信阳市2014--2015学年度高中毕业班第二次调研检测高三数学理科答案
数学_2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)(含答案)
2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)一、选择题(每小题5分,共60分)1. 已知实数R 为全集,集合A ={x|y =log 2(x −1)},B ={y|y =√4x −x 2},则(∁R A)∩B 等于( )A (−∞, 1]B (0, 1)C [0, 1]D (1, 2] 2. 复数3−i2+i 的实部与虚部之和为( )A 0B 1C 2D 33. 设随机变量ξ服从正态分布N(1, σ2),若P(ξ<2)=0.8,则P(0<ξ<1)的值为( ) A 0.6 B 0.4 C 0.3 D 0.24. 下列有关命题的说法正确的是( )A 命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B “x =−1”是“x 2−2x −3=0”的必要不充分条件C 命题“∃x ∈R 使得x 2+x −1<0”的否定是“∀x ∈R ,均有x 2+x −1>0”D 命题“已知x ,y ∈R ,若x +y ≠5,则x ≠1或y ≠4”为真命题 5. 执行如图所示的程序框图,如果输入的N 是195,则输出的P =( )A 11B 12C 13D 146. 已知四棱锥P −ABCD 的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是( )A 3B 2√5C 6D 87. △ABC 中,∠A =60∘,∠A 的平分线AD 交边BC 于D ,已知AB =3,且AD →=13AC →+λAB →(λ∈R),则AD 的长为( ) A 1 B √3 C 2√3 D 38. 若函数y =2x图象上存在点(x, y)满足约束条件{x +y −3≤0x −2y −3≤0x ≥m,则实数m 的最大值为( )A 12 B 1 C 32 D 29. 已知θ为锐角,且sin(θ−π4)=√210,则tan2θ=( ) A 43 B 34 C −247 D 24710. 设等差数列{a n }的前n 项和为S n ,已知(a 8−1)3+2015(a 8−1)=1,(a 2008−1)3+2015(a 2008−1)=−1,则下列结论正确的是( )A S 2015=2015,a 2008<a 8B S 2015=2015,a 2008>a 8C S 2015=−2015,a 2008≤a 8D S 2015=−2015,a 2008≥a 811. 已知函数f(x)=sinx ,将函数f(x)图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到函数g(x)的图象,则关于f(x)g(x)有下列命题,其中真命题的个数是( ) ①函数y =f(x)⋅g(x)是偶函数; ②函数y =f(x)⋅g(x)是周期函数;③函数y =f(x)⋅g(x)的图象关于点(π2, 0)中心对称;④函数y =f(x)⋅g(x)的最大值为4√39. A 1 B 2 C 3 D 412. 已知定义在R 上的可导函数f(x)满足:f′(x)+f(x)<0,θ的终边不落在第一象限的角平分线上,则e √2−sinθ−cosθ与f(√2)的大小关系是( )Ae √2−sinθ−cosθ>f(√2) B e √2−sinθ−cosθ<f(√2) Ce √2−sinθ−cosθ=f(√2) D 不确定二、填空题(本大题有4小题,每小题5分,共20分)13. 若(x +a)6的展开式中x 3的系数为160,则∫x a a1dx 的值为________.14. 已知双曲线3y 2−mx 2=3m(m >0)的一个焦点与抛物线y =18x 2的焦点重合,则此双曲线的离心率为________.15. 已知三棱锥D −ABC 中,AB =BC =1,AD =2,BD =√5,AC =√2,BC ⊥AD ,则三棱锥的外接球的表面积为________.16. △ABC 中,BC =1,AB =√3,AC =√6,点P 是△ABC 的外接圆上的一个动点,则BP →⋅BC →的最大值为________.三、解答题(本大题共5小题,共70分)17. 已知数列{a n}的前n项和S n满足S n=a(S n−a n+1)(a为常数,且a>0),且a3是6a1与a2的等差中项.(1)求{a n}的通项公式;(2)设b n=a n log2a n,求数列{b n}的前n项和T n.18. 衡水市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括9的则被淘汰.若现有500人参加测试,学生成绩的频率分布直方图如图:(Ⅰ)求获得参赛资格的人数;(Ⅱ)根据频率直方图,估算这500名学生测试的平均成绩;(Ⅲ)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为19,求甲在初赛中答题个数的分布列及数学期望.19. 在斜三棱柱ABC−A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1A⊥A1C;(2)若A1A=A1C,求二面角B−A1C−B1的余弦值.20. 已知动圆M过定点F(1, 0)且与直线x=−1相切,圆心M的轨迹为H.(1)求曲线H的方程;(2)一条直线AB经过点F交曲线H于A、B两点,点C为x=−1上的动点,是否存在这样的点C,使得△ABC是正三角形?若存在,求点C的坐标;否则,说明理由.21. 已知函数f(X)的定义域为(0, +∞)且满足2f(x)+f(1x )=2lnx+a(2x+1)x+1.(1)若a=−8,判断f(x)在定义域上的单调性;(2)若f(x)在定义域上有两个极值点x1,x2(x1≠x2),求证:f(x1)+f(x2)≥f(x)+2x−2.选考题(在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分)【选修4-1:几何证明选讲】22.如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧BĈ的中点,连接AD 并延长,与过C 点的切线交于P ,OD 与BC 相交于点E . (1)求证:OE =12AC ;(2)求证:PDPA =BD 2AC 2.【选修4-4:坐标系与参数方程】23. 在直角坐标系xoy 中,以原点O 为极点,以x 轴正半轴为极轴,与直角坐标系xoy 取相同的长度单位,建立极坐标系,设曲线C 参数方程为{x =√3cosθy =sinθ(θ为参数),直线l 的极坐标方程为ρcos(θ−π4)=2√2.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 的最大距离,并求出这个点的坐标.【选修4-5:不等式选讲】24. 已知不等式|t +3|−|t −2|≤6m −m 2对任意t ∈R 恒成立. (1)求实数m 的取值范围.(2)若(1)中实数m 的最大值为λ,且3x +4y +5z =λ,其中x ,y ,z ∈R ,求x 2+y 2+z 2的最小值.2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)答案1. C2. A3. C4. D5. D6. C7. C8. B 9. C 10. A 11. D 12. A 13. 7314. 2 15. 6π 16. 2 17. 解:(1)根据S n =a(S n −a n +1),分别令n =1,2,3,可求得: a 1=a ,a 2=a 2,a 3=a 3; ∴ 6a +a 2=a 3; ∵ a >0;∴ 6+a =a 2,解得a =3; ∴ S n =3(S n −a n +1)①;∴ n >1时,S n−1=3(S n−1−a n−1+1)②; ∴ ①-②得:a n =3a n−1; ∴ a nan−1=3;∴ {a n }是首项为3,公比为3的等比数列; ∴ a n =3n ;(2)b n =3n log 23n =n ⋅3n log 23;∴ T n =b 1+b 2+...+b n =log 23(1⋅31+2⋅32+...+n ⋅3n ) ①; ∴ 3T n =log 23(1⋅32+2⋅33+⋯+n ⋅3n+1) ②; ∴ ①-②得:−2T n =log 23(3+32+⋯+3n −n ⋅3n+1)=log 23⋅[3(1−3n )1−3−n ⋅3n+1]=32−(n +12)3n+1; ∴ T n =−34+2n+14⋅3n+1.18. (I )获得参赛资格的人数m =(0.005+0.0043+0.032)×20×500=125 (II)平均成绩:X ¯=(40×0.0065+60×0.0140+80×0.0170+100×0.0050+120×0.0043+140×0.0032)×20=(0.26+0.84+1.36+0.5+0.516+0.448)×20=78.48 (III)设甲答对每一道题的概率为.P 则(1−p)2=19,∴ p =23, ∴ ξ可能取得值为3,4,5, P(ξ=3)=P 3+(1−P)3=13,P(ξ=4)=C 32P 2(1−p)P +C 32(1−p)p(1−p)=1027,P(ξ=5)=1−13−1027=827,∴ ξ的分布列为Eξ=3×13+4×1027+5×827=10727.19. 解:(1)∵ 平面A 1ACC 1⊥平面ABC ,AC ⊥BC , ∴ BC ⊥平面A 1ACC 1, ∴ A 1A ⊥BC ,∵ A 1B ⊥C 1C ,A 1A // CC 1 ∴ A 1A ⊥A 1B ,∴ A 1A ⊥平面A 1BC , ∴ A 1A ⊥A 1C ;(II)建立如图所示的坐标系C −xyz .设AC =BC =2, ∵ A 1A =A 1C ,则A(2, 0, 0),B(0, 2, 0),A 1(1, 0, 1),C(0, 0, 0).CB →=(0, 2, 0),CA1→=(1, 0, 1),A1B1→=AB →=(−2, 2, 0).设n 1→=(a, b, c)为面BA 1C 的一个法向量,则n 1→⋅CB →=n 1→⋅CA1→=0,则{2b =0a +c =0取a =1,n 1→=(1, 0, −1). 同理,面A 1CB 1的一个法向量为n 2→=(1, 1, −1).∴ cos <n 1→,n 2→>=|n 1→||n 2|˙=√63, ∴ 二面角B −A 1C −B 1的余弦值为√63.20. 解:(1)由题意圆心为M 的动圆M 过点(1, 0),且与直线x =−1相切, 所以圆心M 的轨迹是以(1, 0)为焦点的抛物线, ∴ 圆心M 的轨迹方程为y 2=4x .F(1, 0) 故曲线H 的方程为:y 2=4x .(2)假设存在点C ,使得△ABC 为正三角形,设A(x 1, y 1),B(x 2, y 2),C(−1, m), 直线AB 的方程.{y 2=4x x =ty +1,化简得:y 2−4ty −4=0,y 1+y 2=4t ,y 1y 2=−4 x 1+x 2=4t 2+2,得AB 的中点坐标M(2t 2+1, 2t),①当直线的斜率不存在时,t =0,A(1, 2),B(1, −2),可能C(−1, 0), AB =4,AC =BC =2√2,不可能为正三角形,②当直线的斜率存在时,M(2t 2+1, 2t),A(x 1, y 1),B(x 2, y 2),C(−1, m), |AB|=x 1+x 2+2=4t 2+2+2=4t 2+4 ∵ △ABC 是正三角形, ∴ K CM ⋅K AB =−1, 即−m−2t 2t 2+2⋅1t=−1,得m =2t 3+4t∴ C(−1, 2t 3+4t),∵ |CM|=√(2t +2t 3)2+(2t 2+2)2=(2t 2+2)√t 2+1, ∴ √32(4t 2+4)=(2t 2+2)√t 2+1,解得:t =±√2,m =2(√2)3+4√2=8√2所以存在这样的点C(−1, ±8√2),使得△ABC 是正三角形 21. 解:令1x=t ,x =1t,则:2f(1t )+f(t)=2ln 1t +a(2t +1)1t+1=−2lnt +a(t+2)t+1;∴ f(x)+2f(1x )=−2lnx +a(x+2)x+1①;又2f(x)+f(1x )=2lnx +a(2x+1)x+1②; ∴ ①②联立得f(x)=2lnx +axx+1;∴ (1)a =−8时,f(x)=2lnx −8xx+1,f′(x)=2x−8(x+1)2=(x−1)2x(x+1)2>0;∴ 函数f(x)在定义域(0, +∞)上单调递增; (2)f′(x)=2x 2+(4+a)x+2x(x+1)2;若f(x)在定义域上有两个极值点x 1,x 2(x 1≠x 2),则方程2x 2+(4+a)x +2=0有两个不等实根,且: x 1+x 2=−4+a 2,x 1x 2=1;∴ f(x 1)+f(x 2)=2lnx 1+ax 1x 1+1+2lnx 2+ax 2x 2+1=a ;∵ a =f(x)−2lnxx⋅(x +1);∴ 要证明原不等式成立,只要证明f(x)−2lnxx⋅(x +1)≥f(x)+2x−2=f(x)−2(x−1)x;也就是证明对任意的x >0,lnx ≤x −1; 令g(x)=lnx −x +1,g′(x)=1x −1=1−x x;∴ x ∈(0, 1)时,g′(x)>0,x ∈(1, +∞)时,g′(x)<0;∴ g(1)=0是g(x)的最大值,∴ g(x)≤0,即lnx −x +1≤0,lnx ≤x −1; ∴ f(x 1)+f(x 2)≥f(x)+2x−2.22. (1)证明:因为AB 为⊙O 直径,所以∠ACB =90∘,即 AC ⊥BC ,因为D 是弧BĈ的中点,由垂径定理 得OD ⊥BC ,因此OD // AC又因为点O 为AB 的中点,所以点E 为 BC 的中点,所以OE =12AC(2)证明:连接CD ,因为PC 是⊙O 的切线, 所以∠PCD =∠CAP , 又∠P 是公共角,所以△PCD ∽△PAC . 得PC PA =PD PC =CD AC,∴ PCPA ×PDPC =CDAC ×CDAC , ∴ PDPA =CD 2AC 2.因为D 是弧BC ̂的中点,所以CD =BD ,因此PD PA =BD 2AC 2. 23. 解:(1)由ρcos(θ−π4)=2√2, 得ρ(cosθ+sinθ)=4,∴ l:x +y −4=0,∵ {x =√3cosθy =sinθ,(θ为参数),∴ 消去参数得x 23+y 2=1,∴ 曲线C 的普通方程为x 23+y 2=1和直线l 的直角坐标方程为x +y −4=0; (2)在C:{x =√3cosθy =sinθ上任取一点(√3cosθ, sinθ),则点P 到直线l 的距离为d =√3cosθ+sinθ−4|√2=|2sin(θ+π3)−4|√2≤3√2,∴ 当sin(θ+π3)=−1时,d max =3√2,此时这个点的坐标为(−32,−12).24. 解:(1)∵ |t +3|−|t −2|≤|(t +3)−(t −2)|=5, 不等式|t +3|−|t −2|≤6m −m 2对任意t ∈R 恒成立, 可得6m −m 2≥5,求得1≤m ≤5, 即实数m 的取值范围为{m|1≤m ≤5}. (2)由题意可得 λ=5,3x +4y +5z =5.∵ (x 2+y 2+z 2)(32+42+52)≥(3x +4y +5z)2=25, 当且仅当x3=y4=z5时,等号成立, 即x =310,y =25,z =12 时,取等号. ∴ 50(x 2+y 2+z 2)≥25,∴ x 2+y 2+z 2≥12,即x 2+y 2+z 2的最小值为12.。
