2018年春人教版八年级数学下册期末综合检测题有答案

合集下载

2017-2018学年八年级下期末数学试卷及答案

2017-2018学年八年级下期末数学试卷及答案

2017-2018学年八年级下期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.在实数范围内有意义,则x应满足的条件是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣12.关于x的一元一次方程的根是()A.B.C.D.3.在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,若DC=3,BC=6,AD=5,则AB=()A.9 B.10 C.11 D.124.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形5.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A.5 B.10 C.12 D.136.在四边形ABCD中,点O是对角线的交点,在下列条件中,能判定这个四边形为正方形的是()A.AC=BD,AB∥CD B.AD∥BC,∠A=∠CC.OA=OB=OC=OD,AC⊥BD D.OA=OC,OB=OD,AB=BC7.如图,在△ABC中,DE∥CA,DF∥BA,下列判断中不正确的是()A.四边形AEDF是平行四边形B.如果AD⊥BC,那么四边形AEDF是正方形C.如果∠BAC=90°,那么四边形AEDF是矩形D.如果AD平分∠BAC,那么四边形AEDF是菱形8.如图,明明折叠一张长方形纸片,翻折AD,使点D落在BC边的点F处,量得AB=8cm,BC=10cm,则EC=()A.3 B.4 C.5 D.69.某运动鞋生产厂家在街头随机调查男生的鞋号,并得到一组数据,他们最关注这数据中的()A.平均数B.众数C.中位数D.方差10.已知直线y=kx+b,若kb=﹣2015,那该直线一定经过的象限是()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、四象限11.某种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格打折,因此付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如果所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是()A.0 B.1 C.2 D.312.如图,在四边形ABCD中,∠C=45°,DE⊥BC于点E,若CE=4,四边形ABED为正方形,则四边形ABED的面积为()A.24 B.8C.36 D.48二.填空题(共4小题,满分12分,每小题3分)13.使得等式==成立的x的取值范围是.14.已知+(y+5)2=0,则(x+y)2012=.15.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是.16.一个直角三角形的三条边的长均为整数,已知它的一条直角边的长是18,那么另一条直角边的长有种可能,它的最大值是.三.解答题(共10小题,满分102分)17.(6分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式:x﹣1≤x﹣.18.(8分)计算:(1)(2)已知,,求x2+y2的值.19.(10分)如图,点B是线段AC的中点,点D是线段CE的中点,点M是AE的中点,四边形BCGF和CDHN都是正方形,求证:△FMH是等腰直角三角形.20.(10分)如图,同底边BC的△ABC与△DBC中,E、F、G、H分别是AB、AC、DB、DC的中点,求证:EH与FG互相平分.21.(10分)甲、乙两车分别从P、Q两地同时同向运动.它们的图象分别如图(a)、(b)所示.两者经过6s相遇,求:(1)甲、乙两车的速度哪个大?(2)P、Q两地的距离是多大.22.(10分)为了从甲、乙两名同学中选拔一个射击比赛,对他们的射击水平进行了测验,两个在相同条件下各射击5次,命中的环数如下:(单位:环)甲:6,8,9,9,8;乙:10,7,7,7,9.(1)求,,s甲2,s乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?(还记得方差公式吗?)23.(10分)阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简: +++…++.24.(12分)说出直线y=3x+2与y=x+2的相同之处,y=5x﹣1与y=5x﹣4的位置关系.25.(12分)如图,△ABC是一张直角三角形纸片,其中∠C=90°,BC=8cm,AB=10cm,将纸片折叠,使点A恰好落在BC的中点D处,折痕为MN.(1)求DC的长;(2)求AM的长.26.(14分)如图在四边形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60度角,角的两边分别交AB、AC于E、F两点.连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.在实数范围内有意义,则x应满足的条件是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣1【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故选D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.关于x的一元一次方程的根是()A.B.C.D.【分析】把四个选项分别代入一元一次方程,从而选出正确的选项.【解答】解:A,把﹣代入一元一次方程,不符合题意,故错误.B,把﹣代入一元一次方程,符合题意,而原方程只有一个解,故正确.C,把代入方程,不符合题意,故错误.D,把代入方程,验证不符合题意,故错误.故答案选B.【点评】本题考查了二次根式的混合运算和解一元一次方程,难度不大,主要掌握二次根式的运算法则.3.在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,若DC=3,BC=6,AD=5,则AB=()A.9 B.10 C.11 D.12【分析】由AD+DC=AC,把AD及DC的长代入可得出AC的长,又∠C=90°,可得三角形ABC为直角三角形,由AC及BC的长利用勾股定理即可求出AB 的长.【解答】解:∵DC=3,AD=5,∴AC=AD+DC=5+3=8,在Rt△ABC中,∠C=90°,AC=8,BC=6,根据勾股定理得:AB2=AC2+BC2=82+62=100,则AB=10.故选B【点评】此题考查了勾股定理的运用,勾股定理为:在直角三角形中两直角边的平方和等于斜边的平方,熟练掌握勾股定理是解本题的关键.4.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A.5 B.10 C.12 D.13【分析】根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD.∴OA=OB.∵∠BOC=120°,∴∠AOB=60°.∴△AOB是等边三角形.∴OB=AB=5.∴BD=2BO=10.故选:B.【点评】本题考查了等边三角形的性质和判定,矩形性质的应用,证得△AOB 是等边三角形是解题的关键.6.在四边形ABCD中,点O是对角线的交点,在下列条件中,能判定这个四边形为正方形的是()A.AC=BD,AB∥CD B.AD∥BC,∠A=∠CC.OA=OB=OC=OD,AC⊥BD D.OA=OC,OB=OD,AB=BC【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【解答】解:A、一组对边平行,对角线相等可能是等腰梯形,故本选项错误;B、一组对边平行,一组对角相等的四边形可能是矩形,故本选项错误;C、对角线互相垂直平分且相等的四边形是正方形,故本选项正确;D、对角线互相平分,邻边相等的四边形有可能是菱形.故本选项错误;故选:C.【点评】本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.7.如图,在△ABC中,DE∥CA,DF∥BA,下列判断中不正确的是()A.四边形AEDF是平行四边形B.如果AD⊥BC,那么四边形AEDF是正方形C.如果∠BAC=90°,那么四边形AEDF是矩形D.如果AD平分∠BAC,那么四边形AEDF是菱形【分析】两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故本选项正确.B、如果AD⊥BC时,∠EDF不一定是直角,且ED不一定等于DF,所以不能判定平行四边形AEDF是正方形.故本选项错误;C、平行四边形AEDF的一内角∠BAC=90°,所以平行四边形AEDF是矩形.故本选项正确.D、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以平行四边形AEDF是菱形.故本选项正确.故选B.【点评】本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理,和正方形的判定定理等知识点.8.如图,明明折叠一张长方形纸片,翻折AD,使点D落在BC边的点F处,量得AB=8cm,BC=10cm,则EC=()A.3 B.4 C.5 D.6【分析】先根据图形翻折变换的性质得出△ADE≌△AFE,进而可知AD=AF=BC=10cm,DE=EF,在Rt△ABF中利用勾股定理求出BF的长,进而可得出CF的长,设CE=x,在Rt△CEF中利用勾股定理即可求出x的值.【解答】解:∵△AFE是Rt△ADE翻折而成,∴△ADE≌△AFE,∴AD=AF=BC=10cm,DE=EF,在Rt△ABF中,BF===6cm,∴CF=BC﹣BF=10﹣6=4cm,设CE=x,则EF=8﹣x,在Rt△CEF中,EF2=CE2+CF2,即(8﹣x)2=x2+42,解得x=3cm.故选A.【点评】本题考查的是翻折变换的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的性质是解答此题的关键.9.某运动鞋生产厂家在街头随机调查男生的鞋号,并得到一组数据,他们最关注这数据中的()A.平均数B.众数C.中位数D.方差【分析】根据众数的定义即:一组数据中出现次数最多的数据叫做众数,直接解答即可.【解答】解:根据题意得:他们最关注这数据中的众数;故选B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.10.已知直线y=kx+b,若kb=﹣2015,那该直线一定经过的象限是()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、四象限【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【解答】解:∵kb<0,∴k、b异号.①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过第一、三象限;k<0时,直线必经过第二、四象限.b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.11.某种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格打折,因此付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如果所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是()A.0 B.1 C.2 D.3【分析】①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.【解答】解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150﹣50)÷(50﹣10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30﹣10)=100元,正确;③由于一次购买40千克种子需要:50+2.5×(40﹣10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20﹣10)]=150元,而150﹣125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.