概率作业纸答案

合集下载

2017概率作业纸答案

2017概率作业纸答案

第一章 随机事件及其概率§1.1 随机事件§1.2 随机事件的概率一、单选题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D )(A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销”(C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销”2.对于事件、A B ,有B A ⊂,则下述结论正确的是( C )(A )、A B 必同时发生; (B )A 发生,B 必发生;(C )B 发生,A 必发生; (D )B 不发生,A 必发生3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P二、填空题1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:AB C . 2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%.3. 设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=716;()P ABC =916;(,,)P A B C =至多发生一个34;(,,P A B C =恰好发生一个)316.§1.3古典概率一、填空题1.将数字1,2,3,4,5写在5张卡片上,任取3张排成3位数,则它是奇数的概率为35.2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3. 3.若袋中有3个红球,12个白球,从中不返回地取10次,每次取一个,则第一次取得红球的概率为15,第五次取得红球的概率为15. 4. 盒中有2只次品和4只正品,有放回地从中任意取两次,每次取一只,则(1)取到的2只都是次品19; (2)取到的2只中正品、次品各一只49; (3)取到的2只中至少有一只正品89. 二、计算题1.一份试卷上有6道题. 某位学生在解答时由于粗心随机地犯了4处不同的错误. 试求:(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率.解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296.(1)设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2)设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3)设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P . 2. 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率.解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有nN C 种不同取法.(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为k n k M N M C C --,由古典概型计算公式,()k n k M N M n N C C P A C --=。

概率作业纸第六章答案

概率作业纸第六章答案

概率作业纸第六章答案第六章参数估计第⼀节参数的点估计⼀、选择1. 以样本的矩作为相应(同类、同阶)总体矩的估计⽅法称为(A ). (A) 矩估计法 (B) ⼀阶原点矩法 (C) 贝叶斯法 (D) 最⼤似然法2. 总体均值)(X E 的矩估计值是(A ).(A )x (B )X (C )1x (D )1X⼆、填空1.设总体X 服从泊松分布)(λP ,其中0>λ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数λ的最⼤似然估计值为x .2.设总体X 在区间[]θ,0上服从均匀分布,其中0>θ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数θ的矩估计值为x 2. 三、简答题1. 设设总体X 的概率密度为,0()0, 0x e x f x x θθ-?>=?≤?,求参数θ的矩估计值.解:,0dx xe EX x ?+∞-=θθ设du dx u x x u θθθ1,1,===则00111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞==-+=+-?=θ1故1EXθ=,所以x 1?=θ2. 设总体X 服从⼏何分布.,3,2,1,)1();(1 =-=-x p p p x p x 如果取得样本观测值为n x x x ,,,21 ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v 1)()(1==,所以x x n p ni i ==∑=111由此可得参数的矩估计值为xp1=. 似然函数为nx n ni x ni i i p p p p p L -=-∑-=-==∏1)1())1(()(11取对数,得).1ln()(ln )(ln 1p n xp n p L ni i--+=∑=于是,得0)(11)(ln 1=---=∑=ni i n x p p n dp p L d .由此可得参数的最⼤似然估计值为x p1?=. 3. 设总体X 服从“0-1”分布: .1,0,)1();(1=-=-x p p p x p x x如果取得样本观测值为)10(,,,21或=i n x x x x ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v ==)()(1,所以x x n p ni i ==∑=11由此可得参数的矩估计值为x p=?. 似然函数为∑-∑=-===-=-∏ni ini iiix n x ni x x p pp pp L 11)1())1(()(11取对数,得).1ln()(ln )()(ln 11p x n p x p L ni ini i--+=∑∑==于是,得0)(111)(ln 11=---=∑∑==ni i n i i x n p x p dp p L d .由此可得参数的最⼤似然估计值为x p=?.第⼆节衡量点估计好坏的标准⼆、选择1. 估计量的⽆偏性是指( B ).(A )统计量的值恰好等于待估总体参数(B) 所有可能样本估计值的数学期望等于待估总体参数 (C) 样本估计值围绕待估总体参数使其误差最⼩ (D) 样本量扩⼤到和总体单元相等时与总体参数⼀致 2. 估计量的有效性是指( C ).(A )估计量的数学期望等于被估计的总体参数 (B) 估计量的具体数值等于被估计的总体参数 (C) 估计量的⽅差⽐其它估计量的⽅差⼩ (D) 估计量的⽅差⽐其它估计量的⽅差⼤ 3. 估计量的⼀致性是指( D ).(A) 估计量的具体数值等于被估计的总体参数 (B) 估计量的⽅差⽐其它估计量的⽅差⼩ (C) 估计量的⽅差⽐其它估计量的⽅差⼤(D) 随样本容量的增⼤,估计量的值越来越接近被估计的总体参数⼆、填空1.设),,(??2111n X X X θθ=与),,(??2122n X X X θθ=都是参数θ的⽆偏估计量,如果 )?()?(21θθD D <,则称1?θ⽐2θ有效. 2. 设总体X 的均值µ=)(X E ,⽅差2)(σ=X D ,则x 是总体均值的⽆偏的、有效的、⼀致的估计量,2S 是总体⽅差的⽆偏的、有效的、⼀致的估计量.三、简答题1.从总体X中抽取样本321,,X X X ,证明下列三个统计量,632?3211X X X ++=µ,442?3212X X X ++=µ,333?3213X XX ++=µ都是总体均值的⽆偏估计量;并确定哪个估计更有效.证:设总体X 的均值与⽅差分别为µ=)(X E ,2)(σ=X D .则因为样本与总体服从相同的分布,所以有µ=)(i X E ,.3,2,1,)(2==i X D i σ所以有;613121)632()?(3211µµµµµ=++=++=X X X E E ;412121)422()?(3212µµµµµ=++=++=X X X E E .313131)333()?(3213µµµµµ=++=++=X X X E E 所以1µ,2µ,3µ都是总体均值的⽆偏估计量.;1873619141)632()?(22223211σσσσµ=++=++=X X X D D ;8316116141)442()?(22223212σσσσµ=++=++=X X X D D ;31919191)333()?(22223213σσσσµ=++=++=X X X D D 因为),?()?()?(123µµµD D D <<所以认为估计量3?µ更有效. 2.设1?θ和2?θ为参数θ的两个独⽴的⽆偏估计量,且假定21?2?θθD D =,求常数c 和d ,使21θθθd c +=为θ的⽆偏估计,并使⽅差θ?D 最⼩. 解:由于θθθθθθ)(??)??(?2121d c dE cE d c E E +=+=+=,且知θθ=?E ,故得c+d=1。

