青岛理工大学临沂年数字信号处理及MATLAB试卷
大学《数字信号处理》课程考试试卷(含答案)
某大学《数字信号处理》课程考试试卷适应专业: 考试日期:考试时间:120分钟 考试形式:闭卷 试卷总分:100分 一、考虑下面4个8点序列,其中 0≤n ≤7,判断哪些序列的8点DFT 是实数,那些序列的8点DFT 是虚数,说明理由。
(本题12分) (1) x 1[n ]={-1, -1, -1, 0, 0, 0, -1, -1}, (2) x 2[n ]={-1, -1, 0, 0, 0, 0, 1, 1}, (3) x 3[n ]={0, -1, -1, 0, 0, 0, 1, 1}, (4) x 4[n ]={0, -1, -1, 0, 0, 0, -1, -1},二、数字序列 x(n)如图所示. 画出下列每个序列时域序列:(本题10分) (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);三、已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H 试确定该系统H(z)的收敛域和脉冲响应h[n]。
(本题10分) 四、设x(n)是一个10点的有限序列 x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。
(本题12分)(1) X(0), (2) X(5), (3) ∑=90)(k k X ,(4)∑=-95/2)(k k j k X e π五、x(n)和h(n)是如下给定的有限序列x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?(14分)六、用窗函数设计FIR 滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。
《数字信号处理》期末考试卷(T6B级)
《数字信号处理》期末考试卷(T6B级)response is y[n] = ( ).(10). The DTFT of a sequence x[n] is denoted as )(ωj e X , then the DTFT of the time shifted version x[n+5] of x[n] is ( ).(11). We can use three basic operations to construct anarbitary complicated discrete-time LTI system. These three basic operations are addition, ( ) and unit delay.(12). A causal LTI discrete-time system is described by the difference equation ][]2[15.0]1[8.0][n x n y n y n y =-+--, then the transfer function is ( ).(13). The continuous-time signal )1200cos(5)200cos(3)(t t t xa ππ+= is sampled at a 800Hz rate generating a discrete-time sequence x[n], then the expression of the discrete-time sequenceis x[n] = ( ). (14). The unit impulse response of an FIR filter is h[n] = {1, 2, 3, 2, 1}, its group delay is ( ).(15). Suppose that )(ωj e X is the DTFT of a real sequence x[n], then the phase spectrum )(ωj e X ∠ is an ( ) function of ω.(16). For a real and periodic sequence x[n], its DTFT is ( ) and periodic of ω, and the period is 2π.(17). Given two N-point real sequences g[n] and h[n], we construct a complex sequence x[n] = g[n] + jh[n]. Assume that the N-point DFT of x[n] is known and denoted by X[k], then we can determine the N-point DFTs G[k] and H[k] from X[k], and H[k] = ( ).(18). A sequence x[n] = {1 1 1 1 1 1}, let X(e j ω) be the DTFT of x[n], then X(e j0) = ( ).(19). The fundamental period of the discrete-time sequence x[n] = cos(0.4πn) is ( ).