高三2014-2015学年度第二次联考(参考答案)(4月28日定稿)
江西省新八校2014-2015学年度第二次联考高三数学理科试题卷参考答案一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
ACADA BCDAD CA二、填空题:本大题共4个小题,每小题5分,共20分.请把答案填在答题卡上.13.7114.023=+-y x 15.π10 16.),21[+∞-三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.请把答案做在答题卡上.17.解:(1)()1cos(2)3cos 21sin 23cos 212sin(2).23f x x x x x x ππ⎡⎤=-+-=+-=+-⎢⎥⎣⎦----3分 又,42x ππ⎡⎤∈⎢⎥⎣⎦,则32326πππ≤-≤x ,故当232x ππ-=, 即512x πα==时,max () 3.f x = -------------------------------------------------------------------------------6分(2)由(1)知123A ππα=-=,由2sin sin sin B C A =即2bc a =,又222222cos a b c bc A b c bc =+-=+-, 则22b c bc bc +-=即2()0b c -=,故0.b c -= c b =∴ 又123A ππα=-=所以三角形为等边三角形. 12分18.解:(1)依题意可得,任意抽取一位市民会购买口罩的概率为41, 从而任意抽取一位市民不会购买口罩的概率为43. 设“至少有一位市民会购买口罩”为事件A ,则,()6437642714313==⎪⎭⎫⎝⎛=--A P ,故至少有一位市民会购买口罩的概率6437. --------------------- 5分 (2)X 的所有可能取值为:0,1,2,3,4.-------------------------------6分()25681430404=⎪⎭⎫ ⎝⎛==C X P ,()642725610841431314==⨯⎪⎭⎫ ⎝⎛⨯==C X P ()1282725654414322224==⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P ,()6432561241433334==⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P ,()25614144=⎪⎭⎫⎝⎛==X P 所以X 的分布列为:X0 1 234P256816427 12827 643 2561 ---------------------------------------------------------------- 10分 ()125614643312827264271256810=⨯+⨯+⨯+⨯+⨯=X E 12分 或⎪⎭⎫ ⎝⎛414,B ~X ,1==∴np EX -----------------------------12分19.【解析】【方法一】(1)证明:由题意知23,D C = 则222B C D B D C B D D C+∴⊥=,, P D A B C D B D P D P D C D D ⊥∴⊥= 面而,,,..B D P DC P C PD C B D P C ∴⊥∴⊥ 面在面内,(6分) (2)过E 作EH CD ⊥交CD 于H ,再过H 作HN ⊥AB 交AB 于N ,连结EN ,则AB EN ⊥,故ENH ∠为所求角。
河南省信阳市2014届高中毕业班第一次调研检测数学(理)试题(扫描版).pdf
信阳市2013~2014学年度高中毕业班第一次调研检测 理科数学参考答案 7.B 代入验证可知ω的最小值为3. 8 ∵f′(x)=,f′(x)=f(x),∴=+,∴=-, 又∵0<x<1,∴可得->1,即>1,∴α∈(,). ∵f(2014)=f(5)=f(-2)=-f(2)<-1, <-1, 解得0<a<3. ∵=k=kx,∴要使方程=k(k>0)在(0,+∞)上有两个不同的解,则y=|的图象与直线y=kx(k>0),+∞)有且仅有个公共点,所以直线y=kx与y=|在(,)内相切,且切于点sin β),∴可得:-==,∴=2=2β 13.{x|1<x≤2} ∵(x-1)≥0,∴0<x-1≤1,解得1<x≤2,∴函数f(x)的定义域是{x|1<x≤2}. 解:(∵A={-1≤x≤5},B={x≤1或x≥4}, ∩B={-1≤x≤1或4≤x≤5}.5分 (Ⅱ)∵A∩B=, 又∵A={x|2-a≤x≤2+a}(a>0),B={x≤1或x≥4}, ∴0<a<1.10分 18.解:()由图象可知A=2,=-=,∴T=2,ω==. 将点(,2)代入y=2(πx+φ),得(+φ)=1,又|φ|<, 所以φ=故所求解析式为f(x)=2(πx+)(x∈R).6分 (Ⅱ)∵f()=,∴2(+)=,即(+)=,7分 ∴cos(-α)=[π-2(+)]=-(+)=2(+)-1=-.12分 19.解:()由b-c=a-ac,得==.由0<B<知==. ======.分 (Ⅱ)由ac=,得ac=3, 由b-c=a-ac,得(a+c)=b+ac=16,即a+c=4. 由正弦定理得+=×=.12分 20.解:()∵f(-1)=0,∴a-b+1=0,∴b=a+1, (x)=ax+(a+1)x+1.∵f(x)≥0恒成立, ∴∴a=1,从而b=2,∴f(x)=x+2x+1, (x)=分 (Ⅱ)g(x)=x+2x+1-kx=x+(2-k)x+1. (x)在[-2,2]上是单调函数, ≤-2或≥2,解得k≤-2,或k≥6. 的取值范围为(-∞,-2]∪[6,+∞).12分 22.解:()f′(x)=-2x+=-(x>0), 由得0<x<1; 由得x>1. (x)在(0,1)上为增函数,在(1,+∞)上为减函数,∴x=1是函数f(x)的极值点. (x)=x+,∴g′(x)=1-,又∵函数f(x)与g(x)=x+有相同极值点, =1是函数g(x)的极值点,∴g′(1)=1-a=0,解得a=1. 经检验,当a=1时,函数g(x)取到极小值,符合题意.5分 (Ⅱ)∵f()=--2,f(1)=-1,f(3)=-9+2, -9+2<--2<-1,即f(3)<f()<f(1), [,3],f(x)min=f (3)=-9+2,f(x)max=f(1)=-1. 由知g(x)=x+,∴g′(x)=1-故g(x)在[,1)时,g′(x)<0;当x∈(1,3]时,g′(x)>0. 故g(x)在[,1)上为减函数,在(1,3]上为增函数.()=+,g(1)=2,g(3)=3+=,而2<+<,∴g(1)<g()<g(3). [,],g(x)min=g(1)=2,g(x)max=g(3)=.。
2014-2015学年度第二学期综合练习(二)高三数学(理科)附答案
7 83 5 5 72 38 9 4 5 5 6 1 2 9 7 8 乙甲2014-2015学年度第二学期综合练习(二)高三数学(理科)学校_____________班级_______________姓名______________考号___________ 本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项) (1)23sin()6π-= (A )2-(B )12-(C )12(D (2)设4log a =π,14log b =π,4c =π,则a ,b ,c 的大小关系是(A ) b c a >> (B )a c b >> (C ) a b c >> (D )b a c >>(3)已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=(A )4 (B )8 (C )16 (D )64(4)甲、乙两名同学8次数学测验成绩如茎叶图所示,12,x x 分别表示甲、乙两名同学8次数学测验成绩的平均数,12,s s 分别表示甲、乙两名同学8次数学测验成绩的标准差,则有(A )12x x >,12s s < (B )12x x =,12s s <(C )12x x =,12s s = (D )12x x <,12s s >(5)已知p ,q 是简单命题,那么“p q ∧是真命题”是“p ⌝是真命题”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(6)若实数y x ,满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的取值范围是(A )[1,3]- (B )[1,11] (C )]3,1[ (D )]11,1[-(7)定义在R 上的函数()f x 满足)()6(x f x f =+.当)1,3[--∈x 时,2)2()(+-=x x f ,当)3,1[-∈x 时,x x f =)(,则(1)(2)(3)(2015)f f f f ++++=(A )336 (B )355 (C )1676 (D )2015(8)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012a a a ,其中{0,1}i a ∈(0,1,2i =),传输信息为00121h a a a h ,001h a a =⊕,102h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如原信息为111,则传输信息为01111.传播信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是(A )11010 (B )01100 (C )10111 (D )00011(p ,q )第二部分(非选择题 共110分)二、 填空题(共6小题,每小题5分,共30分)(9)若1)nx的二项展开式中各项的二项式系数的和是64,则n = ,展开式中的常数项为 .(用数字作答)(10)已知正数,x y 满足x y xy +=,那么x y +的最小值为 .(11)若直线12(32x t t y t =-+⎧⎨=-⎩,为参数)与曲线4cos (sin x a y a θθθ=+⎧⎨=⎩,为参数,0a >)有且只有(12)若双曲线22221(0,0)x y a b a b-=>>截抛物线24y x =的准线所得线段长为b ,则a = .(13)已知非零向量,a b 满足||1=b ,a 与-b a 的夹角为120,则||a 的取值范围是 .(14)如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”. 给出下列四个命题:① 若0p q ==,则“距离坐标”为② 若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个. ③ 若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个. ④ 若p q =,则点M 的轨迹是一条过O 点的直线. 其中所有正确命题的序号为 .EFA三、解答题(共6小题,共80分。
2014级高三二诊数学(理)参考答案及评分意见
( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. D; 2. A; 3. B; 4. A; 5. D; ; ; ; ; 7. B 8. C 9. D 1 0. C 1 1. D; ) 第 Ⅱ 卷( 非选择题 , 共9 分 0 ( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 2 n 1 3. ㊀㊀1 4. 3 2. 8; ㊀㊀1 5. 4; ㊀㊀1 6. . -2; n +1 ( 三㊁ 解答题 : 共7 0 分) B E C E ( 解: 在 әB 据正弦定理 , 有 1 7. Ⅰ) E C 中, . = s i n øB C E s i n B 2 π , ȵ øB = B E =1, C E= 7, 3 3 B E ������s i n B 2 2 1 ʑ s i n øB C E= . = = C E 1 4 7 ( 由平面几何知识 , 可知 øD Ⅱ) E A = øB C E. π 在R t әA E D中, ȵ øA = , A E =5, 2 3 57 2 ʑc o s øD E A = 1-s i n øD E A = 1- = . 2 8 1 4 第 Ⅰ 卷( 选择题 , 共6 0 分) 6. C; 1 2. A.
ɡ ɡ ɡ
C D2 = C E2 +D E2 -2 C E������D E������ c o s øC E D = 7+2 8-2ˑ 7 ˑ2 7 ˑ ( -
当 x =5 7 0时, 3ˑ5 7 0+4 3 3. 2=6 0 4. 2. y =0.
