的自变量x 的取值范围.反过来, 一次函数图像在x 轴上方或下方的部分所对应的自变量x 的取值范围也适合相应的一元一次不等式的解集.即:【设计意图】通过自主探索,使学生初步体会“数”(一元一次不等式)与“形”(函数图像)之间的对应关系,为求一元一次不等式的解集打下基础;由学生自主学习,十分自然地建立了数形结合的意识,学生感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,同时引导学生体会可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用,培养了学生数学转化的思想意识. 【合作探究二】做一做:【呈现问题】探究函数图像解一元一次不等式的步骤:【例】已知一次函数 21y x =+,根据它的图象回答下列问题. (1) x 取什么值时,函数值y 为3? (2) x 取什么值是,函数值 y 大于3? (3) x 取什么值时,函数值 y 小于3?【活动方式】找两位同学在黑板上板演,其余同学在练习本上做.三分钟后,做完的同学仔细观察黑板上的解题过程、方法、步骤,如有不同或错误的地方,用不同颜色的粉笔改过来. 【生】积极的解题,疑难问题小组间进行讨论交流.【师】巡视指导,及时点拨, 三分钟后,引导学生观察解题过程,并用课件展示答案:【解】作出函数 21y x =+的图象及直线3y =(如图)从图中可知:(1)当 1x = 时,函数值y 为3. (2)当1x > 时,函数值y 大于3. (3)当1x <时,函数值y 小于3. 【师】 大家做的很好,由此可以得到:【知识提炼】 图像法解一元一次不等式的步骤:⑴把一元一次不等式转化为0kx b +>或0kx b +<的形式;⑵在平面直角坐标系中画出一次函数y kx b =+的图象;确定图像与x 轴的交点⑶一次函数图像在x 轴上方的点(或下方的点)对应的自变量的取值范围就是一元一次不等式0kx b +>或0kx b +<的解集. 【小试身手】1.已知函数25y x =-+,如果0y ≥,则x 的取值范围是( ) A .52x ≥B . 52x ≤C . 52x ≥-D . 52x ≤- 2.如图4是函数y kx b =+的图像,观察图像填空: ⑴当x 时,3kx b +>⑵当x 时,3kx b += ⑶当x 时,3kx b +< 3.作出函数38y x =+图像,观察图像回答当自变量x 的取值满足什么条件时,①0y > ②2y <【生】积极主动的解题. 【师】检查学生的做题情况【设计意图】设计例题一方面进一步揭示“数”的问题可以转化成“形”来处理,另一方面通过学生自己的动手动脑总结的图像法解一元一次不等式的步骤更容易掌握和运用.三 实际应用,升华新知 1.【例题解析】【例2.】用画函数图象的方法解不等式:54210x x +<+ 【思路导航】:利用图象法解不等式:54210x x +<+,就是求当直线54y x =+上的点纵坐标小于直线210y x =+上点的纵坐标的所有的点的横坐标,以两个函数的交点坐标为分界点.(如图5)【生】根据教师提示,积极主动的解题.【师】巡视学生解题情况,等学生做完后展示答案,以规范解题步骤和格式.【解】把 54210x x +<+看做两个一次函数54y x =+和210y x =+在同一坐标系中,画出54y x =+和210y x =+的图像. 由图像可知:它们的交点的横坐标为2.当2x <时直线54y x =+上的点都在直线210y x =+的下方 即54210x x +<+∴此不等式的解集为2x <图4【师】大家互批看看还有什么其它的方法?【生】老师,我是先把不等式变形为360x -<,然后再画函数36y x =-图像, 由图像可知不等式的解集为2x <(如图6)【师】这位同学的想法很好,学习就需要我们勤动手,勤思考.2. 【知识探究】【师】同学们你从本题中感悟到什么?【生】原来我们求1122k x b k x b +>+或1122k x b k x b +<+的不等式的解集,还可以用图像法,那么用图像法来解不等式的步骤如下:①把不等式转换成1122k x b k x b +>+或1122k x b k x b +<+的形式. ②在同一坐标系中,画出函数111y k x b =+或222y k x b =+的图像.③在函数图像上, 12y y >或12y y <的部分所对应的自变量的取值范围就是一元一次不等式1122k x b k x b +>+或1122k x b k x b +<+的解集.【设计意图】 我们从例题的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能加强知识间的融会贯通,使用变化和对应的眼光分析问题,对于继续学习数学有着重要作用.3.【学以致用】⑴直线11y k x b =+与直线22y k x =在同一平面直角坐标系 中的图象如图所示,则关于x 的不等式12k x b k x +> 的解为( )A .1x >-B .1x <-C .2x <-D .无法确定图 5 图6⑵已知13y x =-+,234y x =+,当x 取何值时,12y y >?【设计意图】意在及时检测学生对本节知识的掌握情况,以便查缺补漏。