(20). Under the sampling frequency F T = 1000Hz, the corresponding analog frequency of the sequence x[n] = cos(0.5πn) is ( ) Hz.2、Determine the linear convolution y[n] of x[n] and h[n], where][3.0][][][n n h n n x nμμ== (12’)3、Solving the following differen ce equation (12’)][]1[5.0][n x n y n y =--with the input is x[n] =μ[n] and the initial condition are y[-1] = 1.4、System analysis: A causal LTI discrete-time system is described by the difference equation:]1[][]2[06.0]1[5.0][-+=-+-+n x n x n y n y n y(a). Plot the zero-pole diagram. (5’) (b). Is the system stable? Why? (2’ + 3’)(c). Plot the direct form II structure of the system. (5’)5、Determine the transfer function G(z) of the corresponding digital filter from the transfer function H(s) of the prototype analog lowpass filter using the bilinear transformation method. Where11)(+=s s H (9’)6. Let x a(t) be a bandlimited periodic continuous-time signal with fundamental period T=2s. A discrete-time sequence x[n] is obtained by sampling x a(t) at F T = 10Hz with no aliasing. Let X[k] denote the DFT of x[n]. The plots of x a(t) and x[n] over one period are depicted in Figure a and b. Figure c shows the magnitude of DFT X[k].a. How many sinusoidal frequency components are there in x[n]? What are t he corresponding frequencies ?(2’+4’)b. How many sinusoidal frequency components are there in xa(t)? What are the corresponding frequencies ?(2’+4’)。
数字信号处理期末试卷(含答案)
页脚内容1一、 填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。
5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。
6、FFT 利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=N K kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。
页脚内容2二、 选择题(每题3分,共6题)1、 1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z < B.a Z ≤ C.a Z > D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
(完整word版)数字信号处理试卷及答案两份.docx
数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。
2.线性时不变系统的性质有律、律、律。
3.对x(n)R4(n)的Z 变换为,其收敛域为。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。
5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。
6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。
7.因果序列x(n) ,在Z→∞时,X(Z)=。
二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。
数字信号处理课后习题Matlab作业
数字信号处理MATLAB习题数字信号处理MATLAB 习题M1-1 已知1()cos(6)g t t π=,2()cos(14)g t t π=,3()cos(26)g t t π=,以抽样频率10sam f Hz =对上述三个信号进行抽样。
在同一张图上画出1()g t ,2()g t 和3()g t 及抽样点,对所得结果进行讨论。
解:从以上两幅图中均可看出,三个余弦函数的周期虽然不同,但它们抽样后相应抽样点所对应的值都相同。
那么这样还原回原先的函数就变成相同的,实际上是不一样的。
这是抽样频率太小的原因,我们应该增大抽样频率才能真实还原。