������������������������1 0分
高三数学 ( 理科 ) 二诊测试参考答案第 ㊀ 共 5页) 1 页(
������������������������1 特征量 y 的估计值为 6 ʑ 当 x =5 7 0时, 0 4. 2. 2分 ( 解: 如图 , 作 GM ʊ C 交B 连接 MF . 1 9. Ⅰ) D, C 于点 M , 作 BH ʊ AD , 交 GM 于 N , 交D C 于H. ȵE F ʊC D ,ʑGM ʊ E F. ʑGN =A B =3, HC =9. ȵA B ʊ GM ʊ D C, NM BM A G 2 ʑ = = = . HC B C AD 3 ʑNM =6. ʑGM =GN + NM =9. ������������������������4 分 ʑGM ������E F. ʑ 四边形 GMF E 为平行四边形 . ʑG E ʊ MF . 又 MF ⊂ 平面 B C F, G E ⊄ 平面 B C F, ������������������������6 分 ʑG E ʊ 平面 B C F. ( Ⅱ )ȵ 平面 AD E ʅ 平面 C D E F, AD ʅ D E, AD ⊂ 平面 AD E, ʑAD ʅ 平面 C D E F. 以 D 为坐标原点 , D C 为x 轴 , D E 为y 轴 , DA 为z 轴建立如图所示的空间直角坐标 系D x z. y ʑ E (0, 4, 0) , F (9, 4, 0) , C (1 2, 0, 0) , B (3, 0, 4 3) . ң ң , , , ( ) ʑE F = 900 E B = (3, 4 3) . -4, 设平面 E B F 的法向量n1 = (x1 , z1 ) . y1 , ң x1 =0 n ������E F =0, 9 由 1 得 . ң 3 x1 -4 z1 =0 ������ y1 +4 3 n1 E B =0 ������������������������8 分 取 y1 = 3 , 得 n1 = (0,3, 1) . ң ң 同理 , F C = (3, 0) , F B = ( -6, -4, 4 3) . -4, , ) 设平面 B C F 的法向量n2 = ( x2 , z . y2 2 ң 3 x 4 ������ - =0 2 2 y n F C =0, 由 2 得 . ң x2 -4 z2 =0 -6 y2 +4 3 n2 ������F B =0 ������������������������1 取 x2 =4, 得 n2 = (4, 0分 3, 3 3) . n1 ������ n2 0ˑ4+ 3 ˑ3+1ˑ3 3 63 3 3 9 ʑ c o s< n1 , n2 >= . = = = n1 | n2 | 2 6 | | 2ˑ 1 6+9+2 7 2ˑ2 1 3 ������������������������1 1分 ȵ 二面角 E -B F -C 为钝二面角 ,
河南省信阳市高三化学毕业班第二次调研检测试题(含解析)新人教版
信阳市2014—2015学年度高中毕业班第二次调研检测化 学注意事项:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B 铅笔将准考证号填涂在相应位置。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Fe 56 Cu 64第Ⅰ卷一.选择题(本大题共16小题,每小题3分共计48分)1.下列说法正确的是( )A .石油裂解和油脂皂化都有高分子生成小分子的过程B .NOx 、CO2、PM2.5颗粒都会导致酸雨C .工业制备铝可用热还原的方法D .高铁车厢大部分材料采用铝合金,因铝合金强度大、质量轻、抗腐蚀能力强1.D命题立意:考查化学与生活及工业生产的关系。
解析:A 石油裂解为大分子变小分子,油脂不是高分子,A 错;B 中CO2不能形成酸雨,PM2.5颗粒是可吸入颗粒物,不能形成酸雨,故B 错误;C 中工业制备铝采用电解法,因其活泼不能采用热还原法;D 正确。
选D 。
2.下列关于化学用语的表示正确的是( )A .镁离子结构示意图:B .质子数与中子数相等的硫原子:1616SC .二氟化氧分子电子式:D .对甲基苯酚结构简式:2.D命题立意:考查化学用语的准确表达。
解析:A 中镁离子外层应为10电子,图中为原子结构示意图,A 错;B 中符合要求的为3216S ,故B 错;C 中二氟化氧的电子式应为 ,C 错;D 符合命名要求,正确,选D 。
3.若NA 为阿伏加德罗常数的值,下列判断在标准状况下正确的是( )A .标况下22.4L 的HF 中含共价键键数目为1.0NAB .将22.4LNH3溶于1L 水中,溶液含有OH -数目为0.1NAC .69gNO2与足量水反应后,转移的电子数为2NAD .0.25mol Na2O2中含有的阴离子数为0.25NA3.D命题立意:考查阿伏加德罗常数。
河南省信阳市2015届高中毕业班第二次调研检测数学文试题 Word版含答案
信阳市2014--2015学年度高中毕业班调研检测文科数学注意事项:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B铅笔2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.53.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
1.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是 (A)2k ≤ (B)1k ≥- (C)1k >- (D)2k ≥ 2.在复平面内,复数201532i iZ +-=对应的点位于 (A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于 (A)36 (B)45 (C)54 (D)27 4.已知a =, b =, c =,则a 、b 、c 的大小关系是5.在“信阳市中学生歌手大赛”比赛现场上七位评委为某选手打 出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后, 所剩数据的平均数和方差分别为(A)5和1.6 (B)85和1.6 (C) 85和0.4 (D) 5和0.4 6.执行如图所示的程序框图输出的结果是(A)55 (B)65 (C)78 (D)89 7.已知函数()sin()f x A x x R ωϕ=+∈,(其中0022A ππωϕ>>-<<,,),其部分图像如下图所示,将()f x 的图像纵坐标不变,横坐标变成原来的2倍,再向右平移1个单位得到()g x 的图像,则函数()g x 的解析式为 (A)()sin(1)2g x x π=+ (B)()sin(1)8g x x π=+ (C)()sin(1)2g x x π=+ (D)()sin(1)8g x x π=+8.已知函数y =f (x )(x ∈R )满足f (x +1)=f (x -1),且当x ∈[-1,1]时,f (x )=x 2,则y =f (x )y =z★2015年2月8日与5||y log x =的图象的交点个数为 (A) 3 (B) 4(C) 5(D) 69.下列命题中,真命题是(A)对于任意x ∈R ,22x x >;(B)若“p 且q ”为假命题,则p ,q 均为假命题;(C)“平面向量b α,的夹角是钝角”的充分不必要条件是“0<⋅b α”; (D)存在m ∈R ,使243()(1)m m f x m x -+=-是幂函数,且在()0,+∞上是递减的.10.函数sin 222x xxy -=+的图像大致为(A) (B) (C) (D)11. 已知双曲线2221(0)9x y b b-=>,过其右焦点F 作圆229x y +=的两条切线,切点记作C ,D ,双曲线的右顶点为E ,0150CED ∠=,则其双曲线的离心率为3212.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =)('x f 的图(A) [)2,1 (B)[]2,1 (C) ()3,2 (D )[)3,1 13.已知向量α与b 的夹角为120°,且4==b α,那么)(2b αb +⋅的值为________.14.已知实数x,y 满足约束条件104312020x y x y y -+≥⎧⎪+-≤⎨⎪-≥⎩,则211x y z x -+=+的最大值为 。
河南省信阳市高三数学毕业班第二次调研检测试题 文
信阳市2014--2015学年度高中毕业班调研检测文科数学注意事项:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B 铅笔将准考证号填涂在相应位置。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
1.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是(A)2k ≤ (B)1k ≥- (C)1k >- (D)2k ≥2.在复平面内,复数201532i i Z +-=对应的点位于(A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限3.设等差数列{an}的前n 项和为Sn ,若2a8=6+a11,则S9的值等于 (A)36 (B)45 (C)54 (D)274.已知a=, b=, c=,则a 、b 、c的大小关系是出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后, 所剩数据的平均数和方差分别为(A)5和1.6 (B)85和1.6 (C) 85和0.4 (D) 5和0.46.执行如图所示的程序框图输出的结果是(A)55 (B)65 (C)78 (D)89已知函数()sin()f x A x x R ωϕ=+∈,(其中0022A ππωϕ>>-<<,,),其部分图像如下图所示,将()f x 的图像纵坐标不变,横坐标变成原来的2倍,再向右平移1个单位得到()g x 的图像,则函数()g x 的解析式为(A)()sin(1)2g x x π=+ (B)()sin(1)8g x x π=+(C)()sin(1)2g x x π=+ (D)()sin(1)8g x x π=+已知函数y=f(x)(x ∈R)满足f(x+1)=f(x-1),且当x ∈[-1,1]时,f(x)=x2,则y=f(x) 与5||y log x =的图象的交点个数为(A) 3(B) 4(C) 5 (D) 6下列命题中,真命题是(A)对于任意x ∈R ,22xx >;(B)若“p 且q”为假命题,则p,q 均为假命题;(C)“平面向量b α,的夹角是钝角”的充分不必要条件是“0<⋅b α”; (D)存在m ∈R ,使243()(1)m m f x m x -+=-是幂函数,且在()0,+∞上是递减的. 10.函数sin 222x x xy -=+的图像大致为(A) (B) (C) (D)已知双曲线2221(0)9x y b b -=>,过其右焦点F 作圆229x y +=的两条切线,切点记作C , D ,双曲线的右顶点为E ,0150CED ∠=,则其双曲线的离心率为(A) (B)32(C)(D)12.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f(x )的导函数y=)('x f 的图象如图所示.[)2,1 (B)[]2,1 (C) ()3,2 (D)[)3,113.已知向量α与b 的夹角为120°,且4==b α,那么)(2b αb +⋅的值为________. 14.已知实数x,y 满足约束条件104312020x y x y y -+≥⎧⎪+-≤⎨⎪-≥⎩,则211x y z x -+=+的最大值为 。
2014-2015学年度下学期第二次质量检测卷 高二数学(理)
2014-2015学年度下学期第二次质量检测卷高二数学(理)注意事项:1.本试题共分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷共150分,时间120分钟。
2.第I 卷必须使用2B 铅笔填涂答题卡相应题目的答案标号,修改时,要用橡皮擦干净。
3.第II 卷必须使用0.5毫米的黑色墨水签字笔书写在答题纸的指定位置,在草稿纸和本卷上答题无效。
第I 卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.z 是z 的共轭复数,若2)(,2=-=+i z z z z (i 为虚数单位),则复数z 的虚部是( )A .i -B .iC .1D .1- 2.已知xf x f x x f x ∆-∆+=→∆)2()2(lim,1)(0则的值是( ) A . 41 B . 41- C . 2 D . ln 23.下面使用类比推理正确的是( ). A .“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =”B .“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C .“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D .“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 4.若二项式7)2(x a x +的展开式中31x的系数是84,则实数a = ( )A .2B .54C .1D .425.若离散型随机变量X 的分布列如图,则常数c 的值为( )X 0 1Pc c -29 c 83-A .3132或B .32C .31D .16.用反证法证明命题“设b a ,为实数,则方程03=-+b ax x ,至少有一个实根”时要做的假设是( )A .方程03=-+b ax x 没有实根B .方程03=-+b ax x 至多有一个实根C .方程03=-+b ax x 至多有两个实根D .方程03=-+b ax x 恰好有两个实根7.用数学归纳法证明“))(12(5312)()2)(1(*N n n n n n n n ∈-⨯⋅⋅⋅⨯⨯⨯⨯=+⋅⋅⋅++”时,从1+==k n k n 到,等式左边需要增乘的代数式是( ) A .12+k B .112++k k C .1)22)(12(+++k k k D .132++k k8.若⎰+=12)(2)(dx x f x x f ,则⎰10)(dx x f =( )A .1-B .31-C .31D . 19.某校计划组织高二年级四个班级开展研学旅行活动,初选了甲、乙、丙、丁四条不同的研学线路,每个班级只能在这四条线路中选择其中的一条,且同一条线路最多只能有两个班级选择,则不同的方案有( )A .240种B .204种C .188种D .96种 10.定义在R 上的函数)(x f 满足:'()()1,(0)5f x f x f +>=,则不等式x x e x f e +>4)(的解集为 ( )A .)0,(-∞B .),0()0,(+∞-∞C .),3()0,(+∞-∞D .),0(+∞第II 卷 非选择题 (共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11.把5件不同的产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有____________种(用数字作答).12.设6655443322106)12()12()12()12()12()12()23(-+-+-+-+-+-+=-x a x a x a x a x a x a a x 则=++531a a a ________________. 13.计算dx x ⎰-1024=______________.14.关于)5,4,3,2,1(=i x i 的方程)(10*54321N x x x x x x i ∈=++++的所有解的组数是__________.(用数字作答)15.已知函数()f x 的导函数()f x '的图象如图, 下列说法正确的是 (只填序号)①函数()f x 在1x =处取得极小值1- ; ②函数()f x 在0x =和1x =处取得极值;③函数()f x 在(,1)-∞上是单调递减函数,在(1,)+∞上是单调递增函数; ④函数()f x 在(,0)-∞和(2,)+∞上是单调递增函数,在(0,2)上是单调递减函数;⑤函数()f x 在0x =处取得极小值,在2x =处取得极大值.三、解答题(本大题共6个小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知复数(13i)(1i)(13i)z i-+--+=错误!未找到引用源。
