河北省围场县棋盘山中学2016_2017学年七年级数学上学期期末考试试题(扫描版,无答案)新人教版

合集下载

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案


2
1 B 、8 C 、 1
A、 6
8
D 、3 2
7. 某商品进价 a 元,商店将价格提高 30%作零售价销售, 在销售旺季过后, 商店以 8 折(即
售价的 80%)的价格开展促销活动,这时一件商品的售价为(

A.a 元; B.0.8a

C.1.04a
元;
D.0.92a 元
8.已知:如图,点 C 是线段 AB的中点,点 D 是线段 BC的中点, AB=20cm,那么线段 AD
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1.- 2016 的相反数是(

A.
1
2016
1
B.
2016
C . 6102
D . 2016
2.有理数 ( 1)2 , ( 1)3 , 12 ,

A、 2n 1 3n 2
B
、 2n 2 1 n
C 、 2n 1 3n 2
11. 下列图形 ( 如图所示 ) 经过折叠不能围成正方体的是 (
D

2n
2
1
n
)
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
C. ax=-ay D.3-ax=3-ay
6、现规定一种新运算“ * ”:a* b= a b ,如 3*2= 32 =9,则( 1 ) *3= (

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。

2017学年七年级上数学期末试卷(带答案和解释)

2017学年七年级上数学期末试卷(带答案和解释)

2017学年七年级上数学期末试卷(带答案和解释)篇一:2016—2017学年新人教版七年级上期末考试数学试题含答案2016—2017学年度第一学期七年级期末评价数学试卷(满分100分,时间100分钟)一、选择题:(本大题12个小题,每小题3分,共36分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.(-2)×3的结果是 A . - 6B. – 5C. - 1D. l2.如图,这个几何体从上面看到的平面图形是3.将77800用科学记数法表示应为A. 0. 778 xl05B. 7. 78 x l05 C . 7. 78 x104D . 77. 8 x l034.下列各组数中互为相反数的是A.+(+2)与-(-2) B. +(-2)与 -(-2)C.+(+2)与 -(-1) D.+(-2)与一(+2) 25.下列各组中,不是同类项的是A . x3y4 与 x3y4 B, 3x与 - x C. 5ab 与 - 2baD. - 3x2y与6.如果l是关于x方程x+2m-5=0的解,则m的值是A. -4 B .4 C.-2 D. 27.如图所示,点O在直线l上,∠l与∠2互余,∠α= 116°,则∠β的度数是A.144° B.164°C. 154° D.150°8.下列等式变形正确的是A.如果s= 2ab,那么b=12yx 2s1B.如果x=6,那么x=3 2a2 C.如果x-3 =y-3,那么x-y =0D.如果mx= my,那么x=y9.从点O引两条射线OA、OB,在OA、OB上分别截取OM= 1cm,ON= lcm,则M、N两点间的距离一定A.小于l cm B.等于lcm C大于lcm, D 有最大值2cm,10.把方程3x?2x?1x?1?3?去分母正确的是 32+ (2x - l) = 3 - (x +l) +2(2x - l) = 18 -3(x +1)+ (2x - 1) = 18 - (x +1) +2(2x - l) = 3 -3(x +l)1l。