概率论课后习题答案北京邮电大学版

概率论课后习题答案北京邮电大学版
PC | A1 0.2, PC | A2 0.9.
概率作业答案2:第一章6—10节
(1)
PA1
|
B
PA1 PB | A1 PA1 PB | A1 PA2 PB
|
A2
0.6
0.6 0.8
0.8 0.4
0.1
0.932.
(2)
PA2
|
C
PA2 PC | A2 PA1 PC | A1 PA2 PC
B1 )
P( A1B1 ) P(B1 )P( A1 )P(B1 Nhomakorabea5/
A1 )
2 3
5
2 4
4 5
12
12
1
P( A2
/
B1 )
12 5
1 5
12
显然,白球的可能性大。
概率作业第一章第8—10节
一、填空题
1.一 个 工 人 看 管n台 同 一 类 型 的 机 器 , 一段 时 间 内 每 台 机 器 需 要工 人 维 修 的 概 率p(0 p 1),则 (1)n台 机 器 都 不 需 要 维 修 概率 是______; (2)恰 有 一 台 机 器 需 要 维 的概 率 是____________; (3)至 少 有 一 台 机 器 需 要 修的 概 率 是______________ .
概率作业答案2:第一章6—10节
4.设A、B为随机事件,并且P( A) 0.5, P(B) 0.6, P(B / A) 0.8,则P( AB) ______,P( A B) ______. 答案:P( AB) P(B / A)P( A) 0.4, P( A B) 0.7
5.P(AB) P(AB),且P(A) p,则P(B) _________

概率作业纸第二章答案

概率作业纸第二章答案

第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC ⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为C B A第四节 概率的古典定义一、选择1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A )21 (B )53 (C )103 (D )101 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为11322535C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为1910102091812=C C C 。