【点评】本题主要考查了一次函数的应用,难度适中,解决本题的关键是认真观察图象,求出一次购买种子数量不超过10千克时的销售单价及超过10千克以后,超过的那部分种子的单价.12.如图,在四边形ABCD中,∠C=45°,DE⊥BC于点E,若CE=4,四边形ABED为正方形,则四边形ABED的面积为()A.24 B.8C.36 D.48【分析】由已知条件易证△DEC是等腰直角三角形,所以DE=CE,进而可求出四边形ABED的面积.【解答】解:∵四边形ABED为正方形,∴∠DEB=90°,∴∠DEC=90°,∵∠C=45°,∴∠EDC=45°,∴DE=CE=4,∴四边形ABED的面积=4×4=48.故选D.【点评】本题考查了正方形的性质、等腰直角三角形的判定和性质以及正方形面积公式的运用,求出正方形的边长是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.使得等式==成立的x的取值范围是x≥﹣1.【分析】根据负数没有平方根及分母不为0,即可求出x的范围.【解答】解:根据题意,得,解得:,则使得等式==成立的x的取值范围是x≥﹣1.故答案为:x≥﹣1.【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.14.已知+(y+5)2=0,则(x+y)2012=1.【分析】直接利用算术平方根的定义以及偶次方的性质得出x,y的值进而代入求出即可.【解答】解:∵ +(y+5)2=0,∴x﹣4=0,y+5=0,解得:x=4,y=﹣5,则(x+y)2012=(4﹣5)2012=1.故答案为:1.【点评】此题主要考查了算术平方根的定义以及偶次方的性质,得出x,y的值是解题关键.15.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是12米.【分析】由题意可知消防车的云梯长、地面、建筑物高构成一直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出高度.【解答】解:如图所示,AB=13米,BC=5米,由勾股定理可得,AC===12米.故答案为:12米.【点评】此题考查了勾股定理的应用,要求学生善于利用题目信息构成直角三角形,从而运用勾股定理解题.16.一个直角三角形的三条边的长均为整数,已知它的一条直角边的长是18,那么另一条直角边的长有2种可能,它的最大值是80.【分析】一条直角边长为18,则另一条直角边长可能有两种情况,边长为24或者80.最大值为80.【解答】解:设另一直角边长和斜边长分别是Z,X,显然X>Z>0根据直角三角形的边长关系有:182=X2﹣Z2即:182=(X+Z)(X﹣Z)式中X+Z 和X﹣Z 分别是大于零的整数,再来看看182=324这个数的因数:1,2,3,4,6,9,18,36,54,81,108,162,324.由324=(X+Z)(X﹣Z)X﹣Z 和X+Z 这两个数必定取这些因数中的偶数.故X﹣Z=2,X+Z=162,解这个联立方程,得2X=164,X=82,Z=80.X﹣Z=6,X+Z=54,解这个联立方程,得2X=60,X=30,Z=24.所以,共有2个整数解:X=82,Z=80X=30,Z=24所以,另一条直角边的长度只有( 2 )种可能,其中最大值是(80 ).故答案为:2,80.【点评】本题考查了在直角三角形中勾股定理的运用,本题中计算也是整数是解题的关键.三.解答题(共10小题,满分102分)17.(6分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式:x﹣1≤x﹣.【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,第四项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:(1)原式=3﹣2+1﹣1+2=3;(2)去分母得:3x﹣6≤4x﹣3,解得:x≥﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)计算:(1)(2)已知,,求x2+y2的值.【分析】(1)求出每一部分的值,代入求出即可;(2)求出xy的值,求出x+y,xy的值,代入x2+y2=(x+y)2﹣2xy求出即可.【解答】解:(1)原式=1+2+﹣5﹣2=3+3﹣5﹣2=﹣2+.(2)x===7﹣4,y==7+4,x+y=7﹣4+7+4=14,xy=(7﹣4)×(7+4)=1,∴x2+y2=(x+y)2﹣2xy=142﹣2×1=194.【点评】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,绝对值的应用,主要考查学生计算能力.19.(10分)如图,点B是线段AC的中点,点D是线段CE的中点,点M是AE的中点,四边形BCGF和CDHN都是正方形,求证:△FMH是等腰直角三角形.【分析】BM、DM,如图,FM交AC于P,先利用三角形中位线性质得到BM ∥CE,BM=DE=CD,DM∥BC,DM=AB=CB,则可判断四边形BMDC为平行四边形,利用平行四边形的性质得∠CBM=∠CDM,接着证明∠FBM=∠HDM,MD=BF,DH=BM,于是可判断△BMF≌△DHM,所以MF=MH,∠MFB=∠HMD,然后证明∠FMH=∠FBC=90°,从而得到△FMH是等腰直角三角形.【解答】证明:BM、DM,如图,FM交AC于P,∵点B是线段AC的中点,点D是线段CE的中点,点M是AE的中点,∴BM∥CE,BM=DE=CD,DM∥BC,DM=AB=CB,∴四边形BMDC为平行四边形,∴∠CBM=∠CDM,∵∠FBM=∠FBC+∠CBM,∠HDM=∠HDC+∠CDM,∴∠FBM=∠HDM,∵四边形BCGF和CDHN都是正方形,∴BC=BF,DH=CD,∴MD=BF,DH=BM,在△BMF和△DHM中,∴△BMF≌△DHM,∴MF=MH,∠MFB=∠HMD,∵BC∥MD,∴∠BPM=∠PMD,而∠BPM=∠PFB+∠FBP,∠PMD=∠PMH+∠HMD,∴∠FMH=∠FBC=90°,∴△FMH是等腰直角三角形.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角.也考查了三角形中位线的性质和全等三角形的判定与性质.解决问题的关键是构建△BMF与△DHM全等.20.(10分)如图,同底边BC的△ABC与△DBC中,E、F、G、H分别是AB、AC、DB、DC的中点,求证:EH与FG互相平分.【分析】要证明EF和GH互相平分,只需构造一个平行四边形,运用平行四边形的性质:平行四边形的对角线互相平分即可证明.【解答】证明:连接EG、GF、FH、HE,∵点E、F、G、H分别是AB、CD、AC、BD的中点,∴EF、GH分别是△ABC与△DBC的中位线,∴EF BC,GH BC,∴EF GH.∴四边形EGFH为平行四边形.∴EF与GH互相平分.【点评】本题考查的是综合运用平行四边形的性质和判定定理.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.21.(10分)甲、乙两车分别从P、Q两地同时同向运动.它们的图象分别如图(a)、(b)所示.两者经过6s相遇,求:(1)甲、乙两车的速度哪个大?(2)P、Q两地的距离是多大.【分析】(1)根据函数图象可以求得甲乙两车的速度,从而可以解答本题;(2)根据(1)中甲乙两车的速度,可以求得P、Q两地的距离.【解答】解:(1)由图象可得,甲车的速度为:8÷12=m/s,乙车的速度为:6÷12=0.5m/s,∵,∴甲车的速度大;(2)由题意可得,PQ==4﹣3=1(米),即P、Q两地的距离是1米.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想和函数的思想解答.22.(10分)为了从甲、乙两名同学中选拔一个射击比赛,对他们的射击水平进行了测验,两个在相同条件下各射击5次,命中的环数如下:(单位:环)甲:6,8,9,9,8;乙:10,7,7,7,9.(1)求,,s甲2,s乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?(还记得方差公式吗?)【分析】根据平均数和方差的公式计算后,再根据方差的意义选择.【解答】解:(1)甲=(6+8+9+9+8)÷5=8,乙=(10+7+7+7+9)=8,s甲2= [(6﹣8)2+(8﹣6)2+(9﹣8)2+(9﹣8)2+(8﹣8)2]=1.2,s乙2= [(10﹣8)2+(7﹣8)2+(7﹣8)2+(7﹣8)2+(9﹣8)2]=1.6;(2)选甲同学参加射击比赛.∵甲=乙,s甲2=<s乙2,∴甲射击成绩比乙的稳定,应该选择甲去.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.(10分)阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简: +++…++.【分析】(1)观察上面解题过程,得出原式的结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式利用各种分母有理化,计算即可得到结果.【解答】解:(1)原式==+;(2)归纳总结得:=﹣(n≥1);(3)原式=﹣1+﹣+﹣+…+﹣+﹣=10﹣1=9.【点评】此题考查了分母有理化,弄清题中分母有理化法则是解本题的关键.24.(12分)说出直线y=3x+2与y=x+2的相同之处,y=5x﹣1与y=5x﹣4的位置关系.【分析】易得直线y=3x+2和直线y=x+2与y轴的交点相同,利用直线y=5x﹣1与直线y=5x﹣4的一次项系数相同,常数项不相等可判定它们平行.【解答】解:直线y=3x+2与直线y=x+2都经过点(0,2);直线y=5x﹣1与直线y=5x﹣4平行.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.(12分)如图,△ABC是一张直角三角形纸片,其中∠C=90°,BC=8cm,AB=10cm,将纸片折叠,使点A恰好落在BC的中点D处,折痕为MN.(1)求DC的长;(2)求AM的长.【分析】(1)根据中点的定义可求得DC的长;(2)在Rt△ACB中,由勾股定理求得求得AC的长,设AM的长为xcm,则CM=6﹣x,由翻折的性质可知AM=MD=x,最后利用勾股定理列方程求解即可.【解答】解:(1)∵D是BC的中点,BC=8cm,∴DC=4cm.(2)在△ABC中,∠C=90°,∴AC2+BC2=AB2.∴82+AC2=102.解得:AC=6.设AM的长为xcm,则CM=6﹣x,由翻折的性质可知AM=MD=x.在Rt△MCD中,由勾股定理得:CM2+DC2=DM2,解得:(6﹣x)2+42=x2,解得;x=.∴AM=.【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键.26.(14分)如图在四边形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60度角,角的两边分别交AB、AC于E、F两点.连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【分析】把△DCF绕点D逆时针旋转120°得到△DBG,根据旋转的性质可得∠1=∠3,∠4=∠C,DG=DF,BG=CF,然后求出∠EDG=∠EDF=60°,再根据∠B+∠C=180°求出点E、B、G共线,然后利用“边角边”证明△EDG和△EDF全等,根据全等三角形对应边相等可得EF=EG,然后整理即可得解.【解答】解:BE+CF=EF.证明如下:如图,把△DCF绕点D逆时针旋转120°得到△DBG,则∠1=∠3,∠4=∠C,DG=DF,BG=CF,∵∠BDC=120°,∠EDF=60°,∴∠1+∠2=120°﹣60°=60°,∴∠3+∠2=60°,即∠EDG=60°,∴∠EDG=∠EDF,∵∠B+∠C=180°,∴∠B+∠4=180°,∴点E、B、G共线,在△EDG和△EDF中,,∴△EDG≌△EDF(SAS),∴EF=EG,∵EG=BE+BG=BE+CF,∴BE+CF=EF.【点评】本题考查了旋转的性质,全等三角形的判定与性质,作辅助线构造出全等三角形是解题的关键,需要注意,一定要证明点E、B、G三点共线,这也是本题容易忽视而导致出错的地方.。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