2016-2017七年级上期末数学试卷含答案解析

2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。

2016-2017学年最新人教版七年级数学第一学期期末试卷和答案

2016-2017学年最新人教版七年级数学第一学期期末试卷和答案

2016-2017学年七年级数学第一学期期末试卷一、数与式1.的相反数是()A.3 B.C.D.﹣32.化简:﹣(﹣3)=.3.﹣5的绝对值是.4.|﹣|=.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣36.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需元.7.当x=﹣1时,代数式(x﹣1)2的值为.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.二、方程与不等式11.3与﹣4的大小关系是.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.213.数a、b在数轴上对应点的位置如图所示,则①a0,②b0,③a b(填“>”、“<”或“=”)14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□16.解方程(1)15+x=50;(2)2x﹣3=11.17.下列图案中,不是轴对称图形的是()A.B.C.D.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B ()、C()、D().20.长方形的周长为12cm,长是宽的2倍,则长为cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是;(2)体重正常比体重偏重的职工多占%;(3)体重偏轻的职工有人.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是%.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高℃.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?参考答案与试题解析一、数与式1.的相反数是()A.3 B.C.D.﹣3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:C.2.化简:﹣(﹣3)=3.【考点】相反数.【分析】根据相反数的性质,负负为正化简求解即可.【解答】解:本题是求﹣3的相反数,根据概念(﹣3的相反数)+(﹣3)=0,则﹣3的相反数是3.故化简后为3.3.﹣5的绝对值是5.【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.4.|﹣|=.【考点】绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣|=.故答案为:.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.6.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需2a+3b 元.【考点】列代数式.【分析】用买2千克龙眼的钱数加上3千克香蕉的钱数即可.【解答】解:买2千克龙眼和3千克香蕉共需(2a+3b)元;故答案为:2a+3b.7.当x=﹣1时,代数式(x﹣1)2的值为4.【考点】代数式求值.【分析】将x的代入,然后先算括号内的减法,再算乘方即可.【解答】解:当x=﹣1时,原式=(﹣1﹣1)2=(﹣2)2=4.故答案为:4.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是﹣1.【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=【考点】有理数的混合运算.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用同号两数相加的法则计算即可得到结果;(5)原式利用减法法则变形,计算即可得到结果;(6)原式利用同号两数相乘的法则计算即可得到结果;(7)原式利用异号两数相除的法则计算即可得到结果;(8)原式利用乘方的意义计算即可得到结果;(9)原式利用乘方的意义计算即可得到结果.【解答】解:(1)原式=﹣(2﹣1)=﹣1;(2)原式=(﹣5)+(﹣7)=﹣12;(3)原式=16+4=20;(4)原式=﹣(+)=﹣1;(5)原式=5.6+3.8=9.4;(6)原式=1;(7)原式=﹣9;(8)原式=﹣;(9)原式=﹣1﹣1=﹣2.10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.【考点】有理数的混合运算.【分析】(1)先去括号,然后合并同类项即可解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法法则可以解答本题;(4)根据有理数的乘除法法则和幂的乘方,负整数指数幂可以解答本题.【解答】解;(1)﹣5+(﹣0.25)+14﹣(﹣)=﹣5﹣0.25+14+0.25=9;(2)(+﹣1)×(﹣12)==﹣9﹣10+12=﹣7;(3)1÷(﹣)×(﹣4)==;(4)2﹣60÷(﹣2)3×(﹣)﹣1=2﹣60÷(﹣8)×(﹣5)=2﹣=﹣.二、方程与不等式11.3与﹣4的大小关系是>.【考点】有理数大小比较.【分析】根据正数大于负数,即可解答.【解答】解:∵正数大于负数,∴3>﹣4,故答案为:>.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【考点】实数大小比较.【分析】根据实数比较大小的法则进行比较即可.【解答】解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选A.13.数a、b在数轴上对应点的位置如图所示,则①a<0,②b>0,③a<b(填“>”、“<”或“=”)【考点】数轴.【分析】数轴上右边表示的数总大于左边表示的数.原点左边的数为负数,原点右边的数为正数.【解答】解:根据题意得,a<0,b>0,a<b.故答案为:<,>,<.14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3x﹣2=7,移项合并得:3x=9,解得:x=3,故选C九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□【考点】解一元一次方程.【分析】根据解方程的方法可以求得各个方程的解,从而可以解答本题.【解答】解:(1)x﹣18=60x﹣18+18=60+18x=78;(2)x+21=54x+21﹣21=54﹣21x=33;(3)x=315;(4)4x=484x÷4=48÷4x=12;故答案为:(1)+,18,78;(2)﹣,21,33;(3)×,3,315;(4)÷,4,12.16.解方程(1)15+x=50;(2)2x﹣3=11.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项即可;(2)先移项,再合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,x=50﹣15,合并同类项得,x=35;(2)移项得,2x=11+3,合并同类项得,2x=14,x的系数化为1得,x=7.17.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选:C.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B (7,8)、C(9,3)、D(3,4).【考点】坐标与图形性质.【分析】由坐标与图形性质容易得出结果.【解答】解:根据题意得:B(7,8),C(9,3),D(3,4);故答案为:7,8;9,3;3,4.20.长方形的周长为12cm,长是宽的2倍,则长为4cm.【考点】一元一次方程的应用.【分析】设长方形的宽是xcm.根据周长,得长方形的长与宽的和是6cm,即可列方程求解.【解答】解:设长方形的宽是xcm.根据题意得:x+2x=6,解得:x=2.则2x=4.答:长方形的长是4cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)【考点】完全平方公式的几何背景.【分析】根据图形可以求得拼成的长方形的另一边长,从而可以求得拼成的长方形的面积.【解答】解:由图可得,拼成的长方形一边长为2,它的另一边长为:a+2+a=2a+2,则拼成的长方形的面积是:(2a+2)×2=2(2a+2),故选A.统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是54%;(2)体重正常比体重偏重的职工多占16%;(3)体重偏轻的职工有28人.【考点】扇形统计图.【分析】(1)由图直接可得;(2)将体重正常与体重偏重的百分比相减可得;(3)先根据三者百分比之和等于1求得体重偏轻的百分比,再用其百分比乘以总人数350即可.【解答】解:(1)由图可知,体重正常的职工占的百分比是54%,故答案为:54%;(2)体重正常比体重偏重的职工多占54%﹣38%=16%,故答案为:16;(3)∵体重偏轻的职工占的百分比是1﹣54%﹣38%=8%,∴体重偏轻的职工有350×8%=28(人),故答案为:28.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性大于摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是62.5%.【考点】可能性的大小.【分析】(1)哪种球的只数多哪种球的可能性就大;(2)用白球的只数除以所有球的总只数即可;【解答】解:(1)∵红球有3只,白球有5只,∴白球的只数大于红球的只数,∴摸出白球的可能性大,故答案为:大于;(2)∵红球3只,白球5只,∴摸到白球的可能性为=62.5%,故答案为:62.5.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高6℃.【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:5﹣(﹣1)=5+1=6(℃),故答案为:6.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【考点】一元一次方程的应用.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.2016年10月24日。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

