SABRE飞行计划的说明(中英文对照)

合集下载

SABRE飞行计划的说明(中英文对照)

SABRE飞行计划的说明(中英文对照)

SABRE飞行计划的说明(中英文对照)SABRE飞行计划的说明XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXFLT NBR/DATE ORG /DST ACFT/REG PLAN ID GRIB AVGWC/TD 航班号/日期城市对机型/机号计划编号大气数据平均风/温度偏差MU 583/26OCT04 ZSPD/KLAX A346/B6052 AQ083101 2512 P080/P05 DDHH P顺风M逆风/P ISA+ M ISA-0700/1727 计划起飞/预达时刻FMS ROUTE - PVGLAX/F02 FMS航路城市对/公司航路代号(0国内8地区9国际F灵活航路)ZSPD AKA11D AKARA A593 FU V17 OJC OTR8 KAGIS OTR11 GARRY FLX3 DACEMPAINT PIRAT AVE SADDE6 KLAX .....................................................................FL PROFILE 飞行剖面246 LAMEN 290 ONIKU 330 SAGRA 370 ..................................................................... 实际高度剖面如与计划不符,请记录DISTANCE / 5809NM ESAD/ 4980 NM WC/P083 地面距离空中距离平均风/P 顺风 M 逆风PERFORMANCE SCHEDULE - CLB/300.M83 - CRZ/M83 - DSC/M83.300 使用的性能表爬升巡航下降ACFTTYPE A340-642 TRENT556 机型发动机PLANNED FUEL TIME WEIGHTS ACTUAL STRUCTURAL OR 计划油量时间重量实际结构或性能限制BURN ZSPD-KLAX 98713 10.27 DOW 183758 183758 PERF LIMIT 航程耗油营运空重 *请*CONT 868 00.07 PLD 50500 ...... 备份油业载XHLD DEST 0 00.00 ZFW 234258 ...... MZFW 242000 目的地额外等待无油重量最大无油重量ALTN KSFO 6820 00.49 RPF 111244 ...... FCAP 152900 首选备降场/地名代码机坪油量 *记* 最大燃油容量* XHLD ALTN 0 00.00 RPW 345502 ...... MRPW 369000 备降场额外等待机坪重量最大机坪重量STD HOLDING 3793 00.30 TOW 344452 ...... MTOW 365000 标准等待起飞重量最大起飞重量ETP/BU 0 00.00 TIF 98713 ...... ETP油量航程耗油 *录*REFILE BU 0 00.00 LDW 245739 ...... MLDW 256000 二放油量着陆重量最大着陆重量MIN REQUIRED 110194 11.53 ACTUAL TRIP TIME...... 必需油量实际航程时间(不包括等待,请记录)EXTRA 0 00.00 ACTUAL HLDG TIME...... 额外燃油实际等待时间(目的地机场,请记录) TKOF FUEL 110194 11.53 起飞油量TAXI FUEL 1050 FUEL ORDERED . . . . . . . . 滑行油量实际加油RAMP FUEL 111244 11.53 REASON FOR INC/DEC . . . . . . . . 机坪燃油比计划增加/减少加油的原因FUEL OVER DEST 11481 . . . . . . . . . . . . . . . . . 目的地上空剩油--------------------------------------------------------------------REFILE FUEL CALCULATIONS 二放计算------------------------RECLR FIX-DACEM TO KSFO FROM RECLR POINT -- DACEM 二放点/二放目的地机场从二放点到目的地及二放目的地的油量 BURN ZSPD-KSFO 94249 09.56 FUEL RQD TO KLAX / 18153 航程耗油CONT 7955 01.00 FUEL RQD TO KSFO / 15655 备份油ALTN KOAK 323 00.02 二放目的地机场的备降场STD HOLDING 5169 00.40 标准等待(如备降场过近,少于十分钟,则标准等待+10分钟)REFILE FUEL RQD 107696 11.38 二放必需油量EXCESS 2498 00.18 差值TKOF FUEL ZSPD 110194 11.56 起飞油量--------------------------------------------------------------------PRIMARY ALTERNATE AIRPORT SUMMARY 首选备降场摘要---------------------------------FMSDIVRTE FL WC ETI TRIPFUEL FMS备降航路飞行高度层平均风飞行时间航段耗油SFO/KSFO LAXSFO/601 390 M029 00.49 6820ROUTE DESCRIPTIONKLAX DCT VTU RZS J501 BSR CARME ANJEE SKUNK BOLDR MENLO DCT KSFOCONTINGENCY PLAN SUMMARIES 备份计划摘要--------------------------LOWER LEVEL TIME 1023 B/O 101733 ZFW 234258 M83 低一高度层时间耗油无油重量巡航马赫226 LAMEN 250 ONIKU 290 SAGRA 330 OJC 350 DACEM 330 飞行高度剖面ZFW M2000 TIME 1028 B/O 100923 ZFW 232258 M83 无油重量-2000 时间耗油无油重量巡航马赫246 LAMEN 290 ONIKU 330 OJC 350 DRIVR 370XXXXXXXXXXXXXXXXXXXXXXXX NAVIGATION LOG XXXXXXXXXXXXXXXXXXXXXXXXX 领航数据/FIR /情报区AWY /POINT/NAVFREQ DIST TRM GS ETO / ATO FUEL ACCBO 航路/点/导航台频率距离磁航迹地速预计/实际飞越航段耗油总耗油 FL /LATITUDE LONGITUDE ACCDIST MORA TIME WINDVEL/SR ACCTIME 高度层/纬度经度累计距离 MORA 航段时间风/颠簸指数总时间--------------------------------------------------------------------- (SR为颠簸指数:0-2 无颠簸;3-4 可能有轻度颠簸;5-7 轻度至中度颠簸;大于7 中度至严重颠簸。