(理科)专题训练(二项式定理、分布列、期望与方差)
高三数学(理科)专题训练(1)-----概率、二项式定理、分布列、数学期望1.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平面线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36D.242..甲、乙两人进行象棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是()A.0.6B.0.8C.0.2D.0.43.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为()A.0.20 B.0.60 C.0.80D.0.124.掷一颗质地均匀的骰子,观察所得的点数a,设事件A:a=3;事件B:a=4;事件C:a为奇数,则下列结论正确的是() A.A与B为互斥事件B.A与B为对立事件C.A与C为对立事件D.A与C为互斥事件5.某家庭电话在家里有人时,打进电话响第一声被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前4声内被接的概率是()A.0.622 B.0.9 C.0.659 8 D.0.002 87.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为()A.①B.②C.③D.④7.已知(x+ax)6(a>0)的展开式中常数项为240,则(x+a)(x-2a)2的展开式中x2项的系数为________.8.已知a=π2(sin2x2-12)d x,则(ax+12ax)9的展开式中,关于x的一次项的系数为________.9.自“钓鱼岛事件”以来,中日关系日趋紧张并不断升级.为了积极响应“保钓行动”,某学校举办了一场“保钓知识大赛”,共分两组.其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生.现从得满分的同学中,每组各任选2个同学,作为“保钓行动代言人”.(1)求选出的4个同学中恰有1个女生的概率;(2)设X为选出的4个同学中女生的个数,求X的分布列和数学期望.高三数学(理科)专题训练(2)-----概率、二项式定理、分布列、数学期望1.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=( ) A.16B.13C.12D.23.2.设随机变量ξ的概率分布列为P (ξ=i )=i a )43(i,i =1,2,3,则a 的值是( )A.64111B.64101C.2764D.37643.设随机变量X 的概率分布列如下表所示:F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )=( )A.13B.16C.12D.564.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,且a 、b 、c ∈(0,1),已知他投篮一次得分的数学期望为1(不计其他得分情况),则ab 的最大值为________.5..已知⎝⎛⎭⎪⎫x +13x n 的展开式的二项式系数之和比(a +b )2n 的展开式的系数之和小240,求⎝ ⎛⎭⎪⎫x +13x n的展开式中系数最大的项.6.(2014·北京)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.7.离散型随机变量X 的概率分布规律为P (X =n )=ann +1(n =1,2,3,4),其中a 是常数,则P ()12<X <52=______.8.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.9.(河南省信阳市2015届高中毕业班第二次调研检测数学理试题19).某高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值;(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿; (Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)X -1 0 1 PabcX 0 1 2 Pa1316【参考答案】高三数学(理科)专题训练-----概率、二项式定理、分布列、数学期望(1)1.【答案】B【解析】长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.2.【答案】A【解析】甲获胜的概率是0.4,两人下成和棋的概率是0.2,所以甲不输的概率为0.4+0.2=0.6.故选A.3.【答案】C【解析】由互斥事件的概率加法公式可得,该乘客在5分钟内能乘上所需的车的概率为0.20+0.60=0.80.故选C.4.【答案】A【解析】依题意,事件A与B不可能同时发生,故A与B是互斥事件,但A与B不是对立事件,显然,A与C既不是对立事件也不是互斥事件.故选A.5.【答案】B【解析】根据互斥事件的概率加法公式,电话在响前4声内被接的概率=电话响第一声被接的概率+响第二声时被接的概率+响第三声时被接的概率+响第四声时被接的概率,故电话在响前4声内被接的概率是0.1+0.3+0.4+0.1=0.9,故选B.6.【答案】B【解析】从7个球中任取3个球的所有可能为:1个白球2个黑球;2个白球1个黑球;3个白球;3个黑球.故①中的两事件互斥,但不对立;②中的两事件对立;③中的两事件中不互斥;④中的两事件不互斥,故选B.7.【答案】-6【解析】(x+ax)6的二项展开式的通项T r+1=C r6x6-r(ax)r=C r6362rax-,令6-3r2=0,得r=4,则其常数项为C46a4=15a4=240,则a4=16,由a>0,故a=2.又(x+a)(x-2a)2的展开式中,x2项为-3ax2,故x2项的系数为(-3)×2=-6.8.【答案】-6316【解析】a=π2⎰(sin2x2-12)d x=π20⎰(1-cos x2-12)d x=π20⎰(-cos x2)d x=-12sin xπ20|=-12.此时二项展开式的通项为T r+1=C r 9(-12x )9-r (-1x )r =C r 9(-12)9-r (-1)r x 9-2r ,令9-2r =1,得r =4,所以关于x 的一次项的系数为C 49(-12)9-4(-1)4=-6316. 9.【解析】(1)设“从甲组内选出的2个同学均是男生;从乙组内选出的2个同学中,1个是男生,1个是女生”为事件A ,“从乙组内选出的2个同学均是男生;从甲组内选出的2个同学中1个是男生,1个是女生”为事件B ,由于事件A ,B 互斥,且P (A )=C 23C 12C 14C 24C 26=415,P (B )=C 13C 24C 24C 26=15.所以选出的4个同学中恰有1个女生的概率为P (A +B )=P (A )+P (B )=415+15=715. (2)由条件知X 的所有可能值为0,1,2,3.;P (X =0)=C 23C 24C 24C 26=15,P (X =1)=C 23C 12C 14+C 13C 24C 24C 26=715,P (X =3)=C 13C 24C 26=130,P (X =2)=1-15-715-130=310.[来源所以X 的分布列为 所以X 的数学期望为E (X )=0×15+1×715+2×310+3×130=76.高三数学(理科)专题训练-----概率、二项式定理、分布列、数学期望(2)1.【答案】D 【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,得b =13,所以P (|X |=1)=a +c =23.故选D2.【答案】A 【解析】1=P (ξ=1)+P (ξ=2)+P (ξ=3)=a ⎣⎡⎦⎤34+()342+()343,解得a =64111,选A. 3.【答案】D 【解析】∵a +13+16=1,∴a =12.[来源:学_科_网]∵x ∈[1,2),∴F (x )=P (X ≤x )=12+13=56.选D.4.【答案】124 【解析】由已知3a +2b +0×c =1,∴3a +2b =1,∴ab =16·3a ·2b ≤163a +2b24=124,当且仅当a =16,b =14时等号成立. 5.【解析】由题意,得2n =22n -240,∴22n -2n -240=0,即(2n -16)(2n +15)=0.又∵2n +15>0,∴2n -16=0.∴n =4.∴⎝⎛⎭⎪⎫x +13x n =⎝⎛⎭⎪⎫x +13x 4。
河南省信阳市2015届高三上学期第二次调研检测(期末)数学(理)试题(扫描版)
高三数学理科参考答案一、BCAAC DCABD CB 二、13.3 14. -10 15.2 16. 2三、17. 解:(Ⅰ)x x f 2sin 3)()(2++=b a212cos 2cos 222x x x x =++=+ =2)6π2sin(2++x , 当且仅当23ππ26π2+=+k x ,即32ππ+=k x )(Z ∈k 时,()0f x =min , 此时x 的集合是⎭⎬⎫⎩⎨⎧∈+=Z k k x x π,32π|. ……………… 6分 (Ⅱ)由)(2ππ26π22ππ2Z ∈+≤+≤k k x k -,所以)(6ππ3ππZ ∈+≤≤k k x k -, ∴函数()f x 的单调递增区间为)](6ππ,3ππ[Z ∈+k k k -. ……… 12分18.解:(Ⅰ)∵22n n S a =- ① 当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当n=1时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列, ∴数列{}n a 的通项公式为1222-=⋅=n n n a . 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………6分 (Ⅱ)由(Ⅰ)知,(21)2=-nn c n∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅L n nn T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅L n n n n T n n n ④由③-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅L n n n n T n 23112(12222)(21)2-+-=++++--⋅L n n n n T n∴62)23(1-⋅-=-+n n n T ∴62)32(2+⋅-=+n n n T∴数列{}n c 的前n 项和62)32(1+⋅-=+n n n T ……………………………12分19. 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.∴ 0.0125x =. ..........................3分 (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ∵12000.12144⨯=,∴1200名新生中有144名学生可以申请住宿.................... 6分(Ⅲ)∵X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 411(4)4256P X ⎛⎫=== ⎪⎝⎭. .................. 10分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为1. ................. 12分20.解:(Ⅰ)由已知可得⎪⎩⎪⎨⎧==-=,3,42222b a b a c 解得a 2=6,b 2=2.∴椭圆C 的标准方程是12622=+y x . ……………………………………………4分(Ⅱ)由(Ⅰ)可得,F 点的坐标是(2,0).设直线P Q 的方程为x =my +2,将直线P Q 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my +2,x 26+y 22=1.消去x ,得(m 2+3)y 2+4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.设P (x 1,y 1),Q(x 2,y 2),则y 1+y 2=-4m m 2+3,y 1y 2=-2m 2+3.于是x 1+x 2=m (y 1+y 2)+4=12m 2+3.设M 为P Q 的中点,则M 点的坐标为)32,36(22+-+m mm .∵TF ⊥P Q ,所以直线FT 的斜率为m -,其方程为)2(--=x m y . 当t x =时,()2--=t m y ,所以点T 的坐标为()()2,--t m t ,此时直线OT 的斜率为()tt m 2--,其方程为x t t m y )2(-=. 将M 点的坐标为)32,36(22+-+m m m 代入上式,得36)2(3222+⋅-=+-m t t m m m . 解得3=t . ………………………………………………12分21.解.(Ⅰ)由1e )(--=ax x f x ,得a x f x -='e )(.又11)0(-=-='a f ,∴2=a .∴12e )(--=x x f x ,2e )(-='x x f . 由02e )(>-='x x f ,得2ln >x .∴函数)(x f 在区间)2ln ,(-∞上单调递减,在),2(ln +∞上单调递增. …………4分 (Ⅱ)证明:由(Ⅰ)知4ln 112ln 2e)2(ln )(2ln min -=--==f x f .∴4ln 1)(-≥x f ,即4ln 112e -≥--x x,04ln 22e >-≥-x x.令1e )(2--=x x g x ,则02e )(>-='x x g x.∴)(x g 在),0(+∞上单调递增,∴0)0(1e )(2=>--=g x x g x , ∴1e 2+>x x.…………(8分) (Ⅲ)首先证明:当0>x 时,恒有331e x x>. 令331e )(x x h x-=,则2e )(x x h x -='. 由(Ⅱ)知,当0>x 时,2e x x >,所以0)(>x h ,所以)(x h 在),0(+∞上单调递增,∴01)0()(>=>h x h ,所以331e x x>. ∴)31ln(3x x >,即x x ln 33ln >+.依次取nn x 1,,23,12+=Λ,代入上式,则 12ln 33ln 12>+,23ln 33ln 23>+,ΛΛnn n n 1ln 33ln 1+>++. 以上各式相加,有)12312ln(33ln 12312nn n n n +⨯⨯⨯>+++++ΛΛ∴()1ln 33ln )131211(+>++++++n n n n Λ,∴()n n n n--+>++++3ln 1ln 3131211Λ,即()n n n n e31ln 1312113+>++++Λ……………………………………12分22. (Ⅰ)∵PA 是圆O 的切线 ∴ACB PAB ∠=∠ 又P ∠是公共角 ∴ABP ∆∽CAP ∆ …………………2分∴2==PBAPAB AC ∴AB AC 2= ………4分(Ⅱ)由切割线定理得:PC PB PA ⋅=2 ∴20=PC又PB=5 ∴15=BC ………6分 又∵AD 是BAC ∠的平分线 ∴2==DB CD AB AC ∴DB CD 2= ∴5,10==DB CD ………8分 又由相交弦定理得:50=⋅=⋅DB CD DE AD ………10分23.解:(Ⅰ)(方法一)曲线C 的直角坐标方程为05622=+-+x y x即4)3(22=+-y x ∴曲线C 是圆心为(3,0),半径为2的圆.∵直线l 的方程为:0sin cos sin =+-αααy x ………3分 ∵直线l 与曲线C 相切 ∴2cos sin |sin sin 3|22=++αααα即21sin =α ………5分 ∵ α∈[0,π) ∴α=656ππ或 ………6分 (法二)将05cos 62=+-θρρ化成直角坐标方程为05622=+-+x y x ……2分由⎪⎩⎪⎨⎧=+-==+-+ααsin cos 105622t y t x x y x 消去y x ,得012cos 82=+-αt t …………4分 ∵ l 与C 相切 ∴ Δ=64α2cos -48=0 解得cos α=23±∵ α∈[0,π) ∴α=656ππ或 …………6分 (Ⅱ)设θθsin 2,cos 23=+=y x则 y x +=θθsin 2cos 23++)4sin(223πθ++= ………9分∴ y x +的取值范围是[]223,223+-. ………10分24.解:(Ⅰ)∵ab b a ab 2222≥+= 即ab ab ≥ ∴1≤ab ………2分 又2b211≥≥+a b a 当且仅当b a =时取等号. ∴ 2m = ………5分 (Ⅱ)()f x 2|1||1|||≥+≥++-=tt t x t x ………9分 ∴ 满足条件的实数x 不存在. ………10分。