三、简答题1.将3个球随机地投入4个盒子中,求下列事件的概率(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球;(3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。

解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 第五节 概率加法定理一、选择1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A))()(AB P C P = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P2.已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。

概率作业纸第二章答案

概率作业纸第二章答案

第二章 随机变量及其分布第二节 离散随机变量一、选择1. 设离散随机变量X 的分布律为:),3,2,1(,}{ ===k b k X P k λ 且0>b ,则λ为( C )(A) 0>λ (B)1+=b λ (C)b +=11λ (D)11-=b λ 二、填空1.进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是{} 1,2, , 54)51(1=⋅==-K K X P K三、计算题1. 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============第三节 超几何分布 二项分布 泊松分布一、选择1.设随机变量),3(~),,2(~p B Y p B X , {}{}()CY P X P =≥=≥1,951则若(A)43 (B)2917 (C)2719 (D)97 二、填空1.设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{})0902.0_____(32_42-=e X P =则.三、计算题1.某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍. (1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率;9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~10610682108≈-≈=-=≥≈===≈==≈====⨯====⋯===------X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、填空题1.设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 . ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取( A )(A)52,53-==b a (B)32,32==b a (C)23,21=-=b a (D)23,21-==b a 2.设⎪⎪⎩⎪⎪⎨⎧≥<<**≤=2,12)(,4)(,0)(2x x xx x F ,当(*)取下列何值时,)(x F 是连续型随机变量的分布函数.( A )(A) 0 (B) 0.5 (C) 1.0 (D)1.5三.计算题1.设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A 第六节 连续随机变量的概率密度一、选择1.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它(B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为+∞<<∞-+=x x x F ,arctan 121)(π(1)(11)P X -≤≤= 0.5 (2)概率密度()f x =2111x +⋅π 三、计算题1. 设随机变量X 的概率密度:,10(),010,1c x x f x c x x x +-≤≤⎛=-≤≤ >⎝求:(1)常数c ;(2)概率(0.5)P X ≤ 解:(1)1)()(11=-++⎰⎰-dx x c dx x c ,c=1(2) (0.5)P X ≤=75.0)1()1(5.005.0=-++⎰⎰-dx x dx x2.已知随机变量X 的概率密度1(),2xf x e x -=-∞<<+∞, 求:分布函数()F x 。

xx年概率作业纸答案

xx年概率作业纸答案

第一章 随机事件及其概率§1.1 随机事件§1.2 随机事件的概率一、单选题A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D )(A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销”(C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销” 、A B ,有B A ⊂,则下述结论正确的是( C )(A )、A B 必同时发生; (B )A 发生,B 必发生;(C )B 发生,A 必发生; (D )B 不发生,A 必发生A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P二、填空题1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:A B C .2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%.3. 设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=716;()P ABC =916;(,,)P A B C =至多发生一个34;(,,P A B C =恰好发生一个)316.§1.3古典概率一、填空题1.将数字1,2,3,4,5写在5张卡片上,任取3张排成3位数,则它是奇数的概率为35.2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3. 3.若袋中有3个红球,12个白球,从中不返回地取10次,每次取一个,则第一次取得红球的概率为15,第五次取得红球的概率为15. 4. 盒中有2只次品和4只正品,有放回地从中任意取两次,每次取一只,则(1)取到的2只都是次品19; (2)取到的2只中正品、次品各一只49; (3)取到的2只中至少有一只正品89. 二、计算题1.一份试卷上有6道题. 某位学生在解答时由于粗心随机地犯了4处不同的错误. 试求:(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率.解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296.(1)设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2)设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3)设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P . 2. 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率.解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有n N C 种不同取法.(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为k n k M N M C C --,由古典概型计算公式,()k n k M N M n NC C P A C --=。