如下图:f=50Hz程序代码f=10;t=-0.2:0.001:0.2;g1=cos(6.*pi.*t);g2=cos(14.*pi.*t);g3=cos(26.*pi.*t);k=-0.2:1/f:0.2;h1=cos(6.*pi.*k);h2=cos(14.*pi.*k);h3=cos(26.*pi.*k);% subplot(3,1,1);% plot(k,h1,'r.',t,g1,'r');% xlabel('t');% ylabel('g1(t)');% subplot(3,1,2);% plot(k,h2,'g.',t,g2,'g');% xlabel('t');% ylabel('g2(t)');% subplot(3,1,3);% plot(k,h3,'b.',t,g3,'b');% xlabel('t');% ylabel('g3(t)');plot(t,g1,'r',t,g2,'g',t,g3,'b',k,h1,'r.',k,h2,'g.',k,h3,'b.')xlabel('t');ylabel('g(t)');legend('g1(t)','g2(t)','g3(t)');M2-1 利用DFT的性质,编写一MATLAB程序,计算下列序列的循环卷积。
数字信号处理习题答案及matlab实验详解.pdf
阶跃响应为: y[n] x[n] h[n] x[m]h[n m] h(n m), n m, m 0
m
m0
即 y(0) 0, y(1) 0.25, y(2) 0.5, y(3) 0.75,其余y(n) 1, (n 3)
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应 b=[0,0.25,0.25,0.25,0.25]; a=1; x=ones(1,100); h=impz(b,a,100);y=filter(b,a,x) figure(1) subplot(2,1,1); stem(h,’.’); subplot(2,1,2); plot(y,’.’);
4
解:(1)系统的转移函数是是其单位抽样响应的 Z 变换,因此
H (z)
1 1 z1
1 1 0.3z1
1 1 0.6z1
(1
3 3.8z1 1.08z2 z1)(1 0.3z1)(1 0.6z1)
1
3 1.9
3.8z1 1.08z2 z1 1.08z2 0.18z
3
Z 1
系统的零极点图如下图所示: B=[3,-3.8,1.08]; A=[1,-1.9,1.08,-0.18]; [Z,P,K]=tf2zp(B,A); Zplane(B,A)
5
单位抽样响应:
h(n)
1 2
n1
u
(n
1)
(n)
1
y(n) x(n) * h(n)
2 m1
1 2
m1
e
j (n m)
e
jn
e
jn
e j
1 2 1
2
n
u(n1)
数字信号处理的技术考试试卷(附答案)
数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。
这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。
2. 什么是信号的量化?请说明量化的过程。
3. 简述数字信号处理的应用领域。
4. 请解释什么是数字滤波器的频率响应。
5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。
1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。
数字信号处理试题与解答
一、数字信号处理(确定性信号)1、对于一个LTI 系统,设其输入序列为矩形冲激信号x(n)=u(n)-u(n-10),而冲激相应为)(9.0)(n u n h n ,用MATLAB 求解输出信号。
可以直接调用卷积函数来实现。
解:clear allx=[1,1,1,1,1,1,1,1,1,1]; n=[0:9]; y=0.9.^n; z=conv(x,y); N=length(z); stem(0:N-1,z);图像如下:给定冲激信号x (n)设定y 函数绘图对x,y 卷积2、编程求两个序列之间的相关系数。
设序列x (k )={3,11,7,0,-1,4,2},n=[-3,-2,-1,0,1,2,3],将x 进行移位再加上一个白噪声信号,即y(k)=x(k-2)+w(k),其中k 属于n ,需要计算x 序列与y 序列之间的相关系数,可以使用卷积来实现。
解:clear all>> x=[3,11,7,0,-1,4,2]; >> nx=[-3:3];>> [y,ny]=sigshift(x,nx,2); >> w=randn(1,length(y)); >> nw=ny;>> [y,ny]=sigadd(y,ny,w,nw); >> [x,nx]=sigfold(x,nx);>> [rxy,nrxy]=conv_m(y,ny,x,nx); >> subplot(1,1,1); >> stem(nrxy,rxy)>> axis([-5,10,-50,250]); >> xlabel('延迟量1'); >> ylabel('rxy');>> title('噪声序列的互相关')图像如下:给定信号x (n)对x 序列移位设定随机信号w根据x,w 得到y 序列对x,y 卷积绘图3、利用filter函数计算冲激相应和单位阶跃响应。
青岛理工大学临沂年数字信号处理及MATLAB试卷