2016-2017学年人教版七年级(上学期)期末数学试卷和答案

2016-2017学年人教版七年级(上学期)期末数学试卷和答案

2016-2017学年七年级(上)期末数学试卷一、选择题1.﹣3的绝对值是()A.﹣3 B.﹣C.D.32.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A.两点之间线段最短 B.两点确定一条直线C.线段可以大小比较 D.线段有两个端点3.海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A.B.C. D.5.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是()A.12.26×104B.1.026×104C.1.026×105D.1.026×1066.与算式32+32+32的运算结果相等的是()A.33B.23C.36D.387.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.以上都不对8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20二、填空题(每题3分,共24分)9.计算:﹣1﹣2=______.10.已知|m﹣2|+|3﹣n|=0,则﹣n m=______.11.如图,是一个简单的数值运算程序当输入x的值为﹣1时,则输出的数值为______.12.方程2x+1=3和方程2x﹣a=0的解相同,则a=______.13.若(5x+3)与(﹣2x+9)互为相反数,则x=______.14.已知∠α的余角等于30°,则∠α的补角=______.15.按规律填数:,______,…16.已知∠AOB=50°,∠BOC=30°,则∠AOC=______.三、解答题(本大题共2小题,每题6分,共12分)17.计算:﹣14×[6﹣(﹣3)2].18.解方程:.四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款10805元.问成人票和学生票各售出多少张?20.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.五、解答题21.现有甲、乙两个瓷器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优惠方法是买一只茶壶送一只茶杯,乙店按总价的92%付款.学校办公室需要购买茶壶4只,茶杯若干只(不少于4只).(1)当购买多少只茶杯时,两店的优惠方法付款一样多?(2)当需要购买40只茶杯时,若让你去办这件事,你打算去哪家商店购买?为什么?22.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON;(2)∠AOB=α,∠BOC=β,求∠MON的度数.六、解答题(共1小题,共10分)23.(10分)(2014秋•信丰县期末)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?参考答案与试题解析一、选择题1.﹣3的绝对值是()A.﹣3 B.﹣C.D.3【考点】绝对值.【分析】根据绝对值的定义直接解答即可.【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.【点评】本题考查了绝对值的定义,知道绝对值表示某点到原点的距离是解题的关键.2.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A.两点之间线段最短 B.两点确定一条直线C.线段可以大小比较 D.线段有两个端点【考点】线段的性质:两点之间线段最短.【分析】一条弯曲的公路改为直道,使两点之间接近线段,因为两点之间线段最短,所以可以缩短路程.【解答】解:由题意把弯曲的公路改为直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.故选A.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.3.海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°【考点】方向角.【分析】根据方向角的定义即可判断.【解答】解:海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的南偏西40°.故选B.【点评】本题主要考查了方向角的定义,正确理解定义是关键.4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A.B.C. D.【考点】简单几何体的三视图.【分析】分别根据几何体写出主视图即可.【解答】解:A、正方体从正面观察得到的平面图形是正方形,故此选项错误;B、圆锥从正面观察得到的平面图形是三角形,故此选项错误;C、圆柱从正面观察得到的平面图形是长方形,故此选项错误;D、球从正面观察得到的平面图形是圆,故此选项正确;故选:D.【点评】此题主要考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.5.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是()A.12.26×104B.1.026×104C.1.026×105D.1.026×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于102600有6位,所以可以确定n=6﹣1=5.【解答】解:102 600=1.026×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.6.与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【考点】有理数的乘方.【分析】32+32+32表示3个32相加.【解答】解:32+32+32=3×32=33.故选A.【点评】本题根据乘法的意义可知32+32+32=3×32,根据乘方的意义可知3×32=33.7.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.以上都不对【考点】余角和补角.【分析】根据∠1与∠2互补,∠2与∠3互余,先把∠1、∠3都用∠2来表示,再进行运算.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.【点评】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20【考点】由实际问题抽象出一元一次方程.【分析】根据售﹣进价=利润,求得售价,进一步列出方程解答即可.【解答】解:设这件夹克衫的成本是x元,由题意得(1+50%)x×80%﹣x=20也就是(1+50%)x×80%=x+20.故选:B.【点评】此题考查了由实际问题抽象出一元一次方程的知识,掌握销售问题中基本数量关系是解决问题的关键.二、填空题(每题3分,共24分)9.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.10.已知|m﹣2|+|3﹣n|=0,则﹣n m=﹣9.【考点】非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣2|+|3﹣n|=0,∴m﹣2=0,3﹣n=0,∴m=2,n=3.∴﹣n m=﹣9.故答案为:﹣9.【点评】本题考查的知识点是:两个绝对值的和为0,那么这两个绝对值里面的代数式均为0.11.如图,是一个简单的数值运算程序当输入x的值为﹣1时,则输出的数值为1.【考点】有理数的混合运算.【分析】根据题目中的式子可以求出当x=﹣1时的代数式的值.【解答】解:(﹣1)×(﹣3)﹣2=3﹣2=1,故答案为:1.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.12.方程2x+1=3和方程2x﹣a=0的解相同,则a=2.