一次函数与一元一次不等式-市级优质课PPT

一次函数与一元一次不等式-市级优质课PPT
一次函数与一元一次不等式-市级 优质课
目录
• 一次函数简介 • 一元一次不等式简介 • 一次函数与一元一次不等式的关系 • 实例解析 • 总结与展望
01 一次函数简介
一次函数的定义
01
一次函数是形如$y = kx + b$的 函数,其中$k$和$b$是常数,且 $k neq 0$。
02
$k$是斜率,决定了函数的增减性 ;$b$是截距,决定了函数与y轴 的交点。
一次函数的图像
一次函数的图像是一条直线,其斜率为$k$,与y轴的交点为 $(0, b)$。
当$k > 0$时,函数图像为增函数;当$k < 0$时,函数图像 为减函数。
一次函数的性质
一次函数的图像是直线,且斜率固定。 一次函数具有唯一解,即对于任意给定的自变量值,都有唯一的因变量值与之对应。
一次函数的值域和定义域都是全体实数集。
分析一次函数与一元一次不等式的重点和难点
重点
理解和掌握一次函数的性质以及一元一次不等式的解法。
难点
如何在实际问题中应用一次函数和一元一次不等式的知识,以及如何解决一些复杂的问 题。
对未来学习的展望
深入学习函数的性质和不等式的解法, 进一步加深对函数和不等式的理解。
学习其他类型的函数和不等式,如二 次函数、一元二次不等式等,以扩展 知识面和增强数学能力。
02 一元一次不等式简介
一元一次不等式的定义
总结词
一元一次不等式是数学中一个基础概 念,它是指只含有一个变量,且该变 量的指数为1的不等式。
详细描述
一元一次不等式的一般形式为 ax + b > c,其中a、b、c是常数,且a≠0。这个 不等式表示一个直线在坐标系上的上半 部分或下半部分。