中学数学八年级下册 期末压轴题(含答案)

中学数学八年级下册  期末压轴题(含答案)

八年级下册期末压轴题一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是;②在图1中利用“等积变形”可得S正方形ADEC=;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=,则有S正方形ADEC=;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△≌△,则有=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.3.(2020春•海淀区校级期末)∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围.(要写过程)4.(2019•都江堰市模拟)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M 向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M 始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.5.(2020春•海淀区校级期末)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD 的数量关系.6.(2019春•朝阳区期末)对于平面直角坐标系xOy中的图形M和点P(点P在M内部或M上),给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M 的和谐点.已知点A(﹣4,3),B(﹣4,﹣3),C(4,﹣3),D(4,3).(1)在点P₁(﹣2,1),P2(﹣1,0),P3(3,3)中,矩形ABCD的和谐点是;(2)如果直线y=上存在矩形ABCD的和谐点P,直接写出点P的横坐标t的取值范围;(3)如果直线y=上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点(含端点)都是矩形ABCD的和谐点,且EF,直接写出b的取值范围.7.(2017春•昌平区期末)(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.①如果AD=4,BD=9,那么CD=;②如果以CD的长为边长作一个正方形,其面积为S1,以BD,AD的长为邻边长作一个矩形,其面积为S2,则S1S2(填“>”、“=”或“<”).(2)基于上述思考,小泽进行了如下探究:①如图2,点C在线段AB上,正方形FGBC,ACDE和EDMN,其面积比为1:4:4,连接AF,AM,求证AF⊥AM;②如图3,点C在线段AB上,点D是线段CF的黄金分割点,正方形ACDE和矩形CBGF的面积相等,连接AF交ED于点M,连接BF交ED延长线于点N,当CF=a时,直接写出线段MN的长为.8.(2018春•浉河区期末)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,﹣2),N(,﹣1)中,是“垂点”的点为;(2)点M(﹣4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG 的边上存在“垂点”时,GE的最小值为.9.(2018春•丰台区期末)如图,菱形ABCD中,∠BAD=60°,过点D作DE⊥AD交对角线AC于点E,连接BE,取BE的中点F,连接DF.(1)请你根据题意补全图形;(2)请用等式表示线段DF、AE、BC之间的数量关系,并证明.10.(2018春•丰台区期末)在平面直角坐标系xOy中,M为直线l:x=a上一点,N是直线l外一点,且直线MN与x轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l的“伴随矩形”.如图为直线l的“伴随矩形”的示意图.(1)已知点A在直线l:x=2上,点B的坐标为(3,﹣2)①若点A的纵坐标为0,则以AB为对角线的直线l的“伴随矩形”的面积是;②若以AB为对角线的直线l的“伴随矩形”是正方形,求直线AB的表达;(2)点P在直线l:x=m上,且点P的纵坐标为4,若在以点(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l的“伴随矩形”为正方形,直接写出m的取值范围.11.(2019春•海淀区期末)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.12.(2019春•海淀区期末)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.13.(2017春•西城区期末)如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为B(4,0),C(4,4),CD⊥y轴于点D,直线l经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出∠CFB=45°,从而证明结论.思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN 为矩形,从而证明结论.…请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为,(2)①补全图形,②直线BF与直线l的位置关系是,③证明:14.(2017春•西城区期末)如图,在由边长都为1个单位长度的小正方形组成的6×6正方形网格中,点A,B,P都在格点上请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:条件1:点P到四边形的两个顶点的距离相等;条件2:点P在四边形的内部或其边上;条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个▱ABCD,使点P在所画四边形的内部;(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.15.(2017春•西城区期末)如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m,n)在第一象限内(m<2≤a),在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点,作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由≌△,及B(m,n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.16.(2019春•西城区期末)四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC,过点C作FC⊥CE,且CF=CE.连接AE、AF,M是AF的中点,作射线DM 交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求∠EAC与∠ADN 的和的度数.17.(2019春•西城区期末)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP =xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数y1的图象①按表中自变量的值进行取点、画图、测量,得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在图2所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y2的图象,在同一坐标系中,画出函数y2的图象;(3)根据画出的函数y1的图象、函数y2的图象,解决问题①函数y1的最小值是;②函数y1的图象与函数y2的图象的交点表示的含义是;③若PE=PC,AP的长约为cm18.(2019春•西城区期末)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K (﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN 与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.19.(2019春•大兴区期末)有这样一个问题:探究函数y=+1的图象与性质.小东根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣112345…y…393m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.20.(2019春•大兴区期末)如图1,四边形ABCD是平行四边形,A,B是直线l上的两点,点B关于AD的对称点为M,连接CM交AD于F点.(1)若∠ABC=90°,如图1,①依题意补全图形;②判断MF与FC的数量关系是;(2)如图2,当∠ABC=135°时,AM,CD的延长线相交于点E,取ME的中点H,连结HF.用等式表示线段CE与AF的数量关系,并证明.21.(2019春•大兴区期末)在平面直角坐标系xOy中,记y与x的函数y=a(x﹣m)2+n (m≠0,n≠0)的图象为图形G,已知图形G与y轴交于点A,当x=m时,函数y=a (x﹣m)2+n有最小(或最大)值n,点B的坐标为(m,n),点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,且对角线AC,BD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.(1)如图1,若函数y=(x﹣2)2+1的图象记为图形G,求图形G的伴随直线的表达式;(2)如图2,若图形G的伴随直线的表达式是y=x﹣3,且伴随四边形的面积为12,求y与x的函数y=a(x﹣m)2+n(m>0,n<0)的表达式;(3)如图3,若图形G的伴随直线是y=﹣2x+4,且伴随四边形ABCD是矩形,求点B 的坐标.22.(2019春•石景山区期末)正方形ABCD中,点P是直线AC上的一个动点,连接BP,将线段BP绕点B顺时针旋转90°得到线段BE,连接CE.(1)如图1,若点P在线段AC上,①直接写出∠ACE的度数为°;②求证:P A2+PC2=2PB2;(2)如图2,若点P在CA的延长线上,P A=1,PB=,①依题意补全图2;②直接写出线段AC的长度为.23.(2020春•浦东新区期末)在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.24.(2016春•无锡期末)已知:如图1,在平面直角坐标中,A(12,0),B(6,6),点C 为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A 时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.25.(2019春•东城区期末)有这样一个问题:探究函数y=﹣3的图象与性质.小亮根据学习函数的经验,对y=﹣3的图象与性质进行了探究下面是小亮的探究过程,请补充完整:(1)函数y=3中自变量x的取值范围是(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣4﹣5﹣7m﹣1﹣2﹣﹣…求m的值;(1)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.26.(2019春•东城区期末)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD 外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)27.(2019春•东城区期末)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形.当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(﹣1,1),P3(3,2)中,原点正方形的友好点是;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)一次函数y=﹣x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.28.(2019春•昌平区期末)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.0 1.0 2.0 3.0 4.0 4.5 4.14 4.5 5.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为时,BP=CP.29.(2019春•昌平区期末)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为.30.(2019春•昌平区期末)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(﹣4,﹣4),E(5,﹣),其中是平面直角坐标系中的巧点的是;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.31.(2019春•延庆区期末)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.32.(2019春•延庆区期末)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=﹣3x﹣2.(1)如果y=x+1的﹣1分函数为y[﹣1],①当x=4时,y[﹣1];当y[﹣1]=﹣3时,x=.②求双曲线y=与y[﹣1]的图象的交点坐标;(2)如果y=﹣x+2的0分函数为y[0],正比例函数y=kx(k≠0)与y=﹣x+2的0分函数y[0]的图象无交点时,直接写出k的取值范围.33.(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.34.(2017春•西城区校级期末)某学习小组有a个男生,b个女生,其中a和b同时满足以下三个条件:①男生人数不少于女生人数;②a,b是一元二次方程mx2﹣(3m+8)x+24=0的两个实数根;③男生和女生的总人数不超过10人.请根据以上信息,回答下面两个问题:(1)求整数m的值?(2)若T=ma+b,求T的所有可能的值?35.(2017春•西城区校级期末)设p,q都是实数,且p<q.我们规定:如果变量x的取值范围为p≤x≤q,则把实数L=q﹣p叫做变量x的取值宽度.如果反比例函数y=在p ≤x≤q的函数值y的取值宽度与自变量x的取值宽度相等,则称此函数在p≤x≤q上具有“等宽性”.例如:函数y=的函数值y的取值范围为≤y≤2,故而函数y=具有“等宽性”.(1)下列函数哪些函数具有“等宽性”:(填序号)①y=(1≤x≤2);②y=﹣(﹣2≤x≤﹣1);③y=﹣(1≤x≤6);④y=﹣(﹣4≤x≤﹣1);(2)已知函数y=﹣在a≤x≤﹣1上具有“等宽性”,求a的值;(3)已知直线y=kx+b与函数y=﹣交于A(x1,y1)、B(x2,y2)两点,且函数y=﹣在x1≤x≤x2上具有“等宽性”,则k=.36.(2018春•海淀区期末)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1﹣1所示,∠APE=°,用等式表示线段DE与CP之间的数量关系:;②当BP=BC时,如图1﹣2所示,①中的结论是否发生变化?直接写出你的结论:;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图2﹣1,2﹣2,通过观察、测量,发现:(1)中①的结论在一般情况下(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图2﹣1和图2﹣2中任选一个进行证明;若不成立,请说明理由.37.(2018春•海淀区期末)在平面直角坐标系xOy中,A(O,2),B(4,2),C(4,0).P 为矩形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分矩形ABCO为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA,则称P 为矩形ABCO的矩宽点.例如:下图中的为矩形ABCO的一个矩宽点.(1)在点D(,),E(2,1),F(,)中,矩形ABCO的矩宽点是;(2)若G(m,)为矩形ABCO的矩宽点,求m的值;(3)若一次函数y=k(x﹣2)﹣1(k≠0)的图象上存在矩形ABCO的矩宽点,则k的取值范围是.38.(2019春•曲阜市期末)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.39.(2018春•朝阳区期末)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(﹣,0),B(0,2),C(﹣2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.40.(2018春•昌平区期末)如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)OP=,OQ=;(用含t的代数式表示)(2)当t=1时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.①求点D的坐标;②如果直线y=kx+b与直线AD平行,那么当直线y=kx+b与四边形P ABD有交点时,求b的取值范围.41.(2018春•昌平区期末)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.42.(2018春•西城区期末)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.43.(2018春•西城区期末)在△ABC中,M是BC边的中点.(1)如图1,BD,CE分别是△ABC的两条高,连接MD,ME,则MD与ME的数量关系是;若∠A=70°,则∠DME=°;(2)如图2,点D,E在∠BAC的外部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=30°,连接MD,ME.①判断(1)中MD与ME的数量关系是否仍然成立,并证明你的结论;②求∠DME的度数;(3)如图3,点D,E在∠BAC的内部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=α,连接MD,ME.直接写出∠DME的度数(用含α的式子表示).八年级下册期末压轴题参考答案与试题解析一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是平行四边形;②在图1中利用“等积变形”可得S正方形ADEC=S四边形AMNC;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=S四边形QATH,则有S正方形ADEC=S四边形QATH;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△ADM≌△ABC,则有AM=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.【分析】根据平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型即可解决问题;【解答】解:(1)∵四边形ACED是正方形,∴AC∥MN,∵AM∥CN,∴四边形AMNC是平行四边形,∴S正方形ADEC=S平行四边形AMNC,∵AD=AC,∠D=∠ACB,∠DAC=∠MAB,∴∠DAM=∠CAB,∴△ADM≌△ACB,∴AM=AB=AQ,∴图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′,∴S四边形QACC′=S四边形QATH,则有S正方形ADEC=S四边形QATH,∴同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ;故答案为平行四边形,S四边形AMNC,S四边形QATH,S四边形QATH;(2)由(1)可知:△ADM≌△ACB,∴AM=AB=AQ,故答案为ADM,ACB,AM;【点评】本题考查平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考创新题目.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN 逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证。

2018年浙江省余姚市八年级下学期期末考试数学试卷(人教版)word版含答案

2018年浙江省余姚市八年级下学期期末考试数学试卷(人教版)word版含答案

2018年浙江省余姚市八年级下学期期末考试数学试卷一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案填写在括号中。

1、如果分式x11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12. 命题“两点之间线段最短”是( )A.角的定义B.假命题C.公理D.定理 3、一直角三角形两边分别为3和5,则第三边为( ) A 、4 B 、34 C 、4或34 D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形5. 若一个多边形的内角和等于720度,则这个多边形的边数是( ) A.5 B.6 C.7 D.86、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、320cm第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、300 10、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。

山西太原市2018-2019学年八年级下学期期末数学试题(解析版)

山西太原市2018-2019学年八年级下学期期末数学试题(解析版)
山西省太原市2018-2019学年八年级下学期期末数学试题
一.选择题
1.若a>b,则下列不等式成立的是( )
A. B.a+5<b+5C.-5a>-5bD.a-2<b-2
【答案】A
【解析】
【分析】
根据不等式的性质逐项分析即可.
【详解】不等式的两边同时除以一个正数,不等号的方向不变,故A正确.
不等式的两边同时加上或减去一个数,不等号的方向不变,故B、D错误;
A.5.5元/千克B.5.4元/千克C.6.2元/千克D.6元/千克
【答案】D
【解析】
【分析】
设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.
【详解】设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得
(1-10%)mx-4m≥4m×35%,
8.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是( )
A. (3,6)B. (3,7)C. (3,8)D. (6,4)
【答案】C
【解析】
【分析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.
A.x≠2B.x≠-2C.x≠ D.x≠-
【答案】B
【解析】
【分析】
根据分母不 零列式求解即可.
【详解】分式中分母不能为0,
所以,3 x+6≠0,解得:x≠-2,
故选B.
【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.