15概率(一);完美word打印版,带答案

15概率(一);完美word打印版,带答案

1暑假作业十五 概率(一)1.掷一枚骰子,则掷得奇数点的概率是( )A .61B .21C .13D .41 2.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( )A .1B .21C .31D .32 3.对学生进行某种体育测试,甲通过测试的概率为1P ,乙通过测试的概率为2P ,则甲、乙至少1人通过测试的概率为( )A .12P P +B .12P PC .121PP- D .121(1)(1)P P --- 4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为 ( )A .0.99B .0.98C .0.97D . 0.965.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x 、y ,则1log )2(=y x 的概率为( )A .61B .365C .121D .21 6.某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是___________7.我国西部一个地区的年降水量在下列区间内的概率如下表所示:则年降水量在 [ 200,300 ] (m,m )范围内的概率是___________8.今有四张卡片上分别写有“好”、“ 好”、“ 学”、“ 习”四个字,现将其随机排成一行,则恰好排成 “好好学习”的概率是 .2 9.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是10.现有6名奥运会志愿者,其中志愿者12A A ,通晓日语,12B B ,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.(Ⅲ)若6名奥运会志愿者每小时派俩人值班,现有俩名只会日语的运动员到来,求恰好遇到12A A ,的概率.3概率(一)1.B 2.C 3.D 4.D 5.C6.51 7.41 8.121 9.21 10.解(Ⅰ)从6人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件是:Ω=111112121()()()A B C A B C A B C ,,,,,,,,,122()A B C ,,, 211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,.由8个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122()A B C ,,}.事件M 由4个基本事件组成,因而41()82P M == (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211()()A B C A B C ,,,,,},事件N 有2个基本事件组成, 所以21()84P N ==,由对立事件的概率公式得13()1()144P N P N =-=-=. (Ⅲ)p =115。

概率练习册答案

概率练习册答案

班级 学号 姓名(十七)随机事件及概率1、投掷一粒骰子的试验,我们将"出现偶数点"称为( D )A 、样本空间B 、必然事件C 、不可能事件D 、随机事件2、事件B A ,互为对立事件等价于( D )A 、B A ,互不相容 B 、B A ,相互独立C 、Ω=+B AD 、Φ=Ω=+AB B A 且3、设B A ,为两个事件,则__B A AB +=(C )A 、不可能事件B 、必然事件C 、AD 、B A + 4、B A ,为两事件,若()4.0)(,2.0)(,8.0__===+B P A P B A P ,则( B )A 、32.0____=⎪⎭⎫ ⎝⎛B A P B 、2.0____=⎪⎭⎫ ⎝⎛B A PC 、4.0)(=AB PD 、48.0)(____=AB P 因为:2.08.01)(1)(1)(=-=+-=-=B A P B A P B A P5、当__A 与__B 互不相容时,=+)(______B A P (C )A 、)(1A P -B 、)()(1B P A P --C 、0D 、)()(____B P A P 因为:0)Φ()()(===+P B A P B A P6、设有10个产品,其中3个次品,7个正品,现从中任取4个产品,则取到的4个产品都是正品的概率为( C ) A 、107 B 、44107 C 、41047C C D 、1074⨯ 7、设C B A ,,为三个事件,试用这三个事件表示下列事件:(1)C B A ,,三个事件至少有一个发生;(2)A 不发生,B 与C 均发生;(3)C B A ,,三个事件至少有2个发生;(4)C B A ,,三个事件中恰有一个发生;(5)A 发生,B 与C 都不发生。

解:(1)A+B+C ;(2)BC A ;(3)AB+AC+BC ;(4)C B A C B A C B A ++;(5)C B A 。

8、随机抽检三件产品,设A 表示“三件中至少有一件是废品”;B 表示“三件中至少有两件是废品”;C 表示“三件都是废品”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机事件及其概率§1.1 随机事件§1.2 随机事件的概率§1.3古典概率一、单选题1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P4.已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。