【考点】同解方程.【分析】由这两个方程的解相同,可以先解出方程2x+1=3的解x=1,再把x=1代入方程2x ﹣a=0,求出a=2.【解答】解:由2x+1=3得:2x=2,解得x=1,把x=1代入方程2x﹣a=0得:2﹣a=0,∴a=2.【点评】本题考查的是两个同解方程,由已知方程的解求出另一个未知数的值.13.若(5x+3)与(﹣2x+9)互为相反数,则x=﹣4.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:(5x+3)+(﹣2x+9)=0,去括号得:5x+3﹣2x+9=0,移项合并得:3x=﹣12,解得:x=﹣4.故答案为:﹣4【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.14.已知∠α的余角等于30°,则∠α的补角=120°.【考点】余角和补角.【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【解答】解:根据余角的定义,这个角的度数=90°﹣30°=60°,根据补角的定义,这个角的补角度数=180°﹣60°=120°,故答案为:120°.【点评】此题综合考查余角与补角,主要记住互为余角的两个角的和为90度,互为补角的两个角的和为180度.15.按规律填数:,,…【考点】规律型:数字的变化类.【分析】首先观察符号规律:第奇数个数是正数,第偶数个数是负数;且第n个数的分子是n,分母是对应的分子的平方加1,即n2+1,所以可直接写出第五个数.【解答】解:∵第n个数的分子是n,分母是n2+1,∴第五个数是.故答案为:.【点评】本题考查了数字的变化类,此类题应先找符号的规律,再分别找分子和分母的规律,先找到易找的规律,然后观察另一个和它是否有关系.16.已知∠AOB=50°,∠BOC=30°,则∠AOC=20°或80°.【考点】角的计算.【分析】本题是角的计算的多解问题,求解时要注意分情况讨论,可以根据OC与∠AOB 的位置关系分为OC在∠AOB的内部和外部两种情况求解.【解答】解:当OC在∠AOB内部,因为∠AOB=50°,∠BOC=30°,所以∠AOC为20°;当OC在∠AOB外部,因为∠AOB=50°,∠BOC=30°,所以∠AOC为80°;故∠AOC为20°或80°.【点评】本题只是说出了两个角的度数,而没有指出OC与∠AOB的位置关系,因此本题解题的关键是根据题意准确画出图形.三、解答题(本大题共2小题,每题6分,共12分)17.计算:﹣14×[6﹣(﹣3)2].【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣×(﹣3)=﹣1+1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解一元一次方程.【分析】本题方程含有分数,若直接进行通分,书写会比较麻烦,而方程左右两边同时乘以公分母6,则会使方程简单很多.【解答】解:去分母,得:2(2x+1)﹣(5x﹣1)=6去括号,得:4x+2﹣5x+1=6移项、合并同类项,得:﹣x=3方程两边同除以﹣1,得:x=﹣3.【点评】本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.而此类题目学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款10805元.问成人票和学生票各售出多少张?【考点】一元一次方程的应用.【分析】设成人票售出x张,则学生票售出(900﹣x)张,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设成人票售出x张,则学生票售出(900﹣x)张,根据题意得:15x+8(900﹣x)=10805,解得:x=515,则900﹣x=385,答:成人票515元,学生票385元.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.【考点】整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)将B的代数式代入A﹣2B中化简,即可得出A的式子;(2)根据非负数的性质解出a、b的值,再代入(1)式中计算.【解答】解:(1)∵A﹣2B=A﹣2(﹣4a2+6ab+7)=7a2﹣7ab,∴A=(7a2﹣7ab)+2(﹣4a2+6ab+7)=﹣a2+5ab+14;(2)依题意得:a+1=0,b﹣2=0,a=﹣1,b=2.原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.【点评】本题考查了非负数的性质和整式的化简,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.五、解答题21.现有甲、乙两个瓷器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优惠方法是买一只茶壶送一只茶杯,乙店按总价的92%付款.学校办公室需要购买茶壶4只,茶杯若干只(不少于4只).(1)当购买多少只茶杯时,两店的优惠方法付款一样多?(2)当需要购买40只茶杯时,若让你去办这件事,你打算去哪家商店购买?为什么?【考点】一元一次方程的应用.【分析】(1)设购买x只茶杯时,两店的优惠方法付款一样多,分别表示出两店需要的付款,运用方程思想求解;(2)分别求出在甲乙两店需要的花费,比较即可得出答案.【解答】解:(1)设购买x只茶杯时,两店的优惠方法付款一样多,根据题意得:92%(20×4+5x)=20×4+5(x﹣4),解得:x=34,答:购买34只茶杯时,两店的优惠方法付款一样多.(2)打算去乙店购买.因为需要购买40只茶杯时,在甲店需付款20×4+5×(40﹣4)=260(元);在乙店需付款92%×(20×4+5×40)=257.6(元);故乙店比甲店便宜.【点评】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,得出两家商店需要付款的表达式,难度一般.22.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON;(2)∠AOB=α,∠BOC=β,求∠MON的度数.【考点】角的计算;角平分线的定义.【分析】(1)根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可;(2)同理可得,∠MOC=,∠CON=,所以∠MON=∠MOC﹣∠CON==.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°.(2)同理可得,∠MOC=,∠CON=,∴∠MON=∠MOC﹣∠CON==.【点评】本题考查了角平分线的定义,属于基础题,解决本题的关键是熟记平分线的定义.六、解答题(共1小题,共10分)23.(10分)(2014秋•信丰县期末)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?【考点】一元一次方程的应用;数轴.【分析】(1)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t秒点P到点M,N的距离相等,得出(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),进而求出即可.【解答】解:(1)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.答:经过5秒点M与点N相距54个单位.(算术方法对应给分)(2)设经过t秒点P到点M,N的距离相等.(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),t+6=5t﹣8或t+6=8﹣5tt=或t=,答:经过或秒点P到点M,N的距离相等.【点评】此题主要考查了一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.。