A卷一、15分 1、10 2、f>=2fh 3、()()()y n x n h n =*4、1-az -11a 或者-z z ,a 1-z 或1-1-az -1z 5、对称性 、 可约性 、 周期性 6、191点,2567、典范型、级联型、并联型 8、Tω=Ω,)2tan(2ωT =Ω或)2arctan(2T Ω=ω; 二、20分1、C2、 A3、 C4、C5、B6、D7、B8、A9、D 10、A CACCB DBADA 三、15分 1、5分混叠失真:不满足抽样定理的要求; 改善方法:增加记录长度频谱泄漏:对时域截短,使频谱变宽拖尾,称为泄漏 改善方法:1增加wn 长度 2缓慢截短栅栏效应:DFT 只计算离散点基频F0的整数倍处的频谱,而不是连续函数; 改善方法:增加频域抽样点数N 时域补零,使谱线更密 2、5分 3、 5分IIR滤波器:1系统的单位抽样相应hn无限长2系统函数Hz在有限z平面上有极点存在3存在输出到输入的反馈,递归型结构Fir滤波器:•1系统的单位冲激响应hn在有限个n处不为零;•2系统函数在||0z>处收敛,在处只有零点,即有限z平面只有零点,而全部极点都在z=0处;•3机构上主要是非递归结构,没有输入到输出的反馈,但有些结构中也包含有反馈的递归部分;四、计算题40分1、12分解:解:对上式两边取Z变换,得:极点:当ROC:|z|>3时,系统因果不稳定,;当ROC:1/3<|z|<3时,系统非因果稳定,;当ROC:|z|<1/3时,系统非因果不稳定,;2.10分解:1 yLn={1,5,9,10,10,5,2;n=0,1,2…6} 4分2 yCn= {3,5,9,10,10,5;n=0,1,2,4,5} 4分3c≥L1+L2-1 2分3、10分1已知HZF50=()H z||0z>2ms f f T 5.010212113max minmax =⨯===340105.002.03min =⨯==-sTT N p 所以,FFT 运算,N 取2的整数幂,需64个点 4、8分五,画图题10分4、用微处理机对实数序列作频谱分析,要求频率分辨率50F Hz ≤,信号最高频率为1kHZ,试确定以下各参数:10分 1最小记录长度T0; 2最大取样间隔T; 3最少采样点数N; 五、 画图题10分已知有限序列的长度N 为8,试画出基2 时域FFT 的蝶形图;一、15分 1、离散、 数字;2、()n h n ∞=-∞<∞∑3、延时、乘法、加法4、M 、N/25、巴特沃什滤波器 、切比雪夫滤波器、椭圆滤波器6、9 10 3 5 ,5 3 2 3 4 7 1 27、Tω=Ω,)2tan(2ωT =Ω或)2arctan(2T Ω=ω; 二、20分A D C C ABC AD B 三、15分1、 第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工;第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号;2、混叠失真:不满足抽样定理的要求; 改善方法:增加记录长度频谱泄漏:对时域截短,使频谱变宽拖尾,称为泄漏 改善方法:1增加wn 长度 2缓慢截短栅栏效应:DFT 只计算离散点基频F0的整数倍处的频谱,而不是连续函数; 改善方法:增加频域抽样点数N 时域补零,使谱线更密 四、40分1、21111125123)21)(211(23)(------+--=---=z z z z z z z H …………………………….. 2分 当212>>z 时:收敛域包括单位圆……………………………6分 系统稳定系统;……………………………….10分111112112111)21)(211(23)(--------=---=z z z z z z H ………………………………..12分 )1(2)()21()(--+=n u n u n h n n ………………………………….15分2、卷积1.yn=xnhn={4,7,9,10,6,3,1} 2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0} 3、解: 解: ⑴ 直接计算: 复乘所需时间:复加所需时间:⑵用FFT 计算: 复乘所需时间:复加所需时间:4、10分1已知HZ F 50= 2ms f f T 5.010212113max minmax =⨯===sN T N 01152.0512log 105log 105 2251262261=⨯⨯⨯=⨯⨯=--s T T T s N N T 013824.0 002304.0512log 512105.0log 105.0 2126262=+=∴=⨯⨯⨯=⨯⨯⨯=--s T T T s N N T 441536.1 130816.0)1512(512105.0)1(105.0 21662=+=∴=-⨯⨯⨯=-⨯⨯⨯=--s N T 31072.1 512105 105 26261=⨯⨯=⨯⨯=--340105.002.03min =⨯==-s T T N p五、10分。
数字信号处理试卷及答案
数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。
–[ ] B. 采样频率必须是信号最高频率的两倍。
–[ ] C. 采样频率必须是信号最高频率的四倍。
–[ ] D. 采样频率必须大于信号最高频率的两倍。
2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。
–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。
–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。
–[ ] D. DFT和DTFT是完全相同的。
3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。
–[ ] B. 抽样频率必须是信号最高频率的两倍。
–[ ] C. 抽样频率必须是信号最高频率的四倍。
–[ ] D. 信号频率必须是抽样频率的两倍。
5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。
–[ ] B. 具有无限阶。