一次函数与方程、不等式教案

一次函数与方程、不等式教案

《19.2 一次函数》教学设计19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式教材分析本节内容是在学生已有对一元一次方程、一元一次不等式的认识之后,从变化和对应的角度,对一次函数进行更深入的讨论,是站在更高起点上的动态分析.通过讨论一次函数与一元一次方程及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用.备课素材一、新知导入【复习导入】(1)按照“列表——描点——连线”的步骤画出一次函数y=2x-3的图象;(2)观察一次函数y=2x-3的图象与x轴的交点,指出当y=0时,自变量x的取值是多少?它与方程2x-3=0的解相同吗?它们之间有什么联系?(3)观察一次函数y=2x-3的图象在x轴上方的部分,这些点的纵坐标的符号是怎样的?(4)观察一次函数y=2x-3的图象在x轴下方的部分,这些点的纵坐标的符号是怎样的?【说明与建议】说明:复习一次函数图象的画法,把所列表格中的数据与函数图象中点的坐标结合起来,分析函数值的不同符号特征,与方程、不等式建立起联系.建议:用描点法画一次函数图象时,可以多列出几组数对,在x=1的左右两侧分别列出3~4组对称的数对,再将其与函数图象对照,发挥数形结合思想的优势,使函数值的符号特征更加明显.二、命题热点命题角度1 利用一次函数图象求一元一次方程的解1.一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为(A)A.x=-2 B.y=-2 C.x=1 D.y=1第1题图第2题图2.一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是x =3W.命题角度2 利用一次函数图象求一元一次不等式的解集3.如图,已知直线y =kx -2,根据图象可知不等式kx -2<0的解集是(C ) A .x >1 B .x >-2 C .x <1 D .x <-2第3题图 第4题图4.一次函数y =kx +b 的图象如图所示,当0<kx +b <3时,x 的取值范围为-4<x <0.命题角度3 通过解一元一次方程确定一次函数的图象与坐标轴的交点坐标 5.已知直线经过点(1,2)和点(4,5). (1)求这条直线的解析式;(2)求直线与坐标轴所围成的三角形面积. 解:(1)设直线解析式为y =kx +b ,把(1,2),(4,5)代入,得⎩⎪⎨⎪⎧k +b =2,4k +b =5, 解得⎩⎪⎨⎪⎧k =1,b =1.∴这条直线的解析式为y =x +1.(2)如图,对于直线y =x +1, 令x =0,则y =1; 令y =0,则x =-1. ∴A (0,1),B (-1,0). ∴S △AOB =12 ×1×1=12.∴直线与坐标轴所围成的三角形面积为12.教学设计课题 19.2.3 第1课时 一次函数与一元一次方程、不等式 授课人 素养目标1.会用图象法解一元一次方程、一元一次不等式.2.经历用函数图象表示方程、不等式解集的过程,进一步体会“以形表示数,以数解释形”的数形结合思想.3.通过对一次函数与一元一次方程、一元一次不等式关系的探究,发展学生辩证思维能力.4.体会数学知识的融会贯通,从不同方面认识事物的本质.教学重点理解一次函数、一元一次方程、一元一次不等式之间的联系.教学难点根据一次函数的图象求一元一次方程的解和一元一次不等式的解集.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.解方程4x+1=0;当自变量x为何值时,函数y=4x+1的值为0?2.解不等式3x+6>-2;当自变量x为何值时,函数y=3x+6的值大于-2?回顾旧知,更好地学习新知,为突破重难点做准备.活动一:创设情境、导入新课【课堂引入】(1)观察下面的一元一次方程与一元一次不等式,它们有什么共同之处?2x-2>0,2x-2=0,2x-2<0.(2)上面的一元一次方程与一元一次不等式的解或解集,与一次函数y=2x-2的图象有关系吗?师生活动:教师引导学生观察一元一次方程与一元一次不等式的左边,并与一次函数y=2x-2的右边进行比较,让学生初步感知它们之间有一定的联系.