2014—2015学年度第二学期阶段检测高三数学(理)附答案
2014—2015学年度第二学期阶段检测高三数学(理)一.选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一选项是符合题目要求的)1. 已知集合⎭⎬⎫⎩⎨⎧=2121,,A , {}A x x y yB ∈==,|2, 则B A = ( )A. ⎭⎬⎫⎩⎨⎧21 B. {}2 C. {}1 D. Φ 2. 在复平面内,复数iiz 212+-=的共轭复数的虚部为 ( )A .- 25B . 25C .25 iD .- 25 i3.将函数)sin(ϕ+=x y 2的图象沿x 轴向左平移8π个 单位后,得到一个偶函数的图象,则ϕ的一个可能取 值为( )A.43π B. 4π C. 0 D. - 4π 4.阅读程序框图,若输入64==n m ,, 则输出i a ,分别是( )A .312==i a ,B .412==i a ,C .38==i a ,D .48==i a ,5.某校在一次期中考试结束后,把全校文、理科总分前10名学生的数学成绩(满分150分)抽出来进行对比分析,得到如图所示的茎叶图. 若从数学成绩高于120分的学生中抽取3人, 分别到三个班级进行数学学习方法交流, 则满足理科人数多于文科人数的情况有( )种A . 3081B . 1512C . 1848D . 20146.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为 ( )A .34πB .23πC .πD .π37.下列说法正确的是( )A .命题“若1<x , 则 11<≤-x ”的逆否命题是“若1≥x , 则1-<x 或1≥x ”;正视图侧视图俯视图理科 文科1413 1211 8 6 6 9 8 810 9 8 9 80 1 2 6 8 8 6 9 9 6 第(5)题 图B .命题“R x ∈∀, 0>x e ”的否定是“R x ∈∀, 0≤xe ”;C .“0>a ”是“函数x ax x f )()(1-=在区间),(0-∞上单调递减”的充要条件;D .已知命题x x R x p lg ln ,:<∈∀;命题203001x x R x q -=∈∃,: , 则 “)()(q p ⌝∨⌝为真命题”. 8. 已知点M 是AB C 的重心,若A =60°,3=⋅AC AB ,则||的最小值为( )A B C .3D .2 9.设21x x ,分别是方程1=⋅xa x 和1=⋅x x a log 的根(其中1>a ), 则212x x +的取值范围是( )A. ),(+∞3B. ),[+∞3C. ),(+∞22D. ),[+∞2210.已知数列{}n a 的前n 项和为n S ,且)(,*N n S a a n n ∈+==+12111,在等差数列{}n b 中,52=b ,且公差2=d .使得n b a b a b a n n 602211>+++ 成立的最小正整数n 为( ) A .2 B .3 C .4 D .511.已知F 为抛物线x y =2的焦点,点A 、B 在该抛物线上且位于x 轴两侧,且 6=⋅OB OA (O 为坐标原点),则ABO ∆与AOF ∆面积之和的最小值为( ) A. 4 B.3132 C. 1724 D.1012.已知函数;)(201543212015432x x x x x x f ++-+-+= ;)(201543212015432x x x x x x g --+-+-= 设函数),()()(43-⋅+=x g x f x F 且函数)(x F 的零点均在区间),,](,[Z b a b a b a ∈<内,则a b -的最小值为( )8.A 9.B 10.C 11.D二.填空题(本题共4个小题,每小5分,满分20分)13.已知11(1a dx -=+⎰,则61[(1)]2a x xπ---展开式中的常数项为_____ 14.任取],[11-∈k ,直线)(2+=x k y 与圆422=+y x 相交于N M ,两点,则32≥||MN 的概率是15. 已知数列{}n a 的前n 项和为n S , 满足322211-=≥=++a n a S S n n n ),(, 则=n S第18题图16.已知)()(02≠+=a bx ax x f , 若,)(,)(412211≤≤≤-≤-f f 且02=-+b bc ac (a,b,c R ),则实数c 的取值范围是三.解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.( 本小题满分12分) 在ABC ∆中,若32=||AC ,且.sin cos cos B C A ⋅=⋅+⋅ (1)求角B 的大小;(2)求ABC ∆的面积S .18. ( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示. (1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.(2)从该班中任意选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.(3)从该班中任意选两名学生,用η表示 这两人参加活动次数之和,记“函数2()1f x x x η=--在区间(3,5)上有且只有一个零点”为事件A ,求事件A 发生的概率.19.(本题满分12分)已知四棱锥ABCD P -中,ABCD PC 底面⊥,2=PC ,且底面ABCD 是边长为1的正方形,E 是侧棱PC 上的一点(如图所示).(1)如果点F 在线段BD 上,BF DF 3=,且PAB EF 平面//,求ECPE的值; (2)在(1)的条件下,求二面角C EF B --的余弦值.20.(本题满分12分)已知椭圆)(:0122221>>=+b a b y a x C 的离心率为23=e ,且过点),(231,抛物线)(:0222>-=p py x C 的焦点坐标为),(210-.P C D A BEF 第19题图(1)求椭圆1C 和抛物线2C 的方程;(2)若点M 是直线0342=+-y x l :上的动点,过点M 作抛物线2C 的两条切线,切点分别是B A ,,直线AB 交椭圆1C 于Q P ,两点.(i)求证:直线AB 过定点,并求出该定点的坐标; (ii)当OPQ ∆的面积取最大值时,求直线AB 的方程.21.(本小题满分12分)已知函数.ln )(x x f = (1)若直线m x y +=21是曲线)(x f y =的切线,求m 的值; (2)若直线b ax y +=是曲线)(x f y =的切线,求ab 的最大值;(3)设),(),,(),,(332211y x C y x B y x A 是曲线)(x f y =上相异三点,其中.3210x x x <<< 求证:.)()()()(23231212x x x f x f x x x f x f -->--选做题:请考生在22,23,24题中任选一题作答,如果多选则按所做的第一题记分,作答时,请涂明题号.22.(本小题满分10分)选修4-1:几何证明选讲 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE =AC ,DE 交AB 于点F ,且42==BP AB , (I )求PF 的长度.(II )若圆F 与圆O 内切,直线PT 与圆F 切于点T ,求线段PT 的长度 23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 24.(本小题满分10分)选修4-5:不等式选讲AC PDOE F B第20 题图已知函数()|2|,()|3|.f x x g x x m =-=-++ (1) 解关于x 的不等式()10()f x a a R +->∈;(2) 若函数()f x 的图象恒在函数()g x 图象的上方,求m 的取值范围.高三数学参考答案一.CBBAC BDBAC BC 二.13. __-20___ ;14. 33;15.- n+1n+2 ;16. [-3-212 , -3+212 ]三.解答题17. 解:(1)由题可知:在∆ABC 中,⎪AC uuu r⎪ = 2 3 , AB uuu r⋅cosC + BC uuu r⋅cosA = AC uuu r⋅sinB ,因为: AC = + ,AB uuu r⋅cosC + BC uuu r ⋅cosA = (AB uuu r +BC uuur )⋅sinB , 即:(cosC - sinB )AB uuu r+ (cosA - sinB )BC uuu r= 0-------2分而AB uuu r 、BC uuu r是两不共线向量,所以:⎩⎨⎧==B A BC sin cos sin cos ⇒ cosC = cosA ,0 < A,C < π , ∴ A = C , ∆ABC 为等腰三角形.在等腰∆ABC 中,A + B + C = π , ∴ 2A + B = π , A = π2 - B 2 ;由上知:cosA = cos( π2 - B2 )= sin B 2 = sinB, ∴sin B 2 = 2sin B 2 cos B 2 , ∴ cos B 2 = 12 , 0 < B 2 < π2,∴ B 2 = π3 , B = 2π3,-------------6分 (2)由(1)知:则A = C = π6 , 由正弦定理得:⎪AC ⎪sin 2π3= ⎪BC ⎪sin π6 ,∴⎪⎪ = 2 , S ∆ABC = 12 ⎪AC uuu r⎪⋅⎪⎪sin π6 = 12 ×2 3 ×2 ×12 = 3 --12分18.解:(1)从该班任取两名学生,他们参加活动的次数恰好相等的概率:P = 25022022525C C C C ++ = 2049 ,故P = 1 - 2049 = 2949 .-----4分 (2) 从该班中任选两名学生,用ξ表示这两学生参加活动次数之差的绝对值,则ξ的可能取值分别为:0 ,1,2,于是P(ξ = 0)= 2049 , P(ξ = 1)= 25012512012515CC C C C += 2549 ,P(ξ = 2)= 25012015C C C = 449 , 从而ξ的分布列为: E ξ = 0⨯2049 + 1⨯ 2549 + 2⨯ 449 = 3349.---------------8分(3) 因为函数f(x) = x 2- ηx – 1 在区间(3,5)上有且只有一个零点,则 f(3)⋅f(5) < 0 , 即:(8 - 3η)(24- 5η) < 0 , ∴83 < η < 245 -------10分又由于η的取值分别为:2,3,4,5,6,故η = 3或4,故所求的概率为:P(A)= 2502251512012515C C C C C C ++ = 37 .------------------12分 19.解:(1)连接CF 并延长交AB 于K ,连接PK ,因为:EF//平面PAB ,EF ⊂ 平面PCK ,平面PCK ⋂平面PAB = PK , ∴ EF// PK ,因为DF=3FB ,AB//CD ,∴ CF=3KF , 又因为:EF// PK ,∴ CE= 3PE, ∴ PE EC = 13-----4分(2) 以C 为原点,CD ,CB ,CP 所在直线为x 轴,y 轴,z 轴建立空间坐标系 (如图所示)则有:C(0,0,0) , D(1,0,0),A(1,1,0)B(0,1,0),P(0,0,2), E(0,0, 32 ),F(14 ,34 ,0)故EFuu u r= (14 ,34 ,- 32),BF uu u r= (14 ,- 14,0) zCFuu r= (14 ,34,0)-----------6分 设1n u r= (x 1,y 1,z 1)是平面BEF 的一个法向量则有:11113044211044n EF x y z n BF x y ìïï?+-=ïïíïï?-=ïïîu r uu u r u r uu u r ,取x=1得:1n u r = (1,1,23) ----------------------------------8分 同理:平面CEF 的一个法向量为:2n ur= (3,-1,0) -----------------10分cos<1n u r ,2n ur > = 1n u r ⋅2n ur|1n u r |⋅|2n ur | = 35555 所以:二面角B —EF —C 的余弦值为:- 35555 .-----------12分20.解:(1)椭圆C 1:x 24+ y 2=1;C 2:x 2=-2y ----4分(2)(i)设点M(x 0,y 0),且满足2x 0-4y 0+3=0,点A(x 1,y 1) ,B(x 2 ,y 2), 对于抛物线y= - x22 ,y ' = - x , 则切线MA 的斜率为-x 1 ,从而切线MA 的方程为:y –y 1=-x 1(x-x 1),即:x 1x+y+y 1=0 ,同理:切线MB 的方程为:x 2x+y+y 2=0 ,又因为同时过M 点,所以分别有:x 1x 0+y 0+y 1=0和x 2x 0+y 0+y 2=0,因此A ,B 同时在直线x 0x+y+y 0=0上,又因为:2x 0-4y 0+3=0,所以:AB 方程可写成:y 0(4x+2)+(2y-3x)= 0,显然直线AB 过定点:(- 12 ,- 34 ).