2016-2017学年度上学期期末考试初一年级数学试卷

2016-2017学年度上学期期末考试初一年级数学试卷

2016-2017学年度上学期 期末考试初一年级 数学试卷考试时间 120分钟 试卷满分 100分Ⅰ卷(共60分)一、选择题(每小题2分,共20分)将正确答案填涂在答题卡上。

1.下列各对数中,数值相等的是( )(A)23+与22+ (B)32-与3)2(- (C) 23-与2)3(- (D) 223⨯与2)23(⨯ 2.某工厂现有工人x 人,若现有人数比原有人数减少35%,则该工厂原有人数为( ) (A )%351+x (B )%351-x(C )(1+35%)x (D )(1+35%)x3.一个几何体由若干大小相同的小正方体搭成,下图分别是从它的正面、上面看到的形状图,该几何体至少用( )块小正方体搭成。

(A)5 (B)6 (C)7 (D)84. 20032004)2(3)2(-⨯+-的值为 ( ) (A)20042(B)20042- (C)20032- (D)200325.若|a-1|+|b+3|=0,则b-a-21的值是 ( ) (A)-421 (B)-221 (C)-121(D)1216.将方程5.055.12.02.03.07.0xx -=-+变形正确的是( )(A)550152237x x -=-+(B)55152237.0x x -=-+ (C)550152237.0xx -=-+(D) x x -=-+315.17.0 7.下列说法中,正确的是( ).(A )a -是正数 (B )a -不是负数 (C )a -是负数 (D )a -不是正数8.2222,276M a ab N a ab =++=++,则=-ab a 2( )(A)2M N - (B)3M N -+ (C)N M - (D)3M N -9.将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于( ) (A)56° (B)68° (C)62° (D)66°10.已知下列一组数,,259,167,95,43,1--……用代数式表示第n 个数为( ) (A)212n n - (B)212n n -- (C)212)1(n n n -- (D)2112)1(n n n --+ 二、填空题(每小题2分,共16分)将正确答案直接填入题中横线上。