通过直观观察这三个式子与一次函数的区别,联合一次函数的意义,使学生产生深入探究的欲望,更好地进入新课.活动二:实践探究、交流新知【探究新知】1.一次函数的图象与一元一次方程的解下面三个方程有什么共同特点?你能从函数的角度对这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.观察、思考、分析、归纳,引导学生探索一元一次函数、一元一次不等式的关系,学生进一步体会数形结合思想,构建完整的知识体系.师生活动:教师引导学生从函数的角度看一元一次方程.学生小组讨论之后,派出代表汇报想法,教师帮助总结.归纳:解关于x的一元一次方程ax+b=k,就是求当y=ax +b的函数值为k时对应的自变量的值.从数的角度看:求ax+b=0(a≠0)的解⇩x为何值时,y=ax+b的值为0?从形的角度看:求ax+b=0(a≠0)的解⇩确定直线y=ax+b与x轴交点的横坐标2.一次函数的图象与一元一次不等式的解集下面三个不等式有什么共同特点?你能从函数的角度对这三个不等式进行解释吗?你能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.师生活动:教师引导学生类比一元一次方程,自主探究从函数的角度看一元一次不等式.归纳:利用图象求ax+b>0(a≠0)或ax+b<0(a≠0)的解集,就是求一次函数y=ax+b的图象在x轴上方或下方部分所有的点的横坐标所构成的集合.活动三:开放训练、体现应【典型例题】例1 一次函数y=kx+b的图象如图所示,根据图象信息可典型例题巩固新知,让学生进一步熟悉一用求得关于x的方程kx+b=3的解为(C)A.x=-1 B.x=1 C.x=2 D.x=3例1题图例2题图例2 如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是(C)A.x<1 B.x>1 C.x<3 D.x>3【变式训练】1.若一次函数y=ax+b的图象过点A(2,1),则ax+b=1的解是x=2W.2.已知关于x的方程ax+b=2的解为x=-5,则一次函数y=ax+b-2的图象与x轴交点的坐标为(-5,0)W.3.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是(B)A.x>2B.x<2C.x≥2D.x≤2师生活动:学生独立思考,举手回答,师生交流心得和方法.次函数与一元一次方程与一元一次不等式的关系,发展学生数形结合的思想,培养灵活地解决问题的能力.活动四:课堂检测【课堂检测】1.若关于x的方程4x-b=0的解是x=-2,则直线y=4x-b一定经过点(C)A.(2,0) B.(0,-2) C.(-2,0) D.(0,2)2.若直线y=2x+b与x轴交于点A(-3,0),则方程2x+b=0的解是(A)A.x=-3 B.x=-2 C.x=6 D.x=-32通过设置当堂检测,及时获知学生对所学知识的掌握情况,明确哪些学生需要在课后加强辅导,达到全面提高的目的.3.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b-1≥0的解集是(D)A.x≥2 B.x≥0 C.x≤2 D.x≤0第3题图第4题图4.如图,已知一次函数y=kx+b,观察图象回答下列问题:当x>2.5时,kx+b>0;当x>3时,kx+b>1.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结(1)本节课你学到了什么?有哪些体会与收获?(2)本节课你还有哪些疑惑?2.布置作业教材第99页第8题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思,更进一步提升.19.2 一次函数19.2.3 一次函数与方程、不等式第2课时一次函数与二元一次方程组教材分析函数、方程和不等式都是人们刻画现实世界的重要数学模型.用函数的观点看方程(组)与不等式,不仅能帮助学生加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美.本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义.备课素材一、新知导入【置疑导入】小聪和小惠去某景区游览,约好在“飞瀑”见面.