–[ ] C. 比其他类型的滤波器更加陡峭。
–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。
…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。
2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。
(完整word版)数字信号处理试卷及参考答案(2)
《数字信号处理》课程期末考试试卷(A )一、填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是,若对这两个序列做64点圆周卷积,则圆周卷积结果中n=至为线性卷积结果。
2. DFT 是利用nkN W 的、和三个固有特性来实现FFT 快速运算的。
3. IIR 数字滤波器设计指标一般由、、和等四项组成。
4. FIR 数字滤波器有和两种设计方法,其结构有、和等多种结构。
一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。
()2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。
()3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。
()4. 冲激响应不变法不适于设计数字带阻滤波器。
()5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。
()6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。
()7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。
()8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。
()二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。
1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。
数字信号处理试题与答案_计算题
《数字信号处理》计算型试题解答A 卷三、(15分)已知LSI 离散时间系统的单位抽样响应为:⑴ 求该系统的系统函数)(z H ,并画出零极点分布图; ⑵ 写出该系统的差分方程。
解:⑴ 系统的系统函数)(z H 是其单位抽样响应()h n 的z 变换,因此:11111071113333():111111211242424z z z z z H z ROC z z z z z z z ---⎛⎫+-+ ⎪⎝⎭=+==>⎛⎫⎛⎫⎛⎫⎛⎫------ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 零点:1,03z =- 极点:11,24z = 零极点分布图:()10171()3234n n h n u n ⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⑵ 由于()1112111111()333111()1114824z z Y z H z X z z z z z ------++===⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭所以系统的差分方程是311()(1)(2)()(1)483y n y n y n x n x n --+-=+-四、(15分) 已知序列()x n 的z 变换为求其可能对应的几种不同ROC 的z 反变换。
Im[]j z 2()341zX z z z =-+解:1121211()34134(1)(3)z z z X z z z z z z z ------===-+-+-- 设11()13A BX z z z--=+-- 有111131(1)()23(3)()2z z A z X z B z X z -=-==-==-=-故111111()121213X z z z --⎛⎫⎪⎛⎫=- ⎪ ⎪-⎝⎭ ⎪-⎝⎭ 由于()X z 有两个极点:11,3z z ==。
所以()X z 的三个不同ROC 分别为:ROC1:z 11ROC2:z 131ROC3:z 3><<<于是可得()X z 的三个不同的ROC 对应的序列分别为:111ROC1:z 1()()()2231111ROC2:z 1()(1)()32231111ROC3:z ()(1)(1)3223nnn x n u n u n x n u n u n x n u n u n ⎛⎫>=- ⎪⎝⎭⎛⎫<<=---- ⎪⎝⎭⎛⎫<=---+-- ⎪⎝⎭五、(10分)已知一因果系统差分方程为()3(1)()y n y n x n +-=,求:⑴ 系统的单位脉冲响应()h n ; ⑵ 若2()()()x n n n u n =+,求()y n 。
青岛理工大学信号与系统考题
青岛理工大学试卷标准答案及评分标准专用纸2009 ~ 2010_学年第 一 学期 信号与系统 课程试卷标准答案及评分标准 A( )/B(√) 卷专业_______________ 班级 _____________一、简单计算题 (每题5分,共55分)1.2. 线性、时变、非因果。
3. ()13H s s =+,d ()3()()d r t r te t t+=。
4. ()()23123e etth r t A t A A --=++。
5. ()21r P N w RC π=+6.7.幅度谱 相位谱8. 1234223344234122332244()1H H H H H s H G H G H G H H H G H G H G H G H G =++++++。