则事件A 、B 、C 全不发生的概率为( B ) (A) 82 (B) 83 (C) 85 (D) 86 5.已知事件A 、B 满足条件)()(B A P AB P =,且p A P =)(,则=)(B P ( A )(A) p -1 (B) p (C) 2p (D) 21p - 6.若随机事件A 和B 都不发生的概率为p ,则以下结论中正确的是( C )(A)A 和B 都发生的概率等于p -1 (B) A 和B 只有一个发生的概率等于p -1(C)A 和B 至少有一个发生的概率等于p -1(D)A 发生B 不发生或B 发生A 不发生的概率等于p -1二、填空题1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:A B C ,或者ABC .2.设3.0)(=A P ,6.0)(=B A P ,若B A ⊂,则=)(B P 0.6 .3.设随机事件A 、B 及A B 的概率分别是0.4,0.3,和0.6.则=)(B A P 0.3 .三、简答题1.任意抛掷一颗骰子,观察出现的点数.事件A 表示“出现点数为偶数”,事件B 表示“出现点数可以被3整除”,请写出下列事件是什么事件,并写出它们包含的基本事件. ,,,,A B A B A B A B解:A 表示“出现点数为偶数”,{}2,4,6A =B 表示“出现点数可以被3整除”,{}3,6B =A B 表示“出现点数可以被2或3整除”,{}2,3,4,6A B =AB 表示“出现点数既可以被2整除,也可以被3整除”,{}6AB =A B 表示“出现点数既不可以被2整除,也不可以被3整除”,{}1,5A B = 四、计算题1.某城市家庭安装有线数字电视的占85%,安装网线的占70%,有线和网线至少安装一种的占95%.现从该城市任选一家庭,求:(1)该家庭两线都安装的的概率;(2)该家庭只安装其中一线的概率;(3)该家庭两线都不安装的的概率.解 设A ={安装有线数字电视},B ={安装网线},则 A B =∪{有线和网线至少安装一种} .(1)()P AB =()()()P A P B P A B +-= 0.850.700.950.6+-=.(2)AB AB +={只安装其中一线},()P AB AB +()()P A B P AB =-∪0.950.60.35=-= .(3)()P AB =1()P A B -= 10.950.05-= .§1.3古典概率一、单选题1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A )21 (B )53 (C )103 (D )101 二、填空题 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为11322535C C C = . 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3 . 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为1910102091812=C C C . 4.从装有4只红球3只白球的盒子中任取3只球,则其中至少有一只红球的概率为333734135C C -=(0.97). 5.掷两枚筛子,则两颗筛子上出现的点数最小为2的概率为 0.25 .6. 将一枚匀称的骰子抛掷两次,则两次出现的点数之和等于8的概率是536. 四、计算题1.将3个球随机地投入4个盒子中,求下列事件的概率(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球;(3)C ---任意1个盒子中有2个球,其他任意1个盒子中有1个球.解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P .2.某产品有大、中、小三种型号.某公司发出17件此产品,其中10件大号,4件中号,3件小号.交货人粗心随意将这些产品发给顾客.问一个订货为4件大号、3件中号和2件小号的顾客,能按所定型号如数得到订货的概率是多少?解 设A ={能按所定型号如数得到订货}, 4322521043()0.1049243117C C C P A C ==≈ 3.电话号码由7个数组成,每个数字可以是0,1,2,… ,9中的任一个数字(但第一个数字不能为0),求电话号码是由完全不相同的数字组成的概率.解:设A 表示电话号码是由完全不相同的数字组成0605.010)(6196919≈=A A A A P 4.一批产品共20件,其中一等品9件,二等品7件,三等品4件。

从这批产品中任取3 件,求: (1) 取出的3件产品中恰有2件等级相同的概率;(2)取出的3件产品中至少有2件等级相同的概率.解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3;(1))()()()(321321A P A P A P A A A P ++=++320116241132711129C C C C C C C ++==0.671 (2)设事件A 表示取出的3件产品中至少有2件等级相同,则779.01)(1)(320141719=-=-=C C C C A P A P §1.4条件概率一、单选题1.事件,A B 为两个互不相容事件,且()0,()0P A P B >>,则必有( B )(A) ()1()P A P B =- (B) (|)0P A B =(C ) (|)1P A B = (D) (|)1P A B =2.将一枚筛子先后掷两次,设事件A 表示两次出现的点数之和是10,事件B 表示第一次出现的点数大于第二次,则=)(A B P ( A ) (A)31 (B) 41 (C ) 52 (D) 65 3.设A 、B 是两个事件,若B 发生必然导致A 发生,则下列式子中正确的是( A )(A))()(A P B A P = (B))()(A P AB P = (C))()(B P A B P = (D))()()(A P B P A B P -=-4.袋中有5个球,3个新球,2个旧球,现每次取一个,无放回的取两次,则第二次取到新球的概率为 ( A ) (A) 53 (B) 43 (C ) 42 (D ) 103 二、填空题 1.已知事件A 的概率)(A P =0.5,事件B 的概率)(B P =0.6及条件概率)(A B P =0.8,则和事件B A 的概率=)(B A P 0.7 .2.,A B 是两事件,()0.3,()0.4,(|)0.6,===P A P B P B A 则(|)=P A A B 577.02615= . 3.某厂一批产品中有4%的废品,而合格品中有75%的一等品.从该批产品中任取一件产品为一等品的概率为 0.72 .4.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为61 .5. 设某种动物由出生算起活到20岁以上的概率为0.8, 活到25岁以上的概率为0.4. 如果一只动物现在已经活到20岁, 则它能活到25岁以上的概率是 0.5 .6.试卷中有一道选择题,共有4个答案可供选择,其中只有一个答案是正确的。