上午7:00小聪乘电动汽车从“古刹”出发:沿景区公路去“飞瀑”,车速为36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多远?追问:当小聪追上小慧时,他们两个人的什么量是相同的?是否已经过了“草甸”?该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析式法?【说明与建议】 说明:通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决问题,在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.建议:在这个环节的学习过程中,如果学生入手感到困难.可用以下问题串引导学生进行分析:(1)两个人是否同时起步?(2)在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?(3)这个问题中的两个变量是什么?它们之间是什么函数关系?(4)如果用s 表示路程,t 表示时间,那么他们各自的解析式分别是什么?【情景导入】在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离y (km )与行驶时间x (min )之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是80km ;(2)已知货轮距B 码头的距离与行驶时间的函数解析式为y 1=12 x ,求客轮距B 码头的距离y 2(km )与时间x (min )之间的函数解析式;(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意义.【说明与建议】 说明:通过学生熟悉的问题导入新课,培养学生的识图能力和探究能力,调动学生学习的自主意识及学习兴趣.建议:引导学生建立函数模型,结合图象利用“数形结合”解决问题.二、命题热点命题角度1 利用两个一次函数图象求二元一次方程组的解1.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(C )A .⎩⎪⎨⎪⎧x =3y =-1B .⎩⎪⎨⎪⎧x =-3y =-1C .⎩⎪⎨⎪⎧x =-3y =1D .⎩⎪⎨⎪⎧x =3y =1第1题图 第3题图2.在平面直角坐标系中,直线y =-2x +11与直线y =13 x +53的交点坐标是(4,3),则方程组⎩⎪⎨⎪⎧2x +y =11,x -3y =-5 的解为⎩⎪⎨⎪⎧x =4y =3 .命题角度2 利用两个一次函数图象求一元一次不等式的解集3.函数y =kx 与y =-x +3的图象如图所示,根据图象可知,不等式kx >-x +3的解集是x >1.命题角度3 利用一次函数与方程、不等式的联系解决实际问题4.某电信公司有两种上网费用的计算方式,方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基本费20元外,再以每分钟0.05元的价格按上网时间计费.设上网时间为x 分钟,所需费用为y 元.用函数方法解答何时两种计费方式费用相等.解:y A =0.1x ,y B =0.05x +20.函数图象如图所示.∴当每月上网时间为400分钟时,两种计费方式费用相等.教学设计课题19.2.3第2课时 一次函数与二元一次方程组授课人素养目标 1.理解一次函数的图象与二元一次方程(组)的关系.2.经历用函数观点分析二元一次方程(组)的过程,进一步体会类比思想、分类讨论思想.3.利用一次函数图象的性质,解决实际问题.4.体会数学知识的融会贯通,发现数学的美,激发学生的学习兴趣.教学重点借助两个一次函数图象求二元一次方程(组)的解或一元一次不等式的解集.教学难点借助四个一次[一次函数、一元一次方程、二元一次方程(组)的解、一元一次不等式]之间的关系,解决实际问题.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾 1.解二元一次方程组2.一次函数y=5x+6与y=3x+10的交点坐标是多少?复习旧知,引发思考,为突破本节课重难点做铺垫.活动一:创设情境、导入新课【课堂引入】1号探测气球从海拔5 m出发,以1 m/min的速度上升,与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都上升了1小时.