人教版八年级下册数学-期末模拟卷

人教版八年级下册数学-期末模拟卷

八年级下册数学 期末模拟卷一.选择题(共10小题,每题3分,共30分) 1.下列二次根式中,最简二次根式是( ) A.21B. 2.0C. 22D. 20 2.如果0,0ab a b >+<,那么下面各式:① baba =,②1=⋅a b b a ,③ b b a ab -=÷,其中正确的是( )A.①②B.②③C.①③D.①②③3.为参加 “2018年初中学业水平体育考试”,小明同学进行了刻苦训练,在立定跳远时,测得5次跳远的成绩(单位:m )为:2.3,2.5,2.4,2.3,2.1这组数据的众数、中位数依次是( ) A .2.4,2.4 B .2.4,2.3 C .2.3,2.4 D .2.3,2.3 4.已知:直角三角形的两条直角边的长分别为3和4,则第三边长为( ) A.5 B.7 C.7或5 D.55.给出的下列说法中:①以 1 ,2,3为三边长的的三角形是直角三角形;②如果直角三角形的两边长分别是3和4,那么斜边必定是5;③一个等腰直角三角形的三边长分别是a 、b 、c ,其中c 为斜边,那么a ︰b ︰c=1︰1︰2.其中正确的是( )A .①②B .①③C .②③D .①②③6.已知一矩形的两边长分别为7cm 和12 cm ,其中一个内角的平分线分长边为两部分,这两部分的长分别为( )。

A .6cm 和6cmB .7cm 和5cmC .4cm 和8cmD .3cm 和9c m 7.下列给出的条件中,能判断四边形ABCD 是平行四边形的是( ) A .∠A=∠C ,AD ∥BC B .AB ∥CD ,AD=BC C .∠B=∠C ,∠A=∠D D .∠A=∠C ,AD=BC 8.对于函数y=-3x +1,下列结论正确的是( )A .它的图像必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >13时,y <0D .y 的值随x 值的增大而增大9.下面四条直线中,直线上每个点的坐标都是方程x -2y=2的解的是( )A .B .C .D .10.小明、小宇从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小宇骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s (米)与小明出发时间t (分)之间的函数关系如图所示.下列说法:①小宇先到达青少年宫;②小宇的速度是小明速度的3倍;③a=20;④b=600.其中正确的是( ) A .①②③ B .①②④ C .①③④ D .①②③④二、填空题(共10小题,每题3分,共30分) 11.计算()()=+-2323 。

人教版八年级数学下册期末测试题 (24)

人教版八年级数学下册期末测试题 (24)

江西省南昌市2017-2018学年八年级(下)期末数学试卷(解析版)一、选择题(共8小题,每小题3分,满分24分)1.若+3=x,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥32.在△ABC中,AB=2,BC=,AC=,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形3.在▱ABCD中,∠B=60°,则下列各式中,不能成立的是()A.∠D=60° B.∠C+∠D=180°C.∠A=120°D.∠C+∠A=180°4.如图,在菱形ABCD中,BE⊥AD于E,BF⊥CD于F,且AE=DE,则∠EBF的度数是()A.75°B.60°C.50°D.45°5.函数y=﹣2x+5(1≤x≤2)的图象是()A.直线B.射线C.线段D.曲线6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(﹣2,﹣3),(4,﹣6)B.(﹣2,3),(4,6) C.(2,﹣3),(﹣4,6)D.(2,3),(﹣4,6)7.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.158.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.44,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以二、填空题(共6小题,每小题3分,满分18分)9.若是一个整数,则x可取的最小正整数是.10.一次函数y=mx+|m﹣1|的图象过点(0,2)且y随x的增大而减小,则m= .11.如图,在矩形ABCD中,AD=2AB,E是AD上一点,且BE=BC,则∠ECD的度数是.12.若直线y=2x﹣4与x轴交于点A,与y轴交于点B,则△AOB的面积是.13.若一组数据2,4,x,﹣1极差为7,则x的值可以是.14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三、解答题(共4小题,满分24分)15.计算:(2﹣)(2+)+(﹣1)2011(﹣π)0﹣()﹣1.16.一组数据2,3,4,x中,若中位数与平均数相同,求x的值.17.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.18.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.四、解答题(共24分)19.电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?20.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.21.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩85 92 84 90 84 80/分面试成绩90 88 86 90 80 85/分根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.五、综合题(10分)22.如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.若+3=x,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥3【分析】已知等式变形后,利用二次根式性质确定出x的范围即可.【解答】解:已知等式整理得: =|x﹣3|=x﹣3,∴x﹣3≥0,解得:x≥3,故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.2.在△ABC中,AB=2,BC=,AC=,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理即可判断.【解答】解:∵AB2+BC2=22+()2=7,AC2=()2=7,∴AB2+BC2=AC2,∴△ABC是直角三角形.故选B.【点评】本题考查勾股定理的逆定理.解题的关键是掌握利用勾股定理的逆定理的解题步骤,属于中考常考题型.3.在▱ABCD中,∠B=60°,则下列各式中,不能成立的是()A.∠D=60° B.∠C+∠D=180°C.∠A=120°D.∠C+∠A=180°【分析】由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角,而它们和∠B是邻角,∠D和∠B 是对角,由此可以分别求出它们的度数,然后可以判断了.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠B=60°,∴∠A=∠C=120°,∠D=60°.∴选项A、B、C正确,选项D错误.故选D.【点评】本题主要考查了平行四边形的性质;熟记平行四边形的对角相等,邻角互补是解决问题的关键.4.如图,在菱形ABCD中,BE⊥AD于E,BF⊥CD于F,且AE=DE,则∠EBF的度数是()A.75°B.60°C.50°D.45°【分析】连结BD,如图,先利用线段垂直平分线的性质得到BA=BD,再根据菱形的性质得AB=AD,AB∥CD,则可判断△ABD为等边三角形得到∠A=60°,再计算出∠ADC=120°,然后利用四边形内角和可计算出∠EBF的度数.【解答】解:连结BD,如图,∵BE⊥AD,AE=DE,∴BA=BD,∵四边形ABCD为菱形,∴AB=AD,AB∥CD,∴AB=AD=BD,∴△ABD为等边三角形,∴∠A=60°,∵AB∥CD,∴∠ADC=120°,∵BF⊥CD,∴∠EBF=360°﹣120°﹣90°﹣90°=60°.故选B.【点评】本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).解决此题的关键是判断△ABD为等边三角形.5.函数y=﹣2x+5(1≤x≤2)的图象是()A.直线B.射线C.线段D.曲线【分析】由于一次函数y=﹣2x+5为直线,但当1≤x≤2时,函数y=﹣2x+5(1≤x≤2)的图象应该为线段.【解答】解:当x=1时,y=﹣2x+5=3;当x=2时,y=﹣2x+5=1,所以当1≤x≤2时,1≤y≤3,所以函数y=﹣2x+5(1≤x≤2)的图象是一条线段.故选C.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(﹣2,﹣3),(4,﹣6)B.(﹣2,3),(4,6) C.(2,﹣3),(﹣4,6)D.(2,3),(﹣4,6)【分析】由于正比例函数图象上点的纵坐标和横坐标的比相同,找到比值相同的一组数即可.【解答】解:A、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误;B、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误;C、∵=,∴两点在同一个正比例函数图象上,故本选项正确;D、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误.故选C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.15【分析】由于众数是一组实际中出现次数最多的数据,由此可以确定这组数据的众数.【解答】解:依题意得13在这组数据中出现四次,次数最多,∴他们年龄的众数为13.故选B.【点评】此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.8.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.44,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.44,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲队;故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(共6小题,每小题3分,满分18分)9.若是一个整数,则x可取的最小正整数是 3 .【分析】由于=2,则当x为3的完全平方数倍时,2为整数,于是可判断x可取的最小正整数为3.【解答】解: ==2,因为2为整数,而x为整数,所以x可取的最小正整数为3.故答案为3.【点评】本题考查了二次根式的性质与化简:利用使用=|a|化简二次根式.10.一次函数y=mx+|m﹣1|的图象过点(0,2)且y随x的增大而减小,则m= ﹣1 .【分析】首先根据一次函数与y轴的交点坐标为(0,b)可得|m﹣1|=2,解出m的值,再根据y随x的增大而减小可得m<0,进而即可确定出m的值.【解答】解:∵一次函数y=mx+|m﹣1|的图象过点(0,2),∴|m﹣1|=2,解得:m=3或﹣1,∵y随x的增大而减小,∴m<0,∴m=﹣1,故答案为:﹣1.【点评】此题主要考查了一次函数的性质,关键是掌握一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.y=kx+b与y轴交于(0,b).11.如图,在矩形ABCD中,AD=2AB,E是AD上一点,且BE=BC,则∠ECD的度数是15°.【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,根据AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB,∵AB=2AD,∴∠DEA=30°,∵DC∥AB,∴∠DEA=∠EAB=30°,∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°,∵∠ABC=90°,∴∠EBC=90°﹣75°=15°,故答案为:15°.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数,题目比较好,是一道综合性比较强的题目.12.若直线y=2x﹣4与x轴交于点A,与y轴交于点B,则△AOB的面积是 4 .【分析】由直线解析式可先求得A、B的坐标,从而可求得OA、OB,再利用三角形的面积公式可求得答案.【解答】解:在直线y=2x﹣4中,令y=0可得x=2,令x=0可得y=﹣4,∴A(2,0),B(0,﹣4),∴OA=2,OB=4,∴S△AOB=OAOB=×2×4=4,故答案为:4.【点评】本题主要考查一次函数与坐标轴的交点,掌握直线与坐标轴的交点坐标的求法是解题的关键.13.若一组数据2,4,x,﹣1极差为7,则x的值可以是﹣3或6 .【分析】分两种情况讨论,①x为最小数,②x为最大数,再由极差的定义,可得出x的值.【解答】解:①若x为这组数据的最小数,则4﹣x=7,解得:x=﹣3;②若x为这组数据的最大数,则x﹣(﹣1)=7,解得:x=6;故答案为:﹣3或6;【点评】本题考查了极差的知识,属于基础题,掌握极差的定义是解题的关键,注意分类讨论,不要漏解.14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2 .【分析】利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=ABsin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.三、解答题(共4小题,满分24分)15.计算:(2﹣)(2+)+(﹣1)2011(﹣π)0﹣()﹣1.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=4﹣3+(﹣1)×1﹣2,然后进行乘法运算后合并即可.【解答】解:原式=4﹣3+(﹣1)×1﹣2=4﹣3﹣1﹣2=﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.16.一组数据2,3,4,x中,若中位数与平均数相同,求x的值.【分析】先分三种情况讨论,当x≤2时,2<x<4时,x≥4时,再根据中位数与平均数相同,列出算式,求出x的值即可得出答案.【解答】解:当x≤2时,有=,解得x=1.当2<x<4时,有=,解得x=3.当x≥4时, =,解得x=5.则x的值为1或3或5.【点评】本题考查了平均数和中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.17.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.【分析】(1)由一次函数的定义可知:k﹣1≠0且|k|=1,从而可求得k的值;(2)将点的坐标代入函数的解析式,从而可求得a的值.【解答】解:(1)∵y是一次函数,∴|k|=1,解得k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.∵(2,a)在y=﹣2x+1图象上,∴a=﹣4+1=﹣3.【点评】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键.18.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.【分析】(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.【解答】解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(4分)(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2(6分),又∵OE⊥AB,及∠ABD=60°,∴∠BOE=30°,∴BE=1.19.电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【分析】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【解答】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x.当x>100时,设y=ax+b,则有,解得∴y=0.8x﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x﹣15,解得x=150.∴该用户该月用电150度.【点评】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力.20.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为 CA.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.【分析】(1)根据矩形的判定,可得答案;(2)①根据菱形的判定,可得答案;②根据勾股定理,可得答案.【解答】解:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选:C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:,∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF===5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图3:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF===,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′===3.【点评】本题考查了图形的剪拼,利用了矩形的判定,菱形的判定,勾股定理.21.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩85 92 84 90 84 80/分面试成绩90 88 86 90 80 85/分根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是84.5 分,众数是84 分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【解答】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5分,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.【点评】此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.五、综合题(10分)22.如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.由四边形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS证得△ADD1≌△CAB,根据全等三角形的对应边相等,即可得DD1=AB;(2)首先过点C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四边形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS证得△ADD1≌△CAH,根据全等三角形的对应边相等,即可得DD1=AH,同理EE1=BH,则可得AB=DD1+EE1.(3)证明方法同(2),易得AB=DD1﹣EE1.【解答】(1)证明:∵四边形CADF、CBEG是正方形,∴AD=CA,∠DAC=∠ABC=90°,∴∠DAD1+∠CAB=90°,∵DD1⊥AB,∴∠DD1A=∠ABC=90°,∴∠DAD1+∠ADD1=90°,∴∠ADD1=∠CAB,在△ADD1和△CAB中,,∴△ADD1≌△CAB(AAS),∴DD1=AB;(2)解:AB=DD1+EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH+BH=DD1+EE1;(3)解:AB=DD1﹣EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH﹣BH=DD1﹣EE1.【点评】此题考查了正方形的性质与全等三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图 8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题 9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为14,且使关于x的不等式组⎩⎨⎧x+2≤a,1-x≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题。