【精品】2016-2017年河北省初一上学期数学期末试卷含解析答案

【精品】2016-2017年河北省初一上学期数学期末试卷含解析答案

2016-2017学年河北省七年级(上)期末数学试卷一、选择题(本题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2017的相反数是()A.﹣B.C.7102 D.20172.(3分)在﹣2,0,2,﹣3这四个数中,最小的数是()A.2 B.0 C.﹣2 D.﹣33.(3分)一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m 可以记作()A.﹣10m B.﹣12m C.+10m D.+12m4.(3分)下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.5.(3分)小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元6.(3分)如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm7.(3分)餐桌边的一蔬一饭,舌尖上的一饮一啄,来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.50×109千克B.5×1010千克C.5×1011千克D.0.5×1012千克8.(3分)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.79.(3分)下列各方程的变形,正确的是()A.由3+x=5,得x=5+3 B.由7x=,得x=49C.由y=0,得y=2 D.由3=x﹣2,得x=2+310.(3分)化简2(3x﹣5)+4(3﹣2x)的结果为()A.8x﹣3 B.2x+9 C.﹣2x+2 D.18x﹣311.(3分)如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°12.(3分)已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A.﹣x2+2x+2 B.﹣x2+x+2 C.x2﹣x+2 D.﹣x2+x﹣213.(3分)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或614.(3分)有理数a、b在数轴上的位置如图所示,则下列各式成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.|b|>a15.(3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90 16.(3分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.8二、填空题(本大题共3个小题,每小题2分,共12分,把答案写在题中横线上)17.(2分)已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为.18.(2分)在算式1﹣|﹣2□3+(﹣5)|中的□里,填入运算符号,使得算式的值最小(在符号+,﹣,×,÷中选择一个).19.(2分)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有个涂有阴影的小正方形(用含有n的代数式表示).三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)20.(6分)计算:﹣72+2×(﹣3)3+36÷(﹣2)2.21.(10分)解方程:(1)3(x+4)=5﹣2(x﹣1)(2)=1﹣.22.(8分)已知m=,n=﹣80,求3(m2n+mn)﹣2(m2n﹣mn)﹣m2n的值.23.(10分)检修小组乘维修车从A地出发,在东西走向的路上检修线路,如果规定向东为正,向西为负,一天中每次行驶记录如下(单位:千米);﹣4,+7,﹣9,+8,+6,﹣4,﹣3.(1)收工时在A地的哪个方向?距A地多远?(2)哪一次行驶后距A地最远?(3)若每千米耗油0.3升,从出发到收工时共耗油多少升?24.(8分)如图,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB 的中点,且NB=14厘米,求PM的长.25.(12分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=4∠COD,∠AOB=120°,求∠AOC的度数.26.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?2016-2017学年河北省七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2017的相反数是()A.﹣B.C.7102 D.2017【解答】解:﹣2017的相反数是2017,故选:D.2.(3分)在﹣2,0,2,﹣3这四个数中,最小的数是()A.2 B.0 C.﹣2 D.﹣3【解答】解:∵﹣3<﹣2<0<2,∴最小的数是﹣3,故选:D.3.(3分)一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m 可以记作()A.﹣10m B.﹣12m C.+10m D.+12m【解答】解:跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作﹣10m.故选:A.4.(3分)下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.【解答】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.5.(3分)小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元【解答】解:∵黑色珠子每个a元,白色珠子每个b元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b.故选:A.6.(3分)如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm【解答】解:∵AB=10cm,BC=4cm,∴AC=6cm,∵D是线段AC的中点,∴AD=3cm.故选:B.7.(3分)餐桌边的一蔬一饭,舌尖上的一饮一啄,来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.50×109千克B.5×1010千克C.5×1011千克D.0.5×1012千克【解答】解:将500亿用科学记数法表示为5×1010.故选:B.8.(3分)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.7【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.9.(3分)下列各方程的变形,正确的是()A.由3+x=5,得x=5+3 B.由7x=,得x=49C.由y=0,得y=2 D.由3=x﹣2,得x=2+3【解答】解:A、两边加的数不同,故A不符合题意;B、两边乘的数不同,故B不符合题意;C、左边乘2,右边加2,故C不符合题意;D、两边都加2,故D符合题意;故选:D.10.(3分)化简2(3x﹣5)+4(3﹣2x)的结果为()A.8x﹣3 B.2x+9 C.﹣2x+2 D.18x﹣3【解答】解:2(3x﹣5)+4(3﹣2x)=6x﹣10+12﹣8x=﹣2x+2.故选:C.11.(3分)如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°【解答】解:如图所示:∵OA是北偏东30°方向的一条射线,∠AOB=90°,∴∠1=90°﹣30°=60°,∴OB的方向角是北偏西60°.故选:B.12.(3分)已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A.﹣x2+2x+2 B.﹣x2+x+2 C.x2﹣x+2 D.﹣x2+x﹣2【解答】解:设此多项式为A,则A=(x2﹣2x﹣3)﹣(2x2﹣3x﹣1)=﹣x2+x﹣2.故选:D.13.(3分)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB 外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在线段AB外,AC=4+2=6;第二种情况:在线段AB内,AC=4﹣2=2.故选:D.14.(3分)有理数a、b在数轴上的位置如图所示,则下列各式成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.|b|>a【解答】解:由题意得,b<0<a,且|a|>|b|.A、∵|a|>|b|,b<0<a,∴a>﹣b,∴a+b>0,故本选项错误;B、∵b<0<a,∴﹣b>0,∴a﹣b>0,故本选项正确;C、∵a、b异号,∴ab<0;故本选项错误;D、∵|a|>|b|,a>0,∴a>|b|;故本选项错误;故选:B.15.(3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选:A.16.(3分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.8【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴220的末位数字是6.故选:C.二、填空题(本大题共3个小题,每小题2分,共12分,把答案写在题中横线上)17.(2分)已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为69.75°.【解答】解:∵∠A与∠B互余,∠A=20°15′,∴∠B=90°﹣20°15′=69°45′=69.75°.故答案为:69.75°.18.(2分)在算式1﹣|﹣2□3+(﹣5)|中的□里,填入运算符号×,使得算式的值最小(在符号+,﹣,×,÷中选择一个).【解答】解:要想使1﹣|﹣2□3+(﹣5)|的值最小,只要|﹣2□3+(﹣5)|的值最大就行,①假设填入运算符号是+,则|﹣2□3+(﹣5)|的值是4;②假设填入运算符号是﹣,则|﹣2□3+(﹣5)|的值是10;③假设填入运算符号是×,则|﹣2□3+(﹣5)|的值是11;④假设填入运算符号是÷,则|﹣2□3+(﹣5)|的值是;∵4<<10<11,∴在□里填入运算符号是×,则|﹣2□3+(﹣5)|的值最大,使得算式的值最小.故填入运算符号×.故答案为:×.19.(2分)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有4n+1个涂有阴影的小正方形(用含有n的代数式表示).【解答】解:由图可得,第1个图案涂有阴影的小正方形的个数为5,第2个图案涂有阴影的小正方形的个数为5×2﹣1=9,第3个图案涂有阴影的小正方形的个数为5×3﹣2=13,…,第n个图案涂有阴影的小正方形的个数为5n﹣(n﹣1)=4n+1.故答案为:4n+1.三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)20.(6分)计算:﹣72+2×(﹣3)3+36÷(﹣2)2.【解答】解:原式=﹣49﹣54+9=﹣103+9=﹣94.21.(10分)解方程:(1)3(x+4)=5﹣2(x﹣1)(2)=1﹣.【解答】(1)解:去括号,得:3x+12=5﹣2x+2,移项,得:3x+2x=5+2﹣12,合并同类项,得:5x=﹣5,系数化为1,得:x=﹣1;(2)解:去分母,得:3(x+2)=6﹣2(x﹣5),去括号,得:3x+6=6﹣2x+10,移项及合并,得:5x=10,系数化为1,得:x=2.22.(8分)已知m=,n=﹣80,求3(m2n+mn)﹣2(m2n﹣mn)﹣m2n的值.【解答】解:原式=3m2n+3mn﹣2m2n+2mn﹣m2n,=5mn,当m=,n=﹣80时,原式=5××(﹣80)=﹣16.23.(10分)检修小组乘维修车从A地出发,在东西走向的路上检修线路,如果规定向东为正,向西为负,一天中每次行驶记录如下(单位:千米);﹣4,+7,﹣9,+8,+6,﹣4,﹣3.(1)收工时在A地的哪个方向?距A地多远?(2)哪一次行驶后距A地最远?(3)若每千米耗油0.3升,从出发到收工时共耗油多少升?【解答】解:(1)﹣4+7﹣9+8+6﹣4﹣3=+1,答:收工时在A地的东边,距A地1千米;(2)第一次距A地|﹣4|=4千米;第二次:|﹣4+7|=3千米;第三次:|﹣4+7﹣9|=6千米;第四次:|﹣4+7﹣9+8|=2千米;第五次:|﹣4+7﹣9+8+6|=8千米;第六次:|﹣4+7﹣9+8+6﹣4|=4千米;第七次:|﹣4+7﹣9+8+6﹣4﹣3|=1千米,8>6>4>3>2>1,答:距A地最远的是第5次;(3)|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣4|+|﹣3|=4+7+9+8+6+4+3=41(千米)41×0.3=12.3(升).答:从出发到收工时共耗油12.3升.24.(8分)如图,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB 的中点,且NB=14厘米,求PM的长.【解答】解:∵N为PB的中点,且NB=14厘米,∴PB=2NB=2×14=28(厘米),∵M是AB的中点,∴AM=MB=AB=×80=40(厘米),∴MP=MB﹣PB=40﹣28=12(厘米).25.(12分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=4∠COD,∠AOB=120°,求∠AOC的度数.【解答】解:∵OD平分∠AOB,∴∠AOD=∠BOD.∵∠BOC=4∠COD,∴设∠COD=x,则∠BOD=3x,AOC=2x,∵∠AOB=120°,∴2x+x+3x=120°,解得x=20°,∴∠AOC=2x=40°.26.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