任一考生如果会解这道题,则一定能选出正确答案;如果他不会解这道题,则不妨任选一个答案.若考生会解这道题的概率是0.8,则考生选出正确答案的概率为 0.85 .三、计算题1. 据多年来的气象记录知甲、乙两城市在一年内的雨天分布是均等的,且雨天的比例甲市占20%,乙市占18%,两市同时下雨占12%.求(1) 某一天两市中至少有一市下雨的概率;(2) 乙市下雨的条件下, 甲市也下雨的概率;(3) 甲市下雨的条件下, 乙市也下雨的概率.解 设A ={甲市下雨},B ={乙市下雨}.则 (1) ()P A B = ()()()B AB P A P P +-0.20.180.120.26=+-= ;(2) ()0.12(|)0.67()0.18P AB P A B P B === ; (3) ()0.12(|)0.6()0.2P AB P B A P A === . 2. 一人从外地到济南来参加会议,他乘火车的概率为0.5,乘飞机的概率为0.3,乘汽车的概率为0.2.如果乘火车来, 迟到的概率为0.25,乘飞机来迟到的概率为0.12,乘汽车来迟到的概率为0.08. 求此人迟到的概率.解 设1A ={此人乘火车来}, 2A ={此人乘飞机来}, 3A ={此人乘汽车来},B 表示{此人迟到}. 由全概率公式得到31()()(|)0.50.250.30.120.20.080.177i i i P B P A P B A ===⨯+⨯+⨯=∑3. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查,求这件产品是次品的概率.解 设B ={取到的是一件次品}, i A ={所取到的产品来自甲、乙、丙车间}(1,2,3)i =. 则123),),)(0.4(0.38(0.22P A P A P A ===,12))(|0.04,(|0.03P B A P B A ==, 3)(|0.05P B A =.由全概率公式可得112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.40.040.380.030.220.050.0384.=⨯+⨯+⨯= §1.5 事件的独立性 §1.6 独立试验序列一、单选题1.设B A 、是两个相互独立的随机事件,0>⋅)()(B P A P ,则=)(B A P ( B ) (A) )()(B P A P + (B) )()(B P A P ⋅-1 (C) )()(B P A P ⋅+1 (D) )(AB P -1 2.设)(A P =0.8,)(B P =0.7,)(B A P =0.8,则下列结论正确的是( C )(A) 事件A 与B 互不相容 (B) B A ⊂(C) 事件A 与B 互相独立 (D) )()()(B P A P B A P +=3.设()0P AB =,则(A)(A) ,A B 互不相容 (B) ,A B 独立 (C)()0()0P A P B ==或(D) (|)()P A B P A =4.每次试验成功率为)10(<<p p ,(1)进行10次重复试验成功4次的概率为(A );(2)进行重复试验,直到第10次试验才取得4次成功的概率为( B );(3)进行10次重复试验,至少成功一次的概率为( D );(4)进行10次重复试验,10次都失败的概率为( C ).(A) 44610(1)C p p - (B) 3469(1)C p p - (C) 10(1)p - (D) 101(1)p --二、填空题1.设A 与B 为两相互独立的事件,)(B A P =0.6,)(A P =0.4,则)(B P = 1/3 .2.加工某一零件共需经过三道工序。

相关文档
最新文档