2018-2019学年人教版初中数学八年级下册期末数学试卷(天津市南开区

2018-2019学年人教版初中数学八年级下册期末数学试卷(天津市南开区

2018-2019学年天津市南开区八年级(下)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列一元二次方程中,没有实数根的是()A.2x2+3=0B.x2=2x C.x2+4x﹣1=0D.x2﹣8x+16=0 2.(3分)计算一组数据方差的算式为S2=[(x1﹣10)2+(x2﹣10)2+…+(x5﹣10)2],由比得到的信息中不正确的是()A.这组数据中有5个数据B.这组数据的平均数是10C.计算出的方差是一个非负数D.当x1增加时,方差的值一定随之增加3.(3分)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5 4.(3分)如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于()A.B.5C.4D.35.(3分)菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线互相平分且相等6.(3分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形7.(3分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④8.(3分)如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.109.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是()A.a>0B.a<0C.a>1D.a<110.(3分)某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600B.1280(1+2x)=1600C.1280(1+x)2=2880D.1280(1+x)+1280(1+x)2=288011.(3分)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.212.(3分)如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,直线l1,l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=()A.1:3B.8:9C.9:16D.32:35二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上13.(3分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为甲=82分,乙=82分,S甲2=245,S乙2=190.那么成绩较为整齐的是班(填“甲”或“乙”).14.(3分)如图,已知▱ABCD中,AD=8cm,AB=6cm,DE平分∠ADC交边BC于点E,则BE=cm.15.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为.16.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.17.(3分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.18.(3分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.(Ⅰ)请你借助网格,使用无刻度的直尺在线段AC上找一点P,使得PC2﹣P A2=AB2,画出点P的位置,并简要说明画法.(Ⅱ)直接写出(Ⅰ)中线段P A的长.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:(Ⅰ)(3x﹣1)2=(x﹣1)2(Ⅱ)3x(x﹣1)=2﹣2x20.(7分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.21.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.22.(8分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,(Ⅰ)连接CC′,判断四边形CBA′C′的形状并进行证明.(Ⅱ)D为线段BC′上一动点,求AD+CD的最小值.23.(8分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.设购进A种型号的衬衣x件,购进B种型号的衬衣y件,三种品牌的衬衫的进价和售价如表所示:(Ⅰ)直接用含x、y的代数式表示购进C种型号衬衣的件数,其结果可表示为.(Ⅱ)求y与x之间的函数关系式.(Ⅲ)如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元①求利润P(元)与x(件)之间的函数关系式;②求商场能够获得的最大利润.24.(8分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(Ⅰ)若△APD为等腰直角三角形①直接写出此时P点的坐标:;直线AP的解析式为.②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值;(Ⅱ)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.2018-2019学年天津市南开区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列一元二次方程中,没有实数根的是()A.2x2+3=0B.x2=2x C.x2+4x﹣1=0D.x2﹣8x+16=0【分析】求出各方程根的判别式,判断小于0即为没有实数根.【解答】解:A、△=0﹣24=﹣24<0,即方程没有实数根,符合题意;B、△=4﹣0=4>0,方程有两个不相等的实数根,不符合题意;C、△=16+4=20>0,方程有两个不相等的实数根,不符合题意;D、△=64﹣64=0,方程有两个相等的实数根,不符合题意,故选:A.【点评】此题考查了根的判别式,弄清根的判别式与方程根的关系是解本题的关键.2.(3分)计算一组数据方差的算式为S2=[(x1﹣10)2+(x2﹣10)2+…+(x5﹣10)2],由比得到的信息中不正确的是()A.这组数据中有5个数据B.这组数据的平均数是10C.计算出的方差是一个非负数D.当x1增加时,方差的值一定随之增加【分析】根据方差公式的特点分别进行解答即可.【解答】解:A、这组数据中有5个数据,正确;B、这组数据的平均数是10,正确;C、计算出的方差是一个非负数,正确;D、当x1增加时,方差的值不一定随之增加,故本选项错误;故选:D.【点评】此题考查了方差,熟练掌握方差的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].3.(3分)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5【分析】利用完全平方公式判断即可.【解答】解:用配方法解下列方程,其中应在方程左右两边同时加上4的是x2+4x=5,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(3分)如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于()A.B.5C.4D.3【分析】延长DC至E,构建直角△ADE,解直角△ADE求得DE,BE,根据BE解直角△CBE可得BC,CE,∴CD+BC=DE﹣CE+BC.【解答】解:如图,延长AB、DC相交于E,在Rt△ADE中,可求得AE2﹣DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE﹣AB=9,在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,∴BC=3,CE=6,于是CD=DE﹣CE=2,BC+CD=5.故选:B.【点评】本题考查了勾股定理的运用,考查了30°角所对的直角边是斜边的一半的性质,本题中构建直角△ADE求BE,是解题的关键.5.(3分)菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线互相平分且相等【分析】菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.【解答】解:菱形和矩形一定都具有的性质是对角线互相平分.故本题选C.【点评】熟悉菱形和矩形的对角线的性质是解决本题的关键.6.(3分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形【分析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项D满足题意.故选:D.【点评】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.7.(3分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.8.(3分)如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【分析】根据三角形中位线定理求出AC,根据直角三角形的性质计算即可.【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.【点评】本题考查的是三角形中位线定理,直角三角形的性质,三角形的中位线平行于第三边,并且等于第三边的一半.9.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是()A.a>0B.a<0C.a>1D.a<1【分析】根据一次函数的图象y=(a﹣1)x+2,当a﹣1<0时,y随着x的增大而减小分析即可.【解答】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a﹣1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,可得:a﹣1<0,解得:a<1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k>0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.10.(3分)某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600B.1280(1+2x)=1600C.1280(1+x)2=2880D.1280(1+x)+1280(1+x)2=2880【分析】设年平均增长率为x,根据:2017年投入资金给×(1+增长率)2=2019年投入资金,列出方程即可;【解答】解:设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=2880,故选:C.【点评】本题主要考查一元二次方程的应用,由题意准确抓住相等关系并据此列出方程是解题的关键.11.(3分)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.2【分析】先根据△AEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.【解答】解:如图1,直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.【点评】本题考查了动点问题的函数图象,一次函数图象与几何变换,用图象解决问题时,要理清图象的含义即会识图.解决问题的关键是掌握正方形的性质以及平移的性质.12.(3分)如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,直线l1,l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=()A.1:3B.8:9C.9:16D.32:35【分析】把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用x D=x B=8易求D点坐标.又已知y E=y D=8可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.【解答】解:由y=x+,得当y=0时,x=﹣4.∴A点坐标为(﹣4,0),由﹣2x+16=0,得x=8.∴B点坐标为(8,0),∴AB=8﹣(﹣4)=12,由,解得,∴C点的坐标为(5,6),∴S△ABC=×12×6=36.∵点D在l1上且x D=x B=8,∴y D=×8+=8,∴D点坐标为(8,8),又∵点E在l2上且y E=y D=8,∴﹣2x E+16=8,∴x E=4,∴E点坐标为(4,8),∴DE=8﹣4=4,EF=8.∴矩形面积为:4×8=32,∴S矩形DEFG:S△ABC=32:36=8:9.答:S矩形DEFG与S△ABC的比值是8:9.故选:B.【点评】此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上13.(3分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为甲=82分,乙=82分,S甲2=245,S乙2=190.那么成绩较为整齐的是乙班(填“甲”或“乙”).【分析】根据方差的意义,方差反映了一组数据的波动大小,故可由两班的方差得到结论.