青岛理工大学试卷标准答案及评分标准专用纸9. 状态方程:()112233 3 2 10 0 2 10 0 0 11e t λλλλλλ⎡⎤-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦ ;输出方程:()[]1231,0,0 r t λλλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。
10. 2(1)1()1s F s es -+=+。
11.()()()()()()2222dd dd 71064d d d d i t i t i t e t e t e t tttt++=++。
二、(共10分)1. 最小抽样频率m in 3000f =Hz 和最大抽样间隔m ax 13000T =s 。
(5分)2.三、(共15分)1. 4()3H s s =+。
(5分)2. 极点全部在左半平面,系统稳定;极点全部在左半平面和虚轴上,且在虚轴上的极点为一阶极点,系统临界稳定;只要有一个极点在右半平面和虚轴上(二阶和二阶以上),系统不稳定(3分)。
该系统极点在左半平面,所以系统稳定(2分)。
3. 4()3H jw jw =+(2分),系统的幅频特性曲线如下图所示(2分),可知该系统为低通滤波器(1分)。
数字信号处理期末试卷(含答案)
一、 填空题(每题 分,共 题)、 、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
、 、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的 点 是)(n x 的 变换在 的 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度 时,二者的循环卷积等于线性卷积。
5、用来计算 = 点 ,直接计算需要 次复乘法,采用基 算法,需要 次复乘法,运算效率为 。
6、 利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、 滤波器的单位取样响应)(n h 是圆周偶对称的, , 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性?,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。
二、 选择题(每题 分,共 题)、 、 )63()(π-=n j en x ,该序列是 。
非周期序列周期6π=N周期π6=N 周期π2=N 、 、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。
a Z <a Z ≤ a Z > a Z ≥、、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作 点 ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
70≤≤n197≤≤n1912≤≤n190≤≤n、 、 )()(101n R n x =,)()(72n R n x =,用 计算二者的线性卷积,为使计算量尽可能的少,应使 的长度 满足 。
数字信号处理试卷及答案
A一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列 二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和 四种。
三、1)(-≤≥⎩⎨⎧-=n n b a n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。
数字信号处理习题答案及matlab实验详解.pdf
2 已知用下列差分方程描述的一个线性移不变因果系统 y(n) y(n 1) y(n 2) x(n 1)
5
(a)
求这个系统的系统函数 H (z)
Y (z) X (z)
,画出
H
(
z)
的零-极点图并指出其
收敛区域; (b) 求此系统的单位抽样响应;
解:(a)
H (z)
Y (z) X (z)
1
z 1 z1
第一章
参考答案:
1
(1) 2
0
2 37
14 3
,有理数,所以周期为
14
(2)
2 0
2 16
12
,无理数,非周期
2 (1)[ 1 2 3 3 2 1]
(2) 当 n 0 时
y(n)
1
0.5n m 2 m
m
1 3
2n
当 n 1时
y(n)
n
0.5n m 2m
m
4 3
2n
3 线性,时变
4 (1)因果,不稳定 (2)非因果,稳定
j0.6286 z j / 4 1
9
y0s (n) 1.9608u(n) (0.4804 j0.6286)0.8n e jn / 4u(n) (0.4804 j0.6286)0.8n e jn / 4u(n) 系统输出: y(n) yos (n) y0i (n)
1.9608u(n) (0.2354 j0.308) 0.8n e jn /4u(n) (0.2354 j0.308)0.8n e jn /4u(n) >> y0=[1 1]; >> xic=filtic(b,a,y0); >> N=100;n=0:N-1;xn=ones(1,N); >> yn=filter(b,a,xn,xic); >> plot(n,yn);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A卷
一、[15分]
1、10
2、f>=2fh