---------6分(ii)直线AB 的方程为:x 0x+y+y 0=0,代入椭圆方程中得:(1+4x 02)x 2+8x 0y 0x+4y 02-4=0令P(x 3,y 3),Q(x 4,y 4) , ∆ = 16(4x 02- y 02+1)>0, x 3+x 4 = - 8x 0y 04x 02+1 ;x 3x 4 = 4y 02-44x 02+1|PQ | = 1+x 02·(x 3+x 4)2-4x 3x 4 = 1+x 02·16(4x 02-y 02+1)1+4x 02-------8分 点O 到PQ 的距离为:d= |y 0|1+x 02从而S ∆OPQ = 12 ·|PQ |·d = 12 ×1+x 02·16(4x 02-y 02+1)1+4x 02 ×|y 0|1+x 02= 2×y 02(4x 02-y 02+1)1+4x 02 ≤ y 02+(4x 02- y 02+1)1+4x 02=1 ---------10分A C PDOE F B 当且仅当y 02 = 4x 02- y 02+1时等号成立,又2x 0-4y 0+3=0联立解得:x 0= 12 ,y 0= 1或x 0= - 114 ,y 0= 57 ;从而所求直线AB 的方程为:x+2y+2=0 或x-14y-10=0------------12分 21.解:(1)设切点为(x 0,lnx 0), k=f '(x)= 1x 0 = 12 ,x 0 = 2 ,∴切点为(2,ln2),代入y= 12x + m 得:m = ln2-1.----------------4分(2)设y = ax+b 切f(x)于(t,lnt)(t>0), f '(x)= 1x , ∴ f '(t)= 1t ,则切线方程为:y = 1t (x-t)+lnt ,y = 1t x+lnx-1 , a= 1t ,b= lnt-1∴ab= 1t (lnt-1), 令g(t)= 1t (lnt-1), g '(t)= - 1t 2 (lnt-1)+ 1t 2 = 2-lntt2若t ∈(0,e 2)时,g '(t)>0,∴ g(t)在(0,e 2)上单调增;t ∈(e 2,+∞)时,g '(t)<0, ∴ g(t)在(e 2,+∞)上单调递减;所以,当t= e 2时,ab 的最大值为:g(e 2)= 1e 2 (lne 2-1)= 1e 2 ------------------------8分(3)先证:1x 2 <f(x 2)-f(x 1)x 2-x 1 < 1x 1 ,即证:1x 2 <lnx 2-lnx 1x 2-x 1 < 1x 1,只证:1- x 1x 2 <ln x 2x 1 < x 2x 1 - 1 , 令x 2x 1= t >1, 设h(m) =lnt –t +1 ,h '(m)= 1t - 1<0 , 所以:h(t)在(1,+ ∞)上单调递减,则h(t)<h(1)=ln1-1+1=0,即证:ln x 2x 1 < x 2x 1 – 1. 以下证明:1- x 1x 2 <ln x 2x 1令p(t)= lnt+1t -1 , p '(t)= 1t - 1t 2 >0 , 所以:p(t)= lnt+1t -1在(1,+ ∞)上单调递增,即:p(t)>p(1)=0 ,即有:lnt+1t -1>0, ∴1- x 1x 2 <ln x 2x 1获证.故1x 2 <f(x 2)-f(x 1)x 2-x 1 < 1x 1 成立 ,同理可证:1x 3 <f(x 3)-f(x 2)x 3-x 2 < 1x 2 ,综上可知::f(x 2)-f(x 1)x 2-x 1 > f(x 3)-f(x 2)x 3-x 2 成立------------12分选做题:请考生在22,23,24题中任选一题作答,如果多选则按所做的第一题记分,作答时,请涂明题号. 22.解:(I )连结,,OC OD OE ,由同弧对应的圆周角与圆心角之间的关系结合题中条件弧长AE 等于弧长AC 可得CDE AOC ∠=∠,又CDE P PFD ∠=∠+∠,AOC P OCP ∠=∠+∠, 从而PFD OCP ∠=∠,故PFD ∆∽PCO ∆,∴PF PD PC PO=, …………4分 由割线定理知12PC PD PA PB ⋅=⋅=,故1234PC PD PF PO ⋅===. …………6分 (II )若圆F 与圆O 内切,设圆F 的半径为r ,因为21OF r =-=即1r =所以OB 是圆F 的直径,且过P 点圆F 的切线为PT则2PT 248PB PO =⋅=⨯=,即PT = …………10分 23.解:(I )θθρsin 2cos 2-= ,θρθρρsin 2cos 22-=∴, ………(2分) 02222=+-+∴y x y x C 的直角坐标方程为圆, …………(3分) 即1)22()22(22=++-y x ,)22,22(-∴圆心直角坐标为.…………(5分) (II ):直线l 上的点向圆C 引切线长是6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t , …………(8分) ∴直线l 上的点向圆C 引的切线长的最小值是62 ………(10分) 24.解:(1)不等式()10f x a +->,即210x a -+->。
河南省信阳市2014--2015学年度高中毕业班调研检测理科数学试题(含详细解答)
高三数学理科第1页共6页信阳市2014--2015学年度高中毕业班调研检测理科数学试题注意事项:
1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B 铅
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个答案中,只有一项是符合题目要求的.
1.已知复数i z 2
1,则|z|等于
)(A 3)(B 5)(C 2 )(D 3
2.原点必位于圆:0)1(22222a y ax y x )1(a 的
(A)内部(B)圆周上(C)外部(D)均有可能
3.在矩形ABCD 中,O 是对角线的交点,若OC DC BC 则213,5e e 等于
(A))35(21
21e e (B))
35(21
21e e (C))53(21
12e e (D))
35(21
12e e 4.设集合1{|2,0},{|}x x
M y y x N x y x ,则“x M ”是“x N ”的
(A)充分不必要条件(B)必要不充分条件
(C)充要条件(D)既不充分也不必要条件
5. 已知函数2log f x x ,22g x x ,则f x g x 的图象可能是
★2015年2月8日。
2014—2015学年河南省六市高中毕业班第二次联考理科综合
2014—2015学年河南省六市高中毕业班第二次联考理科综合能力测试参考答案1.C2.B3.B4.D5.D6.A7.B8.D9.B 10.D 11.D 12.B 13.C 14.A 15.C16.D 17.B 18.B 19.ACD 20.AC 21.AD22.(6分) (1)50.00±0.05(2分) (2)滑块质量(2分) (3)否 (2分)23.(9分)(1)50.15(2分) (2)4.700±0.002(2分) (3)①A (1分) C (1分) ②作图(3分)24.(14分)如果考生结果不正确,请一定要按步骤给分. 解:设斜面甲长L 1,斜面乙BC 部分长L 2,倾角分别为ɑ和β,小物块在A 、B 两处离地的高度分别为h 1和h 2,斜面AC 和BC 在水平方向的长度分别为s 1和s 2,小物块的质量为m ,小物块与两斜面之间的动摩擦因数为μ。
小物块在AC 、BC 面上受到的滑动摩擦力分别为f 1=μmg cos ɑ,(3分)f 2=μmg cos β, (3分)在小物块由A 到C 到B 的整个过程中,由动能定理得mgh 1-mgh 2-(μmg cos ɑ·L 1+μmg cos β·L 2 )=0 (4分)又因cos ɑ·L 1=s 1 (1分)cos β·L 2 =s 2 (1分)所以h 1-h 2=μ(S 1+S 2)故 μ=2121s s h h +-= tan θ (2分)25.(18分)如果考生结果不正确,请一定要按步骤给分.解:(1)带电粒子在电场中加速时,电场力做功,得:qU =21mυ2-0,(3分) U =φ1-φ2, (3分) 所以:υ=m q )(221ϕϕ- 。
(2分)(2)从AB 圆弧面收集到的粒子有32能打到MN 板上,则刚好不能打到MN 上的粒子从磁场中出来后速度的方向与MN 平行,则入射的方向与AB 之间的夹角是60o ,在磁场中运动的轨迹如图1,轨迹圆弧对应圆心角θ=60o 。
2014~2015学年度第二学期高三年级总复习质量检测(二)数学试卷(理工类)附答案
2014~2015学年度第二学期高三年级总复习质量检测(二)数学试卷(理工类) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至9页.祝各位考生考试顺利!第 Ⅰ 卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上;2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.本卷共8小题,每小题5分,共40分. 参考公式:·如果事件A ,B 互斥,那么 ·如果事件A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ). P (AB )=P (A )•P (B ).·棱柱的体积公式V 柱体=Sh , ·球的体积公式V 球=34πR 3,其中S 表示棱柱的底面积, 其中R 表示球的半径. h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设i 是虚数单位,则复数ii65-=( ). (A )6–5i (B )6+5i (C )–6+5i (D )–6–5i (2)已知命题p :x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≥0,则⌝p 是( ).(A )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≤0 (B )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≤0 (C )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)<0 (D )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)<0(3)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).(A )10 (B )11(C )12(D )13(4)如图所示的程序框图表示求算式“2×4×8×16×32×64”的值,则判断框内可以填入( ).(A )k <132? (B )k <70? (C )k <64? (D )k <63?(5)已知双曲线C :22x a –22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ).(A )220x –25y =1 (B )25x –220y =1(C )280x –220y =1 (D )220x –280y =1(6)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b=5c ,C=2B ,则cos C=( ). (A )725 (B )725- (C )725± (D )2425(7)由曲线y=x 2,y=x 围成的封闭图形的面积为( ). (A )61 (B )31(C )32(D )1(8)在△ABC 中,若|AB +|=|AB –|,AB=2,AC=1,E ,F 为BC 边的三等分点,则AE •AF =( ).(A )98 (B )910(C )925(D )926南开区2014~2015学年度第二学期高三年级总复习质量检测(二)答 题 纸(理工类)第 Ⅱ 卷注意事项:1.用黑色墨水的钢笔或签字笔答题; 2.本卷共12小题,共110分.二、填空题:本大题共6个小题,每小题5分,共30分.请将答案填在题中横线上。
2014-2015学年普通高中高三教学质量监测 (理科数学解析版)
2014-2015学年普通高中高三教学质量监测理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.第Ⅰ卷一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( )A. [0,1]B. [0,1)C. (0,1]D. (0,1)[解析] ∵N =(-1,1),∴M ∩N =[0,1),故选B. [答案] B2. 设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A. (0,34) B. [34,43) C. [34,+∞)D. (1,+∞)[解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},∵函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (0)=-1<0,根据对称性可知要使A ∩B 中恰含有一个整数,则这个整数解为2,∴有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,∴⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,选B.[答案] B3. 下列函数中,在区间(0,+∞)上为增函数的是( ) A. y =x +1 B. y =(x -1)2 C. y =2-xD. y =log 0.5(x +1)[解析] y =(x -1)2仅在[1,+∞)上为增函数,排除B ;y =2-x=⎝ ⎛⎭⎪⎫12x为减函数,排除C ;因为y =log 0.5t 为减函数,t =x +1为增函数,所以y =log 0.5(x +1)为减函数,排除D ;y =t 和t =x +1均为增函数,所以y =x +1为增函数,故选A.[答案] A4. 定积分⎰10(2x +e x )d x 的值为( ) A . e +2 B . e +1 C . eD . e -1[解析]⎰1(2x +e x )d x =(x 2+e x)⎪⎪⎪1=1+e 1-1=e ,故选C .[答案] C5. 已知函数f(x)的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,设a =f(-12),b =f(2),c =f(3),则a ,b ,c 的大小关系为( )A . c>a>bB . c>b>aC . a>c>bD . b>a>c[解析] 由于函数f(x)的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f(x)的图象本身关于直线x =1对称,所以a =f(-12)=f(52).当x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c.故选D .[答案] D6. 图中阴影部分的面积S 是h 的函数(0≤h ≤H),则该函数的大致图象是( )[解析] 由图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B .[答案] B7. 函数y =log a (x +3)-1(a>0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上(其中m ,n>0),则1m +2n 的最小值等于( )A . 16B . 12C . 9D . 8[解析] 依题意,点A 的坐标为(-2,-1),则-2m -n +1=0,即2m +n =1(m>0,n>0),所以1m +2n =(1m +2n )(2m +n)=4+(n m +4mn )≥4+2n m ×4m n =8,当且仅当n m =4m n ,即n =2m =12时取等号,即1m +2n 的最小值是8,选D .[答案] D8. 若a>b>0,c<d<0,则一定有( ) A . a c >b d B . a c <b d C . a d >b cD . a d <b c[解析] 解法一:⎭⎬⎫c<d<0⇒cd>0 c<d<0⇒c cd <d cd <0⇒1d <1c <0⇒⎭⎬⎫-1d >-1c >0a>b>0⇒-a d >-bc ⇒ad <b c .