【解答】解:∵S2甲>S2乙∴成绩较为稳定的是乙.故填乙.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)如图,已知▱ABCD中,AD=8cm,AB=6cm,DE平分∠ADC交边BC于点E,则BE=2cm.【分析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,根据等角对等边得CE=CD,则BE可求解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=6cm,BC=AD=8cm,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,cm∴BE=BC﹣EC=8﹣6=2(cm).故答案为:2.【点评】本题考查了平行四边形性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明CE=CD是解决问题的关键.15.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为﹣3.【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值.【解答】解:把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.故答案为﹣3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为5或3.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD==1,CD==4,∴BC=BD+CD=4+1=5;②如图2同理得:CD=4,BD=1,∴BC=BD﹣CD=4﹣1=3,综上所述,BC的长为6或3;故答案为:5或3.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.17.(3分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.【分析】根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM =x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM﹣AN计算即可得解.【解答】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=4,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:【点评】本题考查了翻折变换的性质,正方形的性质,勾股定理,翻折前后对应线段相等,对应角相等,此类题目,关键在于利用勾股定理列出方程.18.(3分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.(Ⅰ)请你借助网格,使用无刻度的直尺在线段AC上找一点P,使得PC2﹣P A2=AB2,画出点P的位置,并简要说明画法取格点M,N,作直线MN交AC于点P,点P即为所求.(Ⅱ)直接写出(Ⅰ)中线段P A的长.【分析】(Ⅰ)取格点M,N(使得MN⊥BC),作直线MN交AC于点P,点P即为所求.(Ⅱ)由作图可知:PC=PB,设PC=PB=x,在Rt△ABP中,根据P A2+AB2=PB2,构建方程即可解决问题.【解答】解:(Ⅰ)如图点P即为所求.故答案为:取格点M,N(使得MN⊥BC),作直线MN交AC于点P,点P即为所求.(Ⅱ)由作图可知:PC=PB,设PC=PB=x,在Rt△ABP中,∵P A2+AB2=PB2,∴(6﹣x)2+42=x2,∴x=,∴P A=6﹣=,故答案为.【点评】本题考查作图﹣复杂作图,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:(Ⅰ)(3x﹣1)2=(x﹣1)2(Ⅱ)3x(x﹣1)=2﹣2x【分析】(Ⅰ)两边开方得到3x﹣1=±(x﹣1),然后解两个一元一次方程即可;(Ⅱ)先变形得到3x(x﹣1)+2(x﹣1)=0,然后利用因式分解法解方程.【解答】解:(Ⅰ)3x﹣1=±(x﹣1),即3x﹣1=x﹣1或3x﹣1=﹣(x﹣1),所以x1=0,x2=;(Ⅱ)3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20.(7分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图,∵=1.61,∴这组数据的平均数是1.61.∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,有∴这组数据的中位数为1.60,(Ⅲ)能.∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前10名;∵1.65m>1.60m,∴能进入复赛.【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.21.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.【分析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=,∴x1=,x2=.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<.【点评】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.22.(8分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,(Ⅰ)连接CC′,判断四边形CBA′C′的形状并进行证明.(Ⅱ)D为线段BC′上一动点,求AD+CD的最小值.【分析】(1)由已知可得BC∥A'C',BC=A'C',BC=BA',即可证明四边形CBA′C′是菱形;(2)可知C与A'关于BC'对称,AD+CD的最小值为AA'的长;【解答】解:(1)正△ABC,△ABC与△A′BC′关于直l对称,∴∠CBA=∠D'A'B=60°,∴BC∥A'C',BC=A'C',∴四边形CBA′C′是平行四边形,∵BC=BA',∴四边形CBA′C′是菱形;(2)∵C与A'关于BC'对称,∴AD+CD的最小值为AA'的长,∵正△ABC的边长为2,∴AA'=4,∴AD+CD的最小值为4;【点评】本题考查菱形的性质,轴对称求最短距离;熟练掌握特殊平行四边形的判定定理,利用轴对称求最短距离,将AD+CD的最小值转化为AA'的长是解题的关键.23.(8分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.设购进A种型号的衬衣x件,购进B种型号的衬衣y件,三种品牌的衬衫的进价和售价如表所示:(Ⅰ)直接用含x、y的代数式表示购进C种型号衬衣的件数,其结果可表示为300﹣x ﹣y.(Ⅱ)求y与x之间的函数关系式.(Ⅲ)如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元①求利润P(元)与x(件)之间的函数关系式;②求商场能够获得的最大利润.【分析】(Ⅰ)总数300减去A、B两种的件数即可;(Ⅱ)根据三种衬衫的总进价为46000元,可以得到y与x的函数关系式;(Ⅲ)①根据表格中提供进价、售价可以求出每件衬衫的销售利润,再乘以相应的数量即可求出总利润,从而得出总利润P与x的函数关系式;②根据每种衬衫的数量均不低于90件,可列不等式组,先确定自变量的取值范围,再依据函数的增减性,确定何时利润最大.【解答】解:(Ⅰ)∵A、B、C三种品牌的衬衫共300件,购进A种型号的衬衣x件,购进B种型号的衬衣y件,∴购进C种型号衬衣的件数为(300﹣x﹣y)件;故答案为:300﹣x﹣y(Ⅱ)由题意得:100x+200y+150(300﹣x﹣y)=46000,∴y=x+20;∴y与x之间的函数关系式为y=x+20.(Ⅲ)①P=(200﹣100)x+(350﹣200)y+(300﹣150)(300﹣x﹣y)﹣1000=﹣50x+44000;答:利润P(元)与x(件)之间的函数关系式为P=﹣50x+44000;②由题意得:解得:90≤x≤95又∵P=﹣50x+44000;y随x的增大而减小,∴当x=90时,P最大=﹣50×90+44000=39500元;答:市场能获得的最大利润为39500元.【点评】考查一次函数的性质、一元一次不等式组的应用等知识,理清题中数量关系,合理用一个未知数表示另一个未知数是解决问题的关键.24.(8分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(Ⅰ)若△APD为等腰直角三角形①直接写出此时P点的坐标:(1,2);直线AP的解析式为y=﹣x+3.②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值;(Ⅱ)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.【分析】(Ⅰ)①根据题意可求P(1,2),用待定系数法可求直线AP解析式②作点G关于y轴的对称点G'(﹣2,0),作点G关于直线AP的对称点G''(3,1),连接G'G''交y轴于点N,交AP于M,根据两点之间线段最短,可得此时△GMN的周长最小,求出G'G''解析式,可求N点坐标和△GMN周长的最小值.(Ⅱ)作PM⊥AD于M,可证AM=DM,由题意可证△DOE≌△DOM,可求EO=DM =2,OD=DM=AM=1,即可得E点,P点坐标,即可求直线EP解析式.【解答】解:(Ⅰ)①∵矩形OABC,OA=3,OC=2∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2∵△APD为等腰直角三角形∴∠P AD=45°∵AO∥BC∴∠BP A=∠P AD=45°∵∠B=90°∴∠BAP=∠BP A=45°∴BP=AB=2∴P(1,2)设直线AP解析式y=kx+b,过点A,点P∴,∴,∴直线AP解析式y=﹣x+3.故答案为(1,2),y=﹣x+3.②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小.∵G'(﹣2,0),G''(3,1)∴直线G'G''解析式y=x+,当x=0时,y=,∴N(0,)∵G'G''=,∴△GMN周长的最小值为.(Ⅱ)如图:作PM⊥AD于M∵BC∥OA∴∠CPD=∠PDA且∠CPD=∠APB∴PD=P A,且PM⊥AD∴DM=AM∵四边形P AEF是平行四边形∴PD=DE又∵∠PMD=∠DOE,∠ODE=∠PDM∴△PMD≌△ODE(AAS),∴OD=DM,OE=PM∴OD=DM=MA∵PM=2,OA=3∴OE=2,OM=2∴E(0,﹣2),P(2,2)设直线PE的解析式y=mx+n,则有,∴,∴直线PE解析式y=2x﹣2【点评】本题属于一次函数综合题,考查了待定系数法,全等三角形判定和性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.。

2018新人教版八年级下册数学期末试卷及答案-八年级下数学期末试卷

2018新人教版八年级下册数学期末试卷及答案-八年级下数学期末试卷

最新 年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共 小题,满分共 分).二次根式21、 、 、⌧ 、240x 、22y x +中,最简二次根式有( )个。

✌、 个 、 个 、 个 、 个⌧的取值范围为( )✌、⌧♏ 、⌧♊ 、⌧♏或⌧♊ 、⌧♏且⌧♊.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )✌. , ,  .1113,4,5222 . , ,  .114,7,822 、在四边形✌中, 是对角线的交点,能判定这个四边形是正方形的是( )(✌)✌,✌∥ ,✌ ( )✌∥ ,∠✌∠( )✌,✌⊥  ( )✌, ,✌、如图,在平行四边形✌中, = ,✌☜平分 ✌交 于点☜,☞ ✌☜交✌☜于点☞,则 =( )1FEDCBA✌.  .  .  . 、表示一次函数⍓=❍⌧ ⏹与正比例函数⍓=❍⏹⌧☎❍、⏹是常数且❍⏹♊✆图象是( )如图所示,函数x y =1和34312+=x y 的图象相交于(- , ),( , )两点.当21y y >时,⌧的取值范围是( )✌.⌧<- .— <⌧< .⌧> . ⌧<- 或⌧> 、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )✌ ⏹是样本的容量  n x 是样本个体 x 是样本平均数  是样本方差 、多多班长统计去年 ~ 月❽书香校园❾活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )(✌)极差是  ( )众数是 ( )中位数是  ( )每月阅读数量超过 的有 个月(- , )1y ( , )2y⌧⍓、如图,在 ✌中,✌ ,✌ ,  , 为边 上一动点, ☜⊥✌于☜, ☞⊥✌于☞, 为☜☞中点,则✌的最小值为【】✌.54 .52.53 .65二、填空题(本题共 小题,满分共 分).48 13-⎛⎫ ⎪ ⎪⎝⎭)13(3-23-.边长为 的大正方形中有两个小正方形,若两个小正方形的面积分别为 , ,则  的值为( ) 平行四边形✌的周长为 ♍❍,对角线✌、 相交于点 ,若△ 10203040506070809012345678某班学生 ~ 月课外阅读数量折线统计图3670585842287583本数月份(第 题)12345678M PFE BA的周长比△✌的周长大 ♍❍,则 = ♍❍。

八年级下册数学期末压轴题(含答案)

八年级下册数学期末压轴题(含答案)