3、()()()y n x n h n =*
4、1
-az -11a 或者-z z ,a 1
-z 或1-1-az -1z 5、对称性 、 可约性 、 周期性 6、191点,256
7、典范型、级联型、并联型 8、T
ω
=
Ω,)2
tan(2ω
T =
Ω或)2arctan(2T Ω=ω。
二、[20分]
1、C
2、 A
3、 C
4、C
5、B
6、D
7、B
8、A
9、D 10、A (CACCB DBADA) 三、[15分] 1、(5分)
混叠失真:不满足抽样定理的要求。
改善方法:增加记录长度
频谱泄漏:对时域截短,使频谱变宽拖尾,称为泄漏 改善方法:1)增加w (n )长度 2)缓慢截短
栅栏效应:DFT 只计算离散点(基频F0的整数倍处)的频谱,而不是连续函数。
改善方法:增加频域抽样点数N (时域补零),使谱线更密 2、(5分) 3、 (5分) IIR 滤波器:
1)系统的单位抽样相应h (n )无限长
2)系统函数H (z )在有限z 平面( )上有极点存在 3)存在输出到输入的反馈,递归型结构 Fir 滤波器:
• 1)系统的单位冲激响应h (n )在有限个n 处不为零;
• 2)系统函数 在||0
z >处收敛,在 处只有零点,即有限z 平面只有零点,而全部极点都在z =0处;
• 3)机构上主要是非递归结构,没有输入到输出的反馈,但有些结构中也包含有反馈的递归部分。
四、计算题(40分) 1、(12分)解: 解:
对上式两边取Z 变换,得:
()H z ||0z >
极点:
当ROC :|z|>3时,系统因果不稳定,
;
当ROC :1/3<|z|<3时,系统非因果稳定,
;
当ROC :|z|<1/3时,系统非因果不稳定,。
2.(10分)
解:(1) y L (n)={1,5,9,10,10,5,2;n=0,1,2…6} (4分)
(2) y C (n)= {3,5,9,10,10,5;n=0,1,2,4,5} (4分) (3)c≥L 1+L 2-1 (2分)
3、(10分)
(1)已知HZ F 50= (2)ms f f T 5.01021
2113
max min
max =⨯==
=
(3)4010
5.002.03
min =⨯=
=
-s
T
T N p 所以,FFT 运算,N 取2的整数幂,需64个点 4、(8分)
五,画图题(10分)
4、用微处理机对实数序列作频谱分析,要求频率分辨率50F Hz ≤,信号最高频率为1kHZ ,试确定以下各参数:(10分)
(1)最小记录长度T0。
(2)最大取样间隔T 。
(3)最少采样点数N 。
五、 画图题(10分)
已知有限序列的长度N 为8,试画出基2 时域FFT 的蝶形图。
一、[15分] 1、离散、 数字。
2、
()n h n ∞
=-∞
<∞∑
3、延时、乘法、加法
4、M 、N/2
5、巴特沃什滤波器 、切比雪夫滤波器、椭圆滤波器
6、9 10 3 5 ,5 3 2 3 4 7 1 2
7、T
ω
=
Ω,)2
tan(2ω
T =
Ω或)2arctan(2T Ω=ω。
二、[20分]
A D C C A
B
C A
D B 三、(15分)
1、 第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离
散信号;第3部分:按照预制要求对数字信号
处理加工;第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号。
2、混叠失真:不满足抽样定理的要求。
改善方法:增加记录长度
频谱泄漏:对时域截短,使频谱变宽拖尾,称为泄漏 改善方法:1)增加w (n )长度 2)缓慢截短
栅栏效应:DFT 只计算离散点(基频F0的整数倍处)的频谱,而不是连续函数。
改善方法:增加频域抽样点数N (时域补零),使谱线更密 四、[40分]
1、2
1111125
123)21)(211(2
3)(------+--=
---=z z z z z z z H …………………………….. 2分 当2
1
2>>z 时:
收敛域包括单位圆……………………………6分 系统稳定系统。
……………………………….10分
1111
1211
2
111)21)(2
11(2
3)(-------
-=
--
-
=
z z z z z z H ………………………………..12分
)1(2)()2
1
()(--+=n u n u n h n n ………………………………….15分
2、
卷积1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1} 2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0} 3、解: 解: ⑴ 直接计算: 复乘所需时间:
复加所需时间:
⑵用FFT 计算: 复乘所需时间:
复加所需时间:
4、(10分)
(1)已知HZ F 50= (2)ms f f T 5.010
21
2113
max min
max =⨯==
=
(3)4010
5.002.03
min =⨯=
=
-s
T
T N p 五、(10分)
s
N T N 01152.0512log 105log 105 225126
2261=⨯⨯⨯=⨯⨯=--s T T T s N N T 013824.0 002304.0512log 512105.0log 105.0 2126262=+=∴=⨯⨯⨯=⨯⨯⨯=--s T T T s
N N T 441536.1 130816.0)1512(512105.0)1(105.0 21662=+=∴=-⨯⨯⨯=-⨯⨯⨯=--s N T 31072.1 512105 105 26261=⨯⨯=⨯⨯=--。