用式子分别表示两个气球所在位置的海拔y(单位:m)关于上升时间t(单位:min)的函数关系;1号气球:y=x+5,2号气球:y=0.5x+15.从实际问题抽象出数学问题,一方面有助于发展学生抽象逻辑能力,另一方面可以激发学生的学习兴趣,更好地开展新课.活动二:实践探究、交流新知【探究新知】针对【课堂引入】的问题,继续思考在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多少时间?位于什么高度?问题1 从数的角度看,二元一次方程组与一次函数有什么关系?问题2 从形的角度看,二元一次方程组与一次函数有什么关系?师生活动:教师引导学生类比一次函数与一元一次方程的关系,结合两个一次函数的图象,探求与二元一次方程组之间的关系.最后,教师帮助学生总结.归纳:(2)图象法解方程组的步骤:①将方程组中各方程化为y=ax+b的形式;②画出各函数的图象;通过类比一次函数与一元一次方程,分别从数和形两个角度分析二元一次方程组与一次函数之间的关系,进一步开拓学生的思维,感受数形结合思想以及分类讨论思想,体会数学思想的应用价值.③由交点坐标得出方程组的解.自主探究:在什么时候,1号气球比2号气球高?在什么时候,2号气球比1号气球高?活动三:开放训练、体现应用【典型例题】例1 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=x+2的解是(B)A.x=1 B.x=2 C.x=3 D.x=4例2 如图,在平面直角坐标系中,直线y=-2x和y=ax+2相交于点A(m,1),则不等式-2x<ax+2的解集为(D)A.x<12B.x<1 C.x>1 D.x>-12【变式训练】在同一平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,解决下列问题:(1)求方程-x+4=2x-5的解;(2)求二元一次方程组的解;(3)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?解:画函数图象如图所示.(1)∵一次函数y1=-x+4和y2=2x-5的图象相交于点(3,1),通过典型例题和变式训练.进一步感受两个一次函数与二元一次方程组的解之间的联系.由形判数,培养数形结合思想,体会数学知识的融会贯通.∴方程-x +4=2x -5的解为x =3.(2)由图可知,二元一次方程组(3)由图可知,当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.师生活动:学生独立思考,举手回答,师生交流心得和方法. 活动四:课堂检测 【课堂检测】1.如图,在平面直角坐标系中,直线y =-2x 和y =ax +2相交于点A (m ,1),则关于x ,y 的二元一次方程组的解为(C )第1题图 第2题图 第3题图2.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象交于点A (3,2),它们与x 轴的交点横坐标分别为1和-1,则不等式k 2x +b 2>0>k 1x +b 1的解集为(D )A.x>3 B .x<-1 C .x>1 D .-1<x<13.一次函数y 1=mx +n 与y 2=-x +a 的图象如图所示,则不等式mx +n >-x +a 的解集为(A )A.x >3 B .x <3 C .x <2 D .x >24.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x ,y 的方程组请你直接写出它的解.学以致用,课堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,帮助每个学生有所收获、有所提高.解:(1)∵P(1,b)在直线l1上,∴b=1+1,即b=2.(2)师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结1.如何用一次函数的图象解二元一次方程组?2.你是否从中体会到了某种数学思想?2.布置作业教材第98页练习题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。