解法二:依题意取a =2,b =1,c =-2,d =-1,代入验证得A 、B 、C 均错,只有D 正确.[答案] D9. 已知直线y =mx 与函数f(x)=⎩⎪⎨⎪⎧2-(13)x,x ≤012x 2+1,x>0的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A .(3,4)B .(2,+∞)C .(2,5)D .(3,22)[解析]作出函数f(x)=⎩⎪⎨⎪⎧2-(13)x,x ≤012x 2+1,x>0的图象,如图所示.直线y =mx 的图象是绕坐标原点旋转的动直线.当斜率m ≤0时,直线y =mx 与函数f(x)的图象只有一个公共点;当m>0时,直线y =mx 始终与函数y =2-(13)x(x ≤0)的图象有一个公共点,故要使直线y =mx 与函数f(x)的图象有三个公共点,必须使直线y =mx 与函数y =12x 2+1(x>0)的图象有两个公共点,即方程mx =12x 2+1有两个不相等的正实数根,由⎩⎨⎧y =mx y =12x 2+1,可得x 2-2mx +2=0,即⎩⎨⎧Δ=4m 2-4×2>02m>0,解得m> 2.故选B . [答案] B10.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A . 5B . 6C . 7D . 8[解析]画出可行域如右图所示, 由z =2x +y 得y =-2x +z.当直线y =-2x +z 经过点A 时,z 取得最小值n =-3; 当直线y =-2x +z 经过点C 时,z 取得最大值m =3. ∴m -n =6,故选B . [答案] B11.已知函数f(x)=x 3+ax 2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则( )A . c ≤3B . 3<c ≤6C . 6<c ≤9D . c>9[解析] 由⎩⎪⎨⎪⎧ f (-1)=f (-2),f (-1)=f (-3)得⎩⎪⎨⎪⎧ 3a -b =7,4a -b =13,解得⎩⎪⎨⎪⎧a =6,b =11.则有f(-1)=f(-2)=f(-3)=c -6,由0<f(-1)≤3,得6<c ≤9. [答案] C12. 设函数f(x)=3sin πx m .若存在f(x)的极值点x 0满足x 20+[f(x 0)]2<m 2,则m 的取值范围是( )A . (-∞,-6)∪(6,+∞)B . (-∞,-4)∪(4,+∞)C . (-∞,-2)∪(2,+∞)D . (-∞,-1)∪(1,+∞) [解析] f ′(x)=3πm cos πx m , ∵f(x)的极值点为x 0,∴f ′(x 0)=0,∴3πm cos πx 0m =0, ∴πm x 0=k π+π2,k ∈Z , ∴x 0=mk +m2,k ∈Z ,又∵x 20+[f (x 0)]2<m 2,∴⎝ ⎛⎭⎪⎫mk +m 22+⎣⎢⎡⎦⎥⎤3sin ⎝ ⎛⎭⎪⎫k π+π22<m 2,k ∈Z , 即m 2⎝⎛⎭⎪⎫k +122+3<m 2,k ∈Z ,∵m ≠0,∴⎝ ⎛⎭⎪⎫k +122<m 2-3m 2,k ∈Z , 又∵存在x 0满足x 20+[f (x 0)]2<m 2,即存在k ∈Z 满足上式,∴m 2-3m 2>⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫k +122min ,∴m 2-3m 2>⎝ ⎛⎭⎪⎫122,∴m 2-3>m 24,CBFAOyx∴m 2>4,∴m >2或m <-2,故选C. [答案] C第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答.二、填空题(本大题共4小题.请把正确答案填在题中的横线上)13. 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.[解析] ∵U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8}, ∴∁U A ={4,6,7,9,10},又∵B ={1,3,5,7,9}, ∴(∁U A )∩B ={7,9}. [答案] {7,9}14. 曲线y =x e x -1在点(1,1)处切线的斜率等于________.[解析] 由题意可得y ′=ex -1+x ex -1,所以曲线在点(1,1)处切线的斜率等于2.[答案] 215. 已知不等式ax 2+bx +c <0的解集为{x |-2<x <1},则不等式cx 2+bx +a >c (2x -1)+b 的解集为________.[解析] 由题意可知a >0,且-2,1是方程ax 2+bx +c =0的两个根,则⎩⎪⎨⎪⎧-b a =-1ca =-2,解得⎩⎪⎨⎪⎧b =ac =-2a ,所以不等式cx 2+bx +a >c (2x -1)+b 可化为-2ax 2+ax +a >-2a (2x -1)+a ,整理得2x 2-5x +2<0, 解得12<x <2.∴原不等式的解集为(12,2). [答案] (12,2)16. 已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8.以上命题中所有正确命题的序号为________.[解析] 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0;根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )的图象的一条对称轴;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8.故正确命题的序号为①②④.[答案] ①②④三、解答题(本大题共6小题.解答时应写出必要的文字说明、证明过程或演算步骤)17. 已知全集U =R ,集合M ={x |log 2(3-x )≤2},集合N ={x |y =(12)x 2-x -6-1}. (1)求M ,N ; (2)求(∁U M )∩N .[解] (1)由已知得log 2(3-x )≤log 24,所以⎩⎪⎨⎪⎧3-x ≤4,3-x >0,解得-1≤x <3,所以M ={x |-1≤x <3}. N ={x |(12)x 2-x -6-1≥0} ={x |(x +2)(x -3)≤0} ={x |-2≤x ≤3}.(2)由(1)可得∁U M ={x |x <-1或x ≥3}. 故(∁U M )∩N ={x |-2≤x <-1或x =3}.18. 已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :函数f (x )=x 2+2ax +2a 的值域为[0,+∞).若命题“p 或q ”是假命题,求实数a 的取值范围.[解] 若命题p 为真,(ax +2)(ax -1)=0,显然a ≠0, ∴x =-2a 或x =1a ,∵x ∈[-1,1],故有|-2a |≤1或|1a |≤1, ∴|a |≥1,若命题q 为真,就有(2a )2-4×2a =0, ∴a =0或a =2,∴命题“p 或q ”为假命题时,a ∈(-1,0)∪(0,1).19. 已知函数f (x )=x 2+2m ln x (m ∈R ). (1)求函数f (x )的单调区间;(2)若函数g (x )=2x +f (x )在[1,3]上是减函数,求实数m 的取值范围.[解] (1)由条件知函数f (x )的定义域为(0,+∞),f ′(x )=2x +2mx . ①当m ≥0时,f ′(x )>0,故f (x )的单调递增区间为(0,+∞); ②当m <0时,f ′(x )=2(x +-m )(x --m )x . 当x 变化时,f ′(x ),f (x )的变化情况如下:由上表可知,函数f (x )的单调递减区间是(0,-m ],单调递增区间是[-m ,+∞).(2)对g (x )=2x +x 2+2m ln x 求导,得g ′(x )=-2x 2+2x +2m x . 由已知函数g (x )在[1,3]上是减函数,则g ′(x )≤0在[1,3]上恒成立,即-2x 2+2x +2m x ≤0在[1,3]上恒成立,即m ≤1x -x 2在[1,3]上恒成立.令h (x )=1x -x 2,当x ∈[1,3]时,h ′(x )=-1x 2-2x =-(1x 2+2x )<0,由此知h (x )在[1,3]上为减函数,所以h (x )min =h (3)=-263,故m ≤-263.于是实数m 的取值范围为(-∞,-263].20. 旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为16000元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过35人,则飞机票每张收费800元;若旅行团的人数多于35人,则予以优惠,每多1人,每个人的机票费减少10元,但旅行团的人数最多不超过60人.设旅行团的人数为x 人,飞机票价格为y 元,旅行社的利润为Q 元.(1)写出飞机票价格y 与旅行团人数x 之间的函数关系式; (2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.[解] (1)依题意得,当1≤x ≤35时,y =800; 当35<x ≤60时,y =800-10(x -35)=-10x +1150; ∴y={ 800(1≤x ≤35,且x ∈N *)-10x +1150(35<x ≤60,且x ∈N *).(2)当1≤x ≤35,且x ∈N *时,Q =yx -16000=800x -16000. 则Q max =800×35-16000=12000,当35<x ≤60,且x ∈N *时,Q =yx -16000=-10x 2+1150x -16000=-10(x -1152)2+341252,所以当x =57或x =58时,Q 取得最大值,即Q max =17060. 因为17060>12000,所以当旅游团人数为57或58时,旅行社可获得最大利润,为17060元.21. 已知函数f (x )=e x-12x 2-ax (a ∈R ).(1)若函数f (x )的图象在x =0处的切线方程为y =2x +b ,求a ,b 的值;(2)若函数f (x )在R 上是增函数,求实数a 的取值范围; (3)如果函数g (x )=f (x )-(a -12)x 2有两个不同的极值点x 1,x 2,证明:a >e2.[解] (1)∵f ′(x )=e x -x -a , ∴f ′(0)=1-a .∴由题知1-a =2,解得a =-1, ∴f (x )=e x -12x 2+x . ∴f (0)=1,∴1=2×0+b ,解得b =1.(2)由题意知,f ′(x )≥0即e x -x -a ≥0恒成立, ∴a ≤e x -x 恒成立.设h (x )=e x -x ,则h ′(x )=e x -1.当x 变化时,h ′(x ),h (x )的变化情况如下表:x (-∞,0)0 (0,+∞)h ′(x ) - 0 + h (x )单调递减极小值单调递增∴h (x )min =h (0)=1, ∴a ≤1.(3)由已知g (x )=e x-12x 2-ax -ax 2+12x 2=e x -ax 2-ax ,∴g ′(x )=e x -2ax -a .∵x 1,x 2是函数g (x )的两个不同极值点(不妨设x 1<x 2),∴e x -2ax -a =0 (*)有两个不同的实数根x 1,x 2.当x =-12时,方程(*)不成立,则a =e x 2x +1,令p (x )=e x2x +1,则p ′(x )=e x (2x -1)(2x +1)2,令p ′(x )=0,解得x =12.当x 变化时,p (x ),p ′(x )的变化情况如下表: x (-∞,-12)(-12,12) 12 (12,+∞)p ′(x ) - - 0 + p (x )单调递减单调递减极小值单调递增若方程(*)有两个不同的实数根,则a >p (12)=e2, ∴a >e 2.22. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +3(x ≤0)x 2e ax (x >0).(1)若a =-1,求函数f (x )的单调递增区间;(2)对任意的正实数m ,关于x 的方程f (x )=m 恒有实数解,求实数a 的取值范围.[解] (1)当x ≤0时,f (x )=x 2+2x +3,其单调递增区间为[-1,0];当x >0时,∵a =-1,∴f (x )=x 2e -x ,∴f ′(x )=2x e -x +x 2·(-1)e -x =-x e -x (x -2), 令f ′(x )>0,得x <2,∴f (x )的单调递增区间为(0,2).综上,函数f (x )的单调递增区间为[-1,0],(0,2).(2)“方程f (x )=m 对任意正实数m 恒有实数解”等价转化为“函数f (x )的值取遍每一个正数”,注意到当x ≤0时,f (x )=x 2+2x +3=(x +1)2+2≥2, 因此,当x >0时,f (x )的值域必须包含(0,2), 以下研究x >0时的函数值域情况,当x >0时,f (x )=x 2e ax ,∴f ′(x )=2x e ax +x 2·a e ax =x e ax (ax +2),①若a ≥0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增,f (x )的值域为(0,+∞),满足要求;②若a <0,令f ′(x )>0,得0<x <-2a ,令f ′(x )<0,得x >-2a , ∴f (x )在(0,-2a )上单调递增,在(-2a ,+∞)上单调递减, ∴f (x )max =f (-2a )=(-2a )2·e -2=4a 2e 2, ∴f (x )的值域为(0,4a 2e 2],由(0,4a 2e 2]⊇(0,2)得,4a 2e 2≥2,解得-2e ≤a <0. 综上,所求实数a 的取值范围是[-2e ,+∞).。
2015信阳二调 河南省信阳市2015届高三上学期第二次调研检测(期末)数学 理试卷扫描版含答案