2016-2017学年七年级(上)期末数学试卷3

2016-2017学年七年级(上)期末数学试卷3

2017-2018学年七年级(上)期末数学试卷一、选择题(共15小题,满分39分)1.(2分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m2.(2分)下列计算正确的是()A.﹣1+2=1 B.﹣1﹣1=0 C.(﹣1)2=﹣1 D.﹣12=13.(2分)已知∠A=65°,则∠A的补角等于()A.125°B.105°C.115° D.95°4.(2分)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④5.(2分)下列各图中,经过折叠能围成一个立方体的是()A.B.C.D.6.(2分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1077.(3分)如果单项式x a+1y3与y b x2是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=28.(3分)如图,∠1的余角可能是()A.B.C.D.9.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.510.(3分)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 11.(3分)如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm12.(3分)如果有理数a,b满足(a﹣3)2+|b+1|=0,那么b a等于()A.1 B.﹣1 C.﹣3 D.313.(3分)已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣1814.(3分)如图,点A在点B的北偏西30°方向,点C在点B的南偏东60°方向.则∠ABC的度数是()A.120° B.135°C.150° D.160°15.(3分)观察图中正方形四个顶点所标的数字规律,可知数39应标在()(14题) A.第9个正方形的左下角B.第9个正方形的右下角C.第10个正方形的左上角 D.第10个正方形的右下角二、填空题(共5小题,每小题3分,满分15分)16.(3分)绝对值等于6的数是.17.(3分)单项式的次数是.18.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是岁.19.(3分)长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.20.(3分)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为元.三、解答题(本大题共7个小题,共66分,解答应写出必要说明或演算步骤)21.(16分)数与式的计算(1)(﹣7)×(﹣5)﹣90÷(﹣15)(2)2×(﹣3)3﹣4×(﹣3﹣12)+15(3)5x2﹣[x2﹣2x﹣2(x2﹣3x+1)](4)化简求值:(a2﹣3a)﹣(3a﹣2ab),其中a=﹣2,b=0.5.22.(8分)解方程(1)2x﹣2=3x+5 (2).23.(8分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足分别用正负数表示,记录如下表:(标准质量是450克/少克?(2)这批样品中的平均质量比标准质量多还是少?多或少几克?24.(8分)已知:∠AOB=∠COD=90゜.(1)如图1,∠BOC=20゜,则∠AOD=;(指小于平角的角,下同)(2)如图2,∠BOC=60゜,则∠AOD=;(3)若∠BOC=100゜,则∠AOD=;(4)如图3,当∠AOB的位置固定不动,∠COD绕角顶点O任意旋转,设∠BOC=n ゜,则∠AOD的度数是多少(用含n的式子表示),说明你的理由.25.(8分)一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了1个小时后,学校要将一个紧急通知传给队长,通讯员从学校出发,骑摩托车以每小时30千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?26.(8分)已知,如图,直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠AOC和∠BOD的度数.27.(10分)如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C 移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t 秒,试用含t的代数式表示P、Q两点间的距离.2016-2017学年河北省承德市滦平县七年级(上)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题2分,满分39分)1.(2分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【解答】解∵水位升高0.8 m时水位变化记作+0.8 m,∴水位下降0.5 m时水位变化记作﹣0.5 m,故选D.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(2分)下列计算正确的是()A.﹣1+2=1 B.﹣1﹣1=0 C.(﹣1)2=﹣1 D.﹣12=1【分析】根据有理数的加减法运算法则,有理数的乘方对各选项分析判断后利用排除法求解.【解答】解:A、﹣1+2=1,故本选项正确;B、﹣1﹣1=﹣2,故本选项错误;C、(﹣1)2=1,故本选项错误;D、﹣12=﹣1,故本选项错误.故选A.【点评】本题考查了有理数的乘方,有理数的加减运算,要特别注意﹣12和(﹣1)2的区别.3.(2分)已知∠A=65°,则∠A的补角等于()A.125°B.105°C.115° D.95°【分析】根据互补两角之和为180°求解即可.【解答】解:∵∠A=65°,∴∠A的补角=180°﹣65°=115°.故选C.【点评】本题考查了补角的知识,属于基础题,掌握互补两角之和为180°是关键.4.(2分)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【分析】由题意,认真分析题干,用数学知识解释生活中的现象.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故选D.【点评】本题主要考查两点之间线段最短和两点确定一条直线的性质.5.(2分)下列各图中,经过折叠能围成一个立方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、可以折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D、是“田”字格,故不能折叠成一个正方体.故选:A.【点评】本题考查了展开图折叠成几何体.注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图.6.(2分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)如果单项式x a+1y3与y b x2是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得a+1=2,b=3,解得a=1,b=3,故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.(3分)如图,∠1的余角可能是()A.B.C.D.【分析】根据余角的定义逐个选项进行分析即可得出答案.【解答】解:∵互余两角的和为90°,根据选项中只有C符合,故选C.【点评】本题主要考查了互余两角的和为90°,比较简单.9.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.【点评】本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.10.(3分)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.【点评】此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.11.(3分)如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC 的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.12.(3分)如果有理数a,b满足(a﹣3)2+|b+1|=0,那么b a等于()A.1 B.﹣1 C.﹣3 D.3【分析】根据非负数的性质分别求出a、b,根据乘方法则计算即可.【解答】解:由题意得,a﹣3=0,b+1=0,解得,a=3,b=﹣1,则b a=﹣1,故选:B.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(3分)已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣18【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.14.(3分)如图,点A在点B的北偏西30°方向,点C在点B的南偏东60°方向.则∠ABC的度数是()A.120°B.135°C.150° D.160°【分析】根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【解答】解:如图,由题意,得∠ABD=30°,∠EBC=60°.∴∠FBC=90°﹣∠EBC=90°﹣60°=30°.∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故选:C.【点评】本题考查了方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.15.