2018年八年级数学下册期末压轴题练习(含答案)一、填空题:1.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为 .2.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.3.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ的面积是.4.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A.点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化;(3)∠PBH=450 ; (4)BP=BH.其中正确的命题是.5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.二、综合题:6. (1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.7.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N 为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.9.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.10.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.答案为:3.2.答案为:7;解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.3.答案为:4.5.4.答案为:(1)(2)(3).5.答案为:2;解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,6. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.∴S梯形ABCD=0.5(AD+BC)•AB=0.5×(6+12)×12=108.即梯形ABCD的面积为108.…7.解:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.8.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为0.25a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为0.5a,面积为0.25a2,周长为2a.(3)猜想:重叠部分的面积为0.25a2.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=0.5a又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=0.5a×0.5a =0.25a2,∴阴影部分的面积是0.25a2.9.(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。

2019-2020年八年级下学期期末考试数学试卷含答案(人教版)

2019-2020年八年级下学期期末考试数学试卷含答案(人教版)

2018-2019学年度八年级下学期期末考试数学试卷第Ⅰ卷 选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )A .B .C .D .2.下列各式由左边到右边的变形中,属于分解因式的是( )A .()a x y ax ay -=-B .22()()a b a b a b -=+-C .243(4)3x x x x -+=-+D .211()a a a a +=+3. 下列实数中,能够满足不等式30x -<的正整数是( )A .-2B .3C .4D .24. 小颖一家自驾某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均车速是线路一上平均车速的1.8倍,且线路二的用时比线路一的用时少半小时,若汽车在线路一上行驶的平均速度为/xkm h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 5. 小贤的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC BD 、的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .两组对边分别平行的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6. 如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEFS mn ∆= 7. 已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(原点未标出,数轴的单位长度为1),则 a 的值为( )A .4B .3C .2D .18. 已知21x y -=,2xy =,则322344x y x y xy -+的值为( )A .-2B .1C .-1D .29. 某n 边形的每个外角都等于与它相邻内角的14,则n 的值为( ) A .7 B .8 C .10 D .910. 如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=o ,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD = D .AG 平分CAD ∠第Ⅱ卷 非选择题(共90分)二、填空题(共5个小题,每题3分,满分15分,将答案填在答题纸上)11. 分式a a b +与22b a b-的最简公分母是 . 12. 因式分解:252x x -= .13.如图,已知一块直角三角板的直角顶点与原点O 重合,另两个顶点A ,B 的坐标分别为(1,0)-,(0,3),现将该三角板向右平移使点A 与点O 重合,得到'OCB ∆,则点B 的对应点'B 的坐标为 .14. 如图,两个完全相同的正五边形ABCDE ,AFGHM 的边DE ,MH 在同一直线上,且有一个公共顶点A ,若正五边形ABCDE 绕点A 旋转x 度与正五边形AFGHM 重合,则x 的最小值为 .15. 如图,在平行四边形ABCD 中,8AB =,12BC =,120B ∠=o ,E 是BC 的中点,点P 在平行四边形ABCD 的边上,若PBE ∆为等腰三角形,则EP 的长为 .三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(1)解不等式:922x x +>(2)解方程:11293331x x =+--17. 如图,在ABCD 中,点E ,F 分别在边BC ,AD 上,且DF BE =.求证:四边形AECF 是平行四边形.18. 如图,在ABC ∆中,AB AC =,36A ∠=o ,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)19. 在如图所示的网格上按要求画出图形,并回答问题.(1)将ABC ∆平移,使得点A 平移到图中点D 的位置,点B 、点C 的对应点分别为点E 、点F ,请画出DEF ∆.(2)画出ABC ∆关于点D 成中心对称的111A B C ∆.(3)DEF ∆与111A B C ∆是否关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O .20. 数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大0.6cm .”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大0.6cm .”设小玲的两块手帕的面积和为1S ,小娟的两块手帕的面积和为2S ,请同学们运用因式分解的方法算一算2S 与1S 的差.21. 如图1,将线段AB 平移至DC ,使点A 与点D 对应,点B 与点C 对应,连接AD 、BC .(1)填空:AB 与CD 的位置关系为 ,BC 与AD 的位置关系为 .(2)如图2,若G 、E 为射线DC 上的点,AGE GAE ∠=∠,AF 平分DAE ∠交直线CD 于F ,且30FAG ∠=o ,求B ∠的度数.22. 学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?23. 定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=o ,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PM 与PN 的积的最大值.试卷答案一、选择题1-5: CBDAD 6-10:CADCD二、填空题11. 2()()a b a b +- 12. (52)x x - 13. 14. 14415. 6、、三、解答题16.(1)解:去分母得94x x +>移项、合并得39x ->-解得3x <所以不等式的解集为3x <(2)解:去分母得1316x =-+ 解得43x =- 经检验,43x =-是分式方程的解.17.证明:∵四边形ABCD 是平行四边形∴//AF EC ,AD BC =∵DF BE =∴AD DF BC BE -=-∴AF EC =∴四边形AECF 是平行四边形18.解:(1)∵AB AC =,36A ∠=o ∴180722AB ACB -∠∠=∠==oo∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=o∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=o∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形.(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+19.解:(1)如图,DEF ∆即为所求.(2)如图,111A B C ∆即为所求.(3)是,如图,点O 即为所求.20.解:222221(29.821.2)(29.221.8)S S -=+-+ 2222(29.821.8)(29.221.2)=---(29.821.8)(29.821.8)(29.221.2)(29.221.2)=+--+-51.6850.48=⨯-⨯(51.650.4)8=-⨯9.6=(2cm )21.解:(1)//AB CD ,//AD BC(2)∵//AB CD∴BAG G ∠=∠∵G EAG ∠=∠∴EAG BAG ∠=∠∵AF 平分DAE ∠∴FAE FAD ∠=∠∴2BAD FAG ∠=∠∵30FAG ∠=o∴60BAD ∠=o∵//BC AD∴180B BAD ∠+∠=o∴120B ∠=o22.解:(1)设小龙每分钟读x 个字,则小龙奶奶每分钟读(50)x -个字 根据题意,得1050130050x x=- 解得260x =经检验,260x =是所列方程的解,并且符合实际问题的意义. ∵学校广播站招聘的条件是每分钟250-270字∴小龙符合学校广播站的应聘条件.(2)设小龙读了y 分钟,则小龙奶奶读了2y 分钟, 由题意知(26050)22603200y y -⨯-≥解得20y ≥∴小龙至少读了20分钟.23.解:(1)是(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=o∴90ACB ABC ∠+∠=o∴90MPN ∠=o∴PM 与PN 为“等垂线段”(3)PM 与PN 的积的最大值为49. 提示:12PM PN BD ==∴BD 最大时,PM 与PN 的积最大 ∴点D 在BA 的延长线上∴14BD AB AD =+=∴7PM =∴249PM PN PM •==。

2018年春八年级下册数学期末试卷及答案(新人教版)

2018年春八年级下册数学期末试卷及答案(新人教版)

2018年春八年级数学期末试卷及答案〔新人教版〕一、选择题〔此题共10小题,总分值共30分〕 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有〔 〕个。

A 、1 个B 、2 个C 、3 个D 、4个 2.假设式子23x x --有意义,则x 的取值范围为〔 〕.A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果以下各组数是三角形的三边,那么不能组成直角三角形的一组数是〔 〕A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是〔 〕〔A 〕AC=BD ,AB∥CD ,AB=CD 〔B 〕AD∥BC ,∠A=∠C〔C 〕AO=BO=CO=DO ,AC ⊥BD 〔D 〕AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=〔 〕1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是〔 〕7.如下图,函数x y =1和34312+=x y 的图象相交于〔-1,1〕,〔2,2〕两点.当21y y >时,x 的取值范围是〔 〕A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,以下说法不正确的选项是〔-1,1〕1y 〔2,2〕2yxyO〔第7题〕BCADO〔 〕A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量〔单位:本〕,绘制了如图折线统计图,以下说法正确的选项是〔 〕 〔A 〕极差是47〔B 〕众数是42〔C 〕中位数是58〔D 〕每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题〔此题共10小题,总分值共30分〕11.48-133-⎛⎫⎪ ⎪⎝⎭+)13(3--30 -23-=12.边长为6的大正方形中有两个小正方形,假设两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为〔 〕13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,假设△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

2018年八年级下册数学期末试卷及答案(新人教版) - 副本

2018年八年级下册数学期末试卷及答案(新人教版) - 副本

2017-2018级八年级期末测试一、选择题(本题共 小题,满分共 分) .二次根式21、  、  、⌧ 、240x 、22y x +中,最简二次根式有( )个。

✌、 个 、 个 、 个 、个⌧的取值范围为( )✌、⌧♏ 、⌧♊ 、⌧♏或⌧♊ 、⌧♏且⌧♊.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )✌. , ,  .1113,4,5222 . , ,  .114,7,822 、在四边形✌中, 是对角线的交点,能判定这个四边形是正方形的是( )(✌)✌,✌∥ ,✌ ( )✌∥ ,∠✌∠ ( )✌,✌⊥  ( )✌, ,✌、如下左图,在平行四边形✌中, = ,✌☜平分 ✌交 于点☜, ☞ ✌☜交✌☜于点☞,则 =( )1FEDCBA✌.  .  .  . 、表示一次函数⍓=❍⌧ ⏹与正比例函数⍓=❍⏹⌧☎❍、⏹是常数且❍⏹♊✆图象是( )(第 题)如图所示,函数x y =1和34312+=x y 的图象相交于(- , ),( , )两点.当21y y >时,⌧的取值范围是( )✌.⌧<- .— <⌧< .⌧> . ⌧<- 或⌧> 、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )✌ ⏹是样本的容量  n x 是样本个体 x 是样本平均数  是样本方差、多多班长统计去年 ~ 月❽书香校园❾活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )(✌)极差是  ( )众数是 ( )中位数是  ( )每月阅读数量超过 的有 个月、如上右图,在 ✌中,✌ ,✌ ,  , 为边 上一动点, ☜⊥✌于☜, ☞⊥✌于☞, 为☜☞中点,则✌的最小值为【 】✌.54 .5210203040506070809012345678某班学生 ~ 月课外阅读数量折线统计图3670585842287583本数月份12345678M PFECBA(第 题)ADO.53 .65二、填空题(本题共 小题,满分共 分).48 1-⎝⎭)13(3-  23-.边长为 的大正方形中有两个小正方形,若两个小正方形的面积分别为 , ,则  的值为( ) 平行四边形✌的周长为 ♍❍,对角线✌、 相交于点 ,若△ 的周长比△✌的周长大 ♍❍,则 = ♍❍。