河南省信阳市2015届高三数学上学期第二次调研检测(期末)试卷理(扫描版)高三数学理科参考答案一、BCAAC DCABD CB二、13.3 14. -10 15. 2 16. 2三、17. 解:(Ⅰ)x x f 2sin 3)()(2++=b a212cos 2cos 222x x x x =++=+ =2)6π2sin(2++x , 当且仅当23ππ26π2+=+k x ,即32ππ+=k x )(Z ∈k 时,()0f x =min , 此时x 的集合是⎭⎬⎫⎩⎨⎧∈+=Z k k x x π,32π|. ……………… 6分 (Ⅱ)由)(2ππ26π22ππ2Z ∈+≤+≤k k x k -,所以)(6ππ3ππZ ∈+≤≤k k x k -, ∴函数()f x 的单调递增区间为)](6ππ,3ππ[Z ∈+k k k -. ……… 12分 18.解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ).又当n=1时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………6分 (Ⅱ)由(Ⅰ)知,(21)2=-n n c n∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n 231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n 23112(12222)(21)2-+-=++++--⋅n n n n T n∴62)23(1-⋅-=-+n n n T∴62)32(2+⋅-=+n n n T∴数列{}n c 的前n 项和62)32(1+⋅-=+n n n T ……………………………12分19. 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.∴ 0.0125x =. ..........................3分 (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,∵12000.12144⨯=,∴1200名新生中有144名学生可以申请住宿.................... 6分(Ⅲ)∵X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 411(4)4256P X ⎛⎫=== ⎪⎝⎭. .................. 10分 所以的分布列为: 0123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或414EX =⨯=) 所以X 的数学期望为1. ................. 12分20.解:(Ⅰ)由已知可得⎪⎩⎪⎨⎧==-=,3,42222b a b a c 解得a 2=6,b 2=2.∴椭圆C 的标准方程是12622=+y x . ……………………………………………4分 (Ⅱ)由(Ⅰ)可得,F 点的坐标是(2,0).设直线P Q 的方程为x =my +2,将直线P Q 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my +2,x 26+y 22=1. 消去x ,得(m 2+3)y 2+4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.设P (x 1,y 1),Q(x 2,y 2),则y 1+y 2=-4m m 2+3,y 1y 2=-2m 2+3.于是x 1+x 2=m (y 1+y 2)+4=12m 2+3. 设M 为P Q 的中点,则M 点的坐标为)32,36(22+-+m m m . ∵TF ⊥P Q ,所以直线FT 的斜率为m -,其方程为)2(--=x m y .当t x =时,()2--=t m y ,所以点T 的坐标为()()2,--t m t ,此时直线OT 的斜率为()tt m 2--,其方程为x t t m y )2(-=. 将M 点的坐标为)32,36(22+-+m m m 代入上式,得36)2(3222+⋅-=+-m t t m m m . 解得3=t . ………………………………………………12分21.解.(Ⅰ)由1e )(--=ax x f x ,得a x f x -='e )(.又11)0(-=-='a f ,∴2=a .∴12e )(--=x x f x ,2e )(-='x x f .由02e )(>-='x x f ,得2ln >x .∴函数)(x f 在区间)2ln ,(-∞上单调递减,在),2(ln +∞上单调递增. …………4分 (Ⅱ)证明:由(Ⅰ)知4ln 112ln 2e )2(ln )(2ln min -=--==f x f .∴4ln 1)(-≥x f ,即4ln 112e -≥--x x ,04ln 22e >-≥-x x .令1e )(2--=x x g x ,则02e )(>-='x x g x .∴)(x g 在),0(+∞上单调递增,∴0)0(1e )(2=>--=g x x g x ,∴1e 2+>x x .…………(8分)(Ⅲ)首先证明:当0>x 时,恒有331e x x >. 令331e )(x x h x -=,则2e )(x x h x -='.由(Ⅱ)知,当0>x 时,2e x x >,所以0)(>x h ,所以)(x h 在),0(+∞上单调递增, ∴01)0()(>=>h x h ,所以331e x x >. ∴)31ln(3x x >,即x x ln 33ln >+. 依次取nn x 1,,23,12+=,代入上式,则 12ln 33ln 12>+, 23ln 33ln 23>+, nn n n 1ln 33ln 1+>++. 以上各式相加,有)12312ln(33ln 12312nn n n n +⨯⨯⨯>+++++ ∴()1ln 33ln )131211(+>++++++n n nn , ∴()n n n n --+>++++3ln 1ln 3131211 , 即()n n n n e 31ln 1312113+>++++ ……………………………………12分22. (Ⅰ)∵PA 是圆O 的切线 ∴ACB PAB ∠=∠ 又P ∠是公共角∴ABP ∆∽CAP ∆ …………………2分 ∴2==PBAP AB AC ∴AB AC 2= ………4分 (Ⅱ)由切割线定理得:PC PB PA ⋅=2 ∴20=PC又PB=5 ∴15=BC ………6分 又∵AD 是BAC ∠的平分线 ∴2==DBCD AB AC ∴DB CD 2= ∴5,10==DB CD ………8分 又由相交弦定理得:50=⋅=⋅DB CD DE AD ………10分23.解:(Ⅰ)(方法一)曲线C 的直角坐标方程为05622=+-+x y x即4)3(22=+-y x ∴曲线C 是圆心为(3,0),半径为2的圆.∵直线l 的方程为:0sin cos sin =+-αααy x ………3分∵直线l 与曲线C 相切 ∴2cos sin |sin sin 3|22=++αααα即21sin =α ………5分 ∵[0,π) ∴=656ππ或 ………6分(法二)将05cos 62=+-θρρ化成直角坐标方程为05622=+-+x y x ……2分由⎪⎩⎪⎨⎧=+-==+-+ααsin cos 105622t y t x x y x 消去y x ,得012cos 82=+-αt t …………4分 ∵ l 与C 相切 ∴ Δ=64α2cos -48=0 解得cos =23±∵[0,π) ∴=656ππ或…………6分 (Ⅱ)设θθsin 2,cos 23=+=y x则 y x +=θθsin 2cos 23++)4sin(223πθ++= ………9分∴ y x +的取值范围是[]223,223+-. ………10分24.解:(Ⅰ)∵ab b a ab 2222≥+= 即 ab ab ≥ ∴1≤ab ………2分 又2b211≥≥+a b a 当且仅当b a =时取等号. ∴ 2m = ………5分 (Ⅱ)()f x 2|1||1|||≥+≥++-=tt t x t x ………9分 ∴ 满足条件的实数x 不存在. ………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学理科参考答案
一、BCAAC DCABD CB
二、13.3 14. -10 15.
2 16. 2 三、17. 解:(Ⅰ)x x f 2sin 3)()(2++=b a 212c o s 3s i n 2c o s 23s i n 22
x x x x =++=++ =2)6
π
2sin(2++x , 当且仅当23ππ26π2+=+
k x ,即3
2ππ+=k x )(Z ∈k 时,()0f x =min , 此时x 的集合是⎭
⎬⎫⎩⎨⎧∈+=Z k k x x π,32π|. ……………… 6分 (Ⅱ)由)(2ππ26π22ππ2Z ∈+≤+≤k k x k -,所以)(6
ππ3ππZ ∈+≤≤k k x k -, ∴函数()f x 的单调递增区间为)](6
ππ,3ππ[Z ∈+k k k -. ……… 12分 18.解:(Ⅰ)∵22n n S a =- ① 当2≥n 时,1122--=-n n S a ②
①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ).
又当n=1时,1122=-S a ,得12=a .
∴数列{}n a 是以2为首项,公比为2的等比数列,
∴数列{}n a 的通项公式为1222-=⋅=n n n a .
又由题意知,11b =,12n n b b +=+,即12+-=n n b b
∴数列{}n b 是首项为1,公差为2的等差数列,
∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………6分 (Ⅱ)由(Ⅰ)知,(21)2=-n n c n
∴231123252(23)2(21)2-=⨯+⨯+⨯+
+-⋅+-⋅n n n T n n ③ 231121232(25)2(23)2(21)2-+=
⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④ 由③-④得
2311222222222(21)2-+-=+⨯+⨯+
+⋅+⋅--⋅n n n n T n 23112(12222)(21)2-+-=+++
+--⋅n n n n T n ∴62
)23(1-⋅-=-+n n n T
∴62)32(2+⋅-=+n n n T ∴数列{}n c 的前n 项和62
)32(1+⋅-=+n n n T ……………………………12分 19. 解:(Ⅰ)由直方图可得:
200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.
∴ 0.0125x =. ..........................3分
(Ⅱ)新生上学所需时间不少于1小时的频率为:
0.0032200.12⨯⨯=,
∵12000.12144⨯=,
∴1200名新生中有144名学生可以申请住宿.................... 6分
(Ⅲ)∵X 的可能取值为0,1,2,3,4.
由直方图可知,每位学生上学所需时间少于20分钟的概率为14
,
4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3
141327(1)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3
34133(3)C 4464
P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 411(4)4256
P X ⎛⎫=== ⎪⎝⎭. .................. 10分 所以X 的分布列为: X
0 1 2 3 4 P 81256 2764 27128 364
1256 812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414
EX =⨯=) 所以X 的数学期望为1. ................. 12分
20.解:(Ⅰ)由已知可得⎪⎩⎪⎨⎧==-=,
3,42222b a b a c 解得a 2=6,b 2=2. ∴椭圆C 的标准方程是12
62
2=+y x . ……………………………………………4分 (Ⅱ)由(Ⅰ)可得,F 点的坐标是(2,0).
设直线P Q 的方程为x =my +2,将直线P Q 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my +2,x 26+y 22
=1. 消去x ,得(m 2+3)y 2+4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.
设P (x 1,y 1),Q(x 2,y 2),则y 1+y 2=-4m m 2+3,y 1y 2=-2m 2+3.于是x 1+x 2=m (y 1+y 2)+4=12m 2+3
. 设M 为P Q 的中点,则M 点的坐标为)3
2,36(
22+-+m m m . ∵TF ⊥P Q ,所以直线FT 的斜率为m -,其方程为)2(--=x m y .
当t x =时,()2--=t m y ,所以点T 的坐标为()()2,--t m t ,
此时直线OT 的斜率为()t
t m 2--,其方程为x t t m y )2(-=. 将M 点的坐标为)3
2,36(22+-+m m m 代入上式,得36)2(3222+⋅-=+-m t t m m m . 解得3=t . ………………………………………………12分
21.解.(Ⅰ)由1e )(--=ax x f x ,得a x f x -='e )(.
又11)0(-=-='a f ,∴2=a .∴12e )(--=x x f x ,2e )(-='x x f .
由02e )(>-='x x f ,得2ln >x .
∴函数)(x f 在区间)2ln ,(-∞上单调递减,在),2(ln +∞上单调递增. …………4分 (Ⅱ)证明:由(Ⅰ)知4ln 112ln 2e )2(ln )(2ln min -=--==f x f .
∴4ln 1)(-≥x f ,即4ln 112e -≥--x x ,04ln 22e >-≥-x x .
令1e )(2--=x x g x ,则02e )(>-='x x g x .
∴)(x g 在),0(+∞上单调递增,∴0)0(1e )(2
=>--=g x x g x ,
∴1e 2+>x x .…………(8分)
(Ⅲ)首先证明:当0>x 时,恒有331e x x >
. 令33
1e )(x x h x -=,则2e )(x x h x -='. 由(Ⅱ)知,当0>x 时,2e x x >,所以0)(>x h ,所以)(x h 在),0(+∞上单调递增,
∴01)0()(>=>h x h ,所以33
1e x x >. ∴)3
1ln(3x x >,即x x ln 33ln >+. 依次取n
n x 1,,23,12+= ,代入上式,则 1
2ln 33ln 12>+, 2
3ln 33ln 23>+, n
n n n 1ln 33ln 1+>++. 以上各式相加,有)12312ln(33ln 12312n
n n n n +⨯⨯⨯>+++++ ∴()1ln 33ln )131211(+>++++++n n n
n , ∴()n n n n
--+>++++3ln 1ln 3131211 , 即()n n n n e
31ln 1312113+>++++ ……………………………………12分
22. (Ⅰ)∵PA 是圆O 的切线 ∴ACB PAB ∠=∠ 又P ∠是公共角
∴ABP ∆∽CAP ∆ …………………2分 ∴
2==PB
AP AB AC ∴AB AC 2= ………4分 (Ⅱ)由切割线定理得:PC PB PA ⋅=2 ∴20=PC 又PB=5 ∴15=BC ………6分
又∵AD 是BAC ∠的平分线 ∴
2==DB
CD AB AC ∴DB CD 2= ∴5,10==DB CD ………8分 又由相交弦定理得:50=⋅=⋅DB CD DE AD ………10分
23.解:(Ⅰ)(方法一)曲线C 的直角坐标方程为05622=+-+x y x
即4)3(22=+-y x ∴曲线C 是圆心为(3,0),半径为2的圆.
∵直线l 的方程为:0sin cos sin =+-αααy x ………3分
∵直线l 与曲线C 相切 ∴2cos sin |sin sin 3|22=++α
ααα 即2
1sin =α ………5分 ∵ α∈[0,π) ∴α=656ππ或 ………6分
(法二)将05cos 62=+-θρρ化成直角坐标方程为05622=+-+x y x ……2分
由⎪⎩
⎪⎨⎧=+-==+-+ααsin cos 105622t y t x x y x 消去y x ,得012cos 82=+-αt t …………4分 ∵ l 与C 相切 ∴ Δ=64α2cos -48=0 解得cos α=2
3± ∵ α∈[0,π) ∴α=6
56ππ或
…………6分 (Ⅱ)设θθsin 2,cos 23=+=y x 则 y x +=θθsin 2cos 23++)4sin(223π
θ++= ………9分
∴ y x +的取值范围是[]223,223+-. ………10分
24.解:(Ⅰ)∵ab b a ab 2222≥+= 即
ab ab ≥ ∴1≤ab ………2分 又2b
211≥≥+a b a 当且仅当b a =时取等号. ∴ 2m = ………5分 (Ⅱ)()f x 2|1||1|||≥+≥+
+-=t t t x t x ………9分 ∴ 满足条件的实数x 不存在. ………10分。