(3分)观察图中正方形四个顶点所标的数字规律,可知数39应标在()A.第9个正方形的左下角B.第9个正方形的右下角C.第10个正方形的左上角 D.第10个正方形的右下角【分析】观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2.【解答】解:因为39÷4=9…3,所以在第10个正方形的左上角.故选:C.【点评】考查了图形的变化类问题,解题的关键是根据前面的数值发现正方形的每个角的规律,再进一步计算,难度不大.二、填空题(共5小题,每小题3分,满分15分)16.(3分)绝对值等于6的数是±6.【分析】根据绝对值的性质解答即可.【解答】解:绝对值等于6的数是±6.故答案为:±6.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.17.(3分)单项式的次数是4.【分析】根据单项式的次数的定义解答.【解答】解:单项式的次数是:3+1=4.故答案是:4.【点评】考查了单项式.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.18.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是7岁.【分析】设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,根据小郑的年龄比妈妈小28岁列出方程解答即可.【解答】解:设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,由题意得5x﹣x=28,解得:x=7.答:小郑今年的年龄是7岁.故答案为:7.【点评】此题考查一元一次方程的实际运用,找出题目蕴含的数量关系:妈妈的年龄﹣小郑的年龄=28是解决问题的关键.19.(3分)长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm.【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.20.(3分)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为28元.【分析】设标价是x元.则0.9x=21×(1+20%),解方程即可.【解答】解:设标价是x元,列方程得0.9x=21×(1+20%),解得x=28.故填28.【点评】此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.三、解答题(本大题共7个小题,共66分,解答应写出必要说明或演算步骤)21.(16分)数与式的计算(1)(﹣7)×(﹣5)﹣90÷(﹣15)(2)2×(﹣3)3﹣4×(﹣3﹣12)+15(3)整式加减5x2﹣[x2﹣2x﹣2(x2﹣3x+1)](4)化简求值:(a2﹣3a)﹣(3a﹣2ab),其中a=﹣2,b=0.5.【分析】(1)先算乘除法,再算减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)先去括号,再合并同类项即可求解;(4)原式去括号合并得到最简结果,再把a=﹣2,b=0.5代入计算即可求出值.【解答】解:(1)(﹣7)×(﹣5)﹣90÷(﹣15)=35﹣(﹣6)=41;(2)2×(﹣3)3﹣4×(﹣3﹣12)+15=﹣54﹣4×(﹣15)+15=﹣54+60+15=21;(3)5x2﹣[x2﹣2x﹣2(x2﹣3x+1)]=5x2﹣[x2﹣2x﹣2x2+6x﹣2]=5x2﹣x2+2x+2x2﹣6x+2=6x2﹣4x+2;(4)(a2﹣3a)﹣(3a﹣2ab)=a2﹣3a﹣3a+2ab=a2﹣6a+2ab,当a=﹣2,b=0.5时,原式=4+12﹣2=14.【点评】考查了有理数的混合运算,整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.22.(8分)解方程(1)2x﹣2=3x+5(2).【分析】(1)直接移项合并同类项进而解方程得出答案;(2)直接去分母,再移项合并同类项进而解方程得出答案.【解答】解:(1)2x﹣2=3x+52x﹣3x=2+5则﹣x=7,解得:x=﹣7;(2)去分母得:2x+4﹣6x+4=4解得:x=1.【点评】此题主要考查了解一元一次方程,正确掌握解方程的方法是解题关键.23.(8分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足分别用正负数表示,记录如下表:(标准质量是450克/袋)(1)最不符合标准(即与标准质量相差值最大)的食品有几袋?每袋质量是多少克?(2)这批样品中的平均质量比标准质量多还是少?多或少几克?【分析】(1)找出与标准质量的差值绝对值最大的数即可;(2)根据表格列出算式,计算即可作出判断.【解答】解:(1)有3袋,每袋质量是456克;(2)由题意得:1×(﹣5)+4×(﹣2)+3×0+4×1+5×3+3×6=24,=1.2,则比标准质量多,多1.2克.【点评】此题考查了正数与负数,弄清题意是解本题的关键.24.(8分)已知:∠AOB=∠COD=90゜.(1)如图1,∠BOC=20゜,则∠AOD=160°;(指小于平角的角,下同)(2)如图2,∠BOC=60゜,则∠AOD=120°;(3)若∠BOC=100゜,则∠AOD=80°;(4)如图3,当∠AOB的位置固定不动,∠COD绕角顶点O任意旋转,设∠BOC=n ゜,则∠AOD的度数是多少(用含n的式子表示),说明你的理由.【分析】(1)用360°﹣∠AOB﹣∠BOC﹣∠COD,求解即可;(2)用360°﹣∠AOB﹣∠BOC﹣∠COD,求解即可;(3)用360°﹣∠AOB﹣∠BOC﹣∠COD,求解即可;(1)用360°﹣∠AOB﹣∠BOC﹣∠COD,求解即可.【解答】解:(1)∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣20°﹣90°﹣90°=160゜;(2)∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣60°﹣90°﹣90°=120゜;(3)∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣100°﹣90°﹣90°=80゜;(4)∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣n°﹣90°﹣90°=180゜﹣n°.【点评】本题考查了余角和补角的知识,关键是结合图形,得出各角之间的关系后求解.25.(8分)一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了1个小时后,学校要将一个紧急通知传给队长,通讯员从学校出发,骑摩托车以每小时30千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?【分析】设通讯员需要x小时追上学生队伍,根据队伍及通讯员前进的路程相同,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设通讯员需要x小时追上学生队伍,根据题意得:30x=5x+1×5,解得:x=答:通讯员需要小时追上学生队伍.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.(8分)已知,如图,直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠AOC和∠BOD的度数.【分析】利用图中角与角的关系即可求得.【解答】解:因为∠COE=90°,∠COF=34°,所以∠EOF=∠COE﹣∠COF=56°,因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=112°,所以∠AOC=112°﹣90°=22°,∠EOB=180°﹣112°=68°,因为∠EOD是直角,所以∠BOD=22°.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.27.(10分)如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=14,BC=20;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C 移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t 秒,试用含t的代数式表示P、Q两点间的距离.【分析】(1)根据数轴上任意两点间的距离公式等于这两点所表示的数的差的绝对值而得出结论;(2)先分别求出t秒后A、B、C三点所对应的数,就可以表示出BC,AB的值,从而求出BC﹣AB的值而得出结论;(3)先求出经过t秒后,P、Q两点所对应的数,分类讨论①当0<t≤14时,点Q还在点A处,②当14<t≤21时,点P在点Q的右边,③当21<t≤34时,点Q在点P的右边,从而得出结论.【解答】解:(1)由题意,得AB=﹣10﹣(﹣24)=14,BC=10﹣(﹣10)=20.故答案为:14,20;(2)答:不变.∵经过t秒后,A、B、C三点所对应的数分别是﹣24﹣t,﹣10+3t,10+7t,∴BC=(10+7t)﹣(﹣10+3t)=4t+20,AB=(﹣10+3t)﹣(﹣24﹣t)=4t+14,∴BC﹣AB=(4t+20)﹣(4t+14)=6.∴BC﹣AB的值不会随着时间t的变化而改变.(3)经过t秒后,P、Q两点所对应的数分别是﹣24+t,﹣24+3(t﹣14),由﹣24+3(t﹣14)﹣(﹣24+t)=0解得t=21,①当0<t≤14时,点Q还在点A处,∴PQ═t,②当14<t≤21时,点P在点Q的右边,∴PQ=(﹣24+t)﹣[﹣24+3(t﹣14)]=﹣2t+42,③当21<t≤34时,点Q在点P的右边,∴PQ=[﹣24+3(t﹣14)]﹣(﹣24+t)=2t﹣42.【点评】本题考查了线段的长度的运用,数轴的运用,两点间的距离的运用.。

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档