一次函数与一元一次方程、一元一次不等式的教学设计范文

一次函数与一元一次方程、一元一次不等式的教学设计范文

《13.3一次函数与一次方程、一次不等式》(第一课时)安徽省合肥市庐阳中学陈光宇
4.不解方程:你能说出方程3x+6=6解吗?
2.函数y=ax+b的图象如图,则方程ax+b=0的解为。

活动二:探究一次函数与一元一次不等式之间的联系
图1 图2
2.函数y=ax+的图象如图2
应不等式ax+b>0的解集为_______
附 板书设计:
一次函数与一元一次方程和一元一次不等式的关系
一元一次方程 一次函数 一元一次不等式 例题:利用图像 75x-300=0 y=75x-300 75x-300>300 求: 不等式363≥+-x 的解集 3x+6=0 x=-2 y=3x+6 (-2,0) 3x+6>0 x>-2 (1)先画出y=-3x+6的图像。

y=kx+b 与x 轴交点的横坐标就是方程kx+b=0的解。

(2) 找到纵坐标是3的点。

解不等式kx+b >0或<0(k 、b 常数,k ≠0) (3) 观察3≥y (y=3) 的图 就是求图象x 轴上方(或下方)的点 像部分对应的x 的范围
对应的自变量取值范围。

(4) 得出不等式的解集。

3x+6=6 x=-0 y=3x+6 (0,6)
kx+b=n x=m y=kx+b (m.n) n b kx >+。

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。

一次函数的图像为一条直线,具有特定的斜率和截距。

一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。

2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。

解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。

求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。

通过以上步骤,可以求得一元一次方程的解。

3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。

求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。

求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。

需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。

4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。

掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。

《一次函数一元一次方程和一元一次不等式》教学设计

《一次函数一元一次方程和一元一次不等式》教学设计

6.6 一次函数、一元一次方程和一元一次不等式教学目标:1.经历实际问题中的数量关系的分析、抽象初步体会一元一次不等式与一元一次方程、一次函数的内在联系.2.了解不等式、方程、函数在解决问题过程中的作用和联系.3.通过解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.教学重点:通过具体实例,初步体会一次函数、一元一次方程和一元一次不等式的内在联系.教学难点:了解不等式、方程、函数在解决问题过程中的作用和联系.教学过程:一、热身训练填空:(1)方程2x+4=0解是_______ ;(2)不等式2x+4>0的解集为________;(3)不等式2x+4<0的解集为________.复习一元一次方程和一元一次不等式的解法.二、探索归纳1.一次函数y=2x+4的图像是一条经过点(,0 ),点( 0 ,)的直线.2.试根据一次函数y=2x+4的图像说出方程2x+4=0的解和不等式2x+4>0、2x+4<0的解.归纳总结:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.三、例题讲解例一根长25cm的弹簧,一端固定,另一端挂物体.在弹簧伸长后的长度不超过35cm的限度内,每挂1kg质量的物体,弹簧伸长0.5cm.设所挂物体的质量为x kg,弹簧的长度为y cm.写出y与x之间的函数表达式,画出函数图像,并求这根弹簧在所允许的限度内所挂物体的最大质量.你还能用什么方法解决这个问题?尝试用不同的方法解决问题.函数求值和变量范围确定的问题可以通过方程、不等式解决.四、巩固练习1.x取什么值时,函数y=-2(x+1)+4的值是正数?负数?非负数?2.声音在空气中的传播速度(简称音速)y(m/s)与气温x(℃)之间的函数表达式为y=35x+331.求:(1)音速为340m/s时的气温;(2)音速超过340m/s时的气温范围.变式训练:3.试根据一次函数y=2x+4的图像说出方程2x+4=6的解和不等式2x+4>6、2x+4<6的解.尝试:一辆汽车行驶了35km后,驶入高速公路,并以105km/h的速度匀速行驶了x h.试根据上述情境,提出一些问题,并用一次函数、一元一次方程或一元一次不等式求解.五、课堂小结这节课你有什么收获?。

小学数学青岛版说课稿(7篇)

小学数学青岛版说课稿(7篇)

小学数学青岛版说课稿(7篇)小学数学青岛版说课稿(精选7篇)作为一名老师,总归要编写说课稿,说课稿有助于学生理解并掌握系统的知识。

说课稿要怎么写呢下面是由小编给大家带来的最新小学数学青岛版说课稿7篇,让我们一起来看看!小学数学青岛版说课稿精选篇1今天我说课的内容是:一元一次不等式与一次函数。

它是北师大版八年级下册第一章“一元一次不等式与一元一次不等式组”中的第五节内容。

下面,我从教材理解、学情分析、设计思路、教学流程四个方面谈谈自己对这节课的思考和设计。

一、教材理解一元一次不等式与一次函数是在前面学生学习了一元一次方程、一元一次不等式、一次函数的基础上安排的。

本节内容的重点是利用一次函数的图象解一元一次不等式,它既是对一元一次方程、一元一次不等式、一次函数的进一步巩固与深化,又是后续学二次函数等知识的基础和铺垫,起着承前启后的重要作用。

同时本节教材承担着“引导学生初步体会不等式、方程、函数之间联系和区别”的章节目标,它是本章中的一个难点,渗透着数形结合的数学思想,反映了“事物是普遍联系”的哲学规律。

本节内容的学习,对于启发学生数学思维,开拓学生的数学视野,提高学生的数学能力有着十分重要的意义。

依据课标要求和教材内容,我确定本节的教学目标是1、通过观察图象,使学生初步掌握利用一次函数图象来解一元一次不等式的方法。

2、通过学生合作探究,初步体会一元一次不等式、一元一次方程、一次函数之间的内在联系。

3、培养学生数形结合的意识和解决实际问题的能力,使学生充分感受数学的价值,进一步激发学习数学的热情。

二、学情分析我校是一所山区乡镇初中,办公条件相对较差,为了适应课堂教学改革的需求,近期学校在每个教室三面墙体装上黑板,并用竖线分成30小块,每块黑板都是学生课堂交流展示的平台,为学生创造了极大的展示空间。

教室内学生的座位分布以小组为单位,6人课桌相并,相对而坐,好、中、差不同层次学生相互搭配,组成6人学习小组,便于课堂上合作交流,互帮互学,互相促进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档