济南市历城区2017-2018学年八年级下期末考试数学试题有答案

济南市历城区2017-2018学年八年级下期末考试数学试题有答案

2017—2018学年第二学期期末质量检测八年级数学试题第Ⅰ卷选择题(48分)一、选择题:(每题4分,共48分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()2. 下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.2222()()a b c a b a b c--=+--C.21055(21)x x x x-=-D.168(4)(4)8x x x x x-+=+-+3. 要使分式12x-有意义,则x 的取值应满足( )A.x =2 B.x <2 C.x >2 D.x ≠24. 不等式5+2x <1的解集在数轴上表示正确的是( )A B C D5. 用配方法解方程2210x x+-=时,配方结果正确的是()A.2(1)2x+=B.2(2)2x+=C.2(1)3x+=D.2(2)3x+=6. 若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5且k≠1C.k≤5且k≠1 D.k>57. 如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.3 B.4C.5 D.68. 下列语句正确的是()A.对角线互相垂直的四边形是菱形B. 有两对邻角互补的四边形为平行四边形第7题图第10题图C .矩形的对角线相等D .平行四边形是轴对称图形9.如图,线段AB 经过平移得到线段A′B′,其中点A ,B 的对应 点分别为点A′,B′,这四个点都在格点上.若线段AB 上有一 个点P ( a ,b ),则点P 在A′B′上的对应点P′的坐标为( ) A .(a ﹣2,b ﹣3)B .(a+2,b+3)C .(a ﹣2,b+3)D .(a+2,b ﹣3)10. 如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于( ) A .2-2 B .1 C. 2D. 2-111. 若关于x 的方程3333=-+-+xmx m x 的解为正数,则m 的取值范围是( ) A .m <29B .m <29且m ≠23C .m >49-D .m >49-且m ≠43- 12. 如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列结论: ①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ; ④若32=AB AE ,则3S △EDH =13S △DHC ,其中结论正确的有( ) A .1个 B .2个 C .3个D .4个二、填空题:(每题4分,共24分) 13. 分解因式:x 2-2x+1= .14. 在平面直角坐标系中,点(2,-3)关于x 轴对称的点的坐标是 . 15. 若a 2-5ab ﹣b 2=0,则a bb a-的值为 .16. 如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的第9题图第12题图第16题图第17题图FED AB C第18题图 解集是_____________.17. 如图,如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA= 度.18. 如图,在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,当点F 是CD 的中点时,若AB=4,则BC= . 三、解答题:(共计78分)19.(8分)(1)计算:(1-11-x ) ÷ 122--x x ;(2)化简求值:22()339m m m m m m -÷++-,其中1m =-20. 解不等式组:3(2)42+113x x x x --⎧⎪⎨-⎪⎩≥> .并把它的解集在数轴上表示出来(6分)21. 解方程:(每题4分,共8分) (1)解分式方程:13.2x x=- (2)解一元二次方程x 2+8x ﹣9=0.22.(6分)已知如图,在□ABCD 中,E 为CD 的中点,连接AE 并延长,与BC 的延长线相交于点F. 求证:AE=FE23.(8分)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.(9分)为进一步发展基础教育,自2016年以来,某县加大了教育经费的投入,2016年该县投入教育经费6000万元.2018年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2019年该县投入教育经费多少万元.25.(9分)济南市某学校去年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)今年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过3000元,那么这所学校最多可购买多少个乙种足球?26.(12分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF,(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P,Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如限定P,Q分别在BA,BC上移动,求出点E在边AD上移动的最大距离.27.(12分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为:;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)求△AEF周长的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注溪中学2018年春八年级数学期末测试卷(时间:120分钟 满分:150分)班级: 姓名: 得分:一、选择题(每小题3分,共36分)1.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠122.(2016·来宾)下列计算正确的是(B)A .5-3= 2B .3 5×2 3=6 15C .(2 2)2=16D .33=13.由线段a ,b ,c 组成的三角形不是直角三角形的是(D) A .a =7,b =24,c =25 B .a =41,b =4,c =5C .a =54,b =1,c =34D .a =13,b =14,c =154.已知甲、乙、丙三个旅行团的游客人数都相等,且每个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是s 2甲=17,s 2乙=14.6,s 2丙=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择(B)A .甲团B .乙团C .丙团D .采取抽签方式,随便选一个 5.(2017·齐齐哈尔)已知等腰三角形的周长是10,底边长y 是腰长x 的函数,下列图象中能正确反映y 与x 之间函数关系的图象是(D)6.(2017·荆州)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:A .3,3,3B .6,2,3C .3,3,2D .3,2,3 7.(2017·广安)下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有(C)A .4个B .3个C .2个D .1个 8.(2017·泰安)已知一次函数y =kx -m -2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是(A)A .k<2,m>0B .k<2,m<0C .k>2,m>0D .k<0,m<09.平行四边形ABCD 的对角线AC ,BD 相交于点O ,下列结论正确的是(A) A .S ▱ABCD = 4S △AOB B .AC = BD C .AC ⊥BD D . ▱ABCD 是轴对称图形10.如图,△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AC 于点E ,已知AB =5,AD =3,则DE 的长为(C)A .1.2B .2C .2.4D .4.8,第10题图) ,第11题图) ,第12题图)11.如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连接BM ,DN ,若四边形MBND 是菱形,则AMMD等于(C)A .38B .23C .35D .4512.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是(A)A .①②③B .①②C .①③D .②③ 二、填空题(每小题4分,共24分) 13.函数y =5-x 中,自变量x 的取值范围是__x ≤5__. 14.(2017·荆州)将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为__4__.15.(2017·温州)数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是__4.8或5或5.2__.16.一次函数y =kx +b(k ≠0)的图象如图所示,当y>0时,x 的取值范围是__x<2__.,第16题图) ,第17题图) ,第18题图)17.如图,长方形纸片ABCD 中,AB =6 cm ,BC =8 cm ,点E 是BC 边上一点,连接AE ,并将△AEB 沿AE 折叠,得到△AEB′,以C ,E ,B ′为顶点的三角形是直角三角形时,BE 的长为__3或6__cm .18.如图所示,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 是CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是2.三、解答题(共90分) 19.(6分)计算: (1)27-12+45; 解:原式=3+3 5.(2)27×13-(5+3)(5-3).解:原式=1.20.(8分)如图,四边形ABCD 是平行四边形,E ,F 是对角线BD 上的点,∠1=∠2.求证:(1)BE =DF ; (2)AF ∥CE.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF.∵∠1=∠2,∴∠AEB =∠CFD ,∴△ABE ≌△CDF ,∴BE =DF.(2)由(1)得△ABE ≌△CDF ,∴AE =CF.∵∠1=∠2,∴AE ∥CF ,∴四边形AECF 是平行四边形,∴AF ∥CE.21.(8分)在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.解:(1)由点A ,B 的坐标求得直线的解析式为y =-2x +3,把P(-2,a)代入y =-2x +3中,得a =7.(2)由(1)得点P(-2,7).y =-2x +3中,当x =0时,y =3,∴D(0,3),∴S △OPD =12×3×2=3.22.(10分)如图是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m 的半圆,其边缘AB =CD =20 m ,点E 在CD 上,CE =4 m ,一滑行爱好者从A 点滑到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取3)解:展开图如图,作EF ⊥AB ,由于平铺,∴四边形ABCD 是矩形,∴∠C =∠B =90°.∵EF ⊥AB ,∴∠EFA =∠EFB =90°,∴四边形CBFE 是矩形,∴EF =BC =4×2×3×12=12(m ),FB =CE =4 m ,∴AF =20-4=16(m ),∴AE =122+162=20(m ),即他滑行的最短距离为20 m .23.(10分)(2016·乐山)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是__8__,乙的中位数是__7.5__;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?解:s 2甲=1.6,s 2乙=1.2,∵s 2甲>s 2乙,∴乙运动员的射击成绩更稳定.24.(10分)在甲村至乙村的公路旁有一块山地正在开发,现有一C 处需要爆破,已知点C 与公路上的停靠站A 的距离为300米,与公路上另一停靠站B 的距离为400米,且CA ⊥CB ,如图.为了安全起见,爆破点C 周围半径250米范围内不得进入,问在进行爆破时,公路AB 段是否有危险,是否需要暂时封锁?请通过计算进行说明.解:过点C 作CD ⊥AB 于点D ,∵BC =400米,AC =300米,∠ACB =90°,∴根据勾股定理,得AB=500米.∵12AB·CD =12BC·AC ,∴CD =240米.∵240米<250米,∴公路AB 段有危险,需要暂时封锁.25.(12分)(2017·上海)已知:如图,四边形ABCD 中,AD ∥BC, AD =CD, E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)∵在△ADE 与△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE ,∴∠ADE =∠CDE.∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD.∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形.∵AD =CD ,∴四边形ABCD 是菱形.(2)∵BE =BC ,∴∠BCE =∠BEC.∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180°×22+3+3=45°.∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.26.(12分)(2017·宿迁)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速.当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(千米)与行驶时间x(分钟)之间的函数图象如图所示.(1)求点A 的纵坐标m 的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=0.75(千米/分钟),点A 的纵坐标m 的值为3+0.75×(8-6)=4.5.∴点A 的纵坐标m 的值为4.5.(2)校车到达学校站点所需时间为9÷0.75+4=16(分钟),出租车到达学校站点所需时间为16-9-1=6(分钟),出租车的速度为9÷6=1.5(千米/分钟),两车相遇时出租车出发时间为0.75×(9-4)÷(1.5-0.75)=5(分钟),相遇地点离学校站点的路程为9-1.5×5=1.5(千米).∴小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程为1.5千米.27.(14分)某数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB =6,将三角板放在正方形ABCD 上,使三角板的直角顶点与D 点重合,三角板的一边交AB 于点P ,另一边交BC 的延长线于点Q.(1)求证:DP =DQ ;(2)如图②,小明在图①的基础上作∠PDQ 的平分线DE 交BC 于点E ,连接PE ,他发现PE 和QE 存在一定的数量关系,请猜测他的结论并予以证明;(3)如图③,固定三角板直角顶点在D 点不动,转动三角板,使三角板的一边交AB 的延长线于点P ,另一边交BC 的延长线于点Q ,仍作∠PDQ 的平分线DE 交BC 的延长线于点E ,连接PE ,若AB ∶AP =3∶4,请帮小明算出△DEP 的面积.解:(1)证明:∵四边形ABCD 是正方形,∴∠ADC =∠DCQ =90°,AD =DC.∵∠PDQ =90°=∠ADC ,∴∠ADP =∠CDQ ,∴△ADP ≌△CDQ ,∴DP =DQ.(2)猜测:PE =QE.证明:由(1)可知DP =DQ ,又∵∠PDE =∠QDE =45°,DE =DE ,∴△DEP ≌△DEQ ,∴ PE =QE.(3)∵AB ∶AP =3∶4,AB =6,∴AP =8,BP =2,同(1)可证△ADP ≌△CDQ ,∴CQ =AP =8.同(2)可证△DEP ≌△DEQ ,∴PE =QE.设QE =PE =x ,则BE =BC +CQ -QE =14-x.在Rt △BPE 中,由勾股定理得BP 2+BE 2=PE 2,即22+(14-x)2=x 2,解得x =507,即QE =507,∴S △DEQ =12QE·CD =1507.∵△DEP ≌△DEQ ,150∴S△DEP=S△DEQ=7.。

相关文档
最新文档