Jeppesen飞行计划各释义

Jeppesen飞行计划各释义

MEL ITEMCFP--------------------------- MEL ITEM END ---------------------------PLAN 9221 ZYTX TO ZSFZ 738W 30/F IFR 20/01/19NONSTOP COMPUTED 1918Z FOR ETD 2300Z PROGS 2012NWS B-AIRLINES CALLSIGN: 35------------------------------- -----------------------------------POA ZSFZ 008404 03/11 1216 0211Z 074723 066318 019123 042565ALT ZSAM 001691 00/37 0170 0248ZW114 LASAN W13 BEGMO W117 DST B221 LJG..ZSFZ* MOST CRITICAL MSA 07300 FEET AT LJG *WIND M050 MXSH 10/MATNU ROUTE AVG TEMP M47ALT.LEVEL ETE WIND FUEL361 0312 M071 008357321 0308 M055 008398301 0307 M047 008497------------------------------- -----------------------------------REASON FOR DELAY . . . . . . . . . . . . . . . . . . . . . . . . .DEPARTURE ATIS:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ATC CLEARANCE:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .FLIGHT ROUTE DESCRIPTION: COMPANY ROUTE ZYTXZSFZ-C1ZYTX ELEV 00198FT ATIS:CPT FLT T WIND S TAS GRS MCS DST DSTR ETE ETR FU FR AFR FF/E ANSUK .. .. .... . .. .. 184. 036 1118 ./.. ./.. .. .. . ...... .. .A345 058TOC 341 .. .... . .. .. 184. 012 1082 0/01 2/51 017 0114 ...... .. .A345 058DDG 341 58 29071 03 447 422 216. 030 1070 0/05 2/50 001 0113 (1266)H114 058AKLAT 341 60 28074 02 447 444 193. 068 1040 0/09 2/45 002 0111 (1262)H114 052BIGBU 341 59 28073 03 450 440 192. 039 0972 0/05 2/36 004 0108 (1257)H114 031ESNUN 341 56 27079 06 453 391 228. 037 0933 0/06 2/31 002 0105 (1266)H114 010DONVO 341 55 27087 05 452 438 187. 044 0896 0/06 2/25 002 0103 (1280)A326 010MUDAL 341 54 27097 05 454 430 186. 110 0852 0/15 2/19 003 0100 (1271)A326 010DOPNO 341 53 27118 06 456 431 183. 011 0742 0/02 2/04 007 0094 (1270)A326 010IVPIP 341 51 26128 04 458 426 183. 044 0731 0/06 2/02 001 0093 (1277)A326 010IKADI 341 49 26135 05 464 326 263. 084 0687 0/15 1/56 003 0091 (1281)W113 010AKBEP 341 48 26138 06 464 328 263. 011 0603 0/03 1/41 007 0084 (1312)W113 010SOSMA 341 48 26136 06 455 457 164. 011 0592 0/01 1/38 001 0083 (1308)W108 010RUMIB 331 48 26129 07 458 453 165. 122 0581 0/16 1/37 000 0082 (1001)W108 010MATNU 331 45 26142 10 461 450 164. 019 0459 0/03 1/21 007 0076 (1283)W108 023DUMET 331 42 25147 07 470 330 226. 028 0440 0/05 1/18 001 0074 (1294)W114 020LASAN 341 42 25156 05 468 390 189. 025 0412 0/04 1/13 002 0072 (1419)W13 037PONAB 341 41 25155 05 468 390 189. 020 0387 0/03 1/09 002 0070 (1304)W13 037RULMU 341 41 25154 05 468 392 188. 019 0367 0/03 1/06 001 0069 (1301)W13 0372.3 W13 038TOGUG 341 40 25152 04 472 358 213. 081 0303 0/13 0/57 003 0065 (1287)W13 038BEGMO 341 39 25148 07 473 331 262. 066 0222 0/12 0/44 006 0059 (1311)W117 046DST 341 39 26142 06 471 362 217. 044 0156 0/08 0/32 005 0054 (1315)B221 057RUPOX 341 39 26138 06 471 370 216. 004 0112 0/00 0/24 003 0051 (1297)B221 057TOD 341 39 26130 06 335 311 216. 060 0108 0/12 0/24 000 0050 (1297)B221 073LJG .. .. .... . .. .. 163. 048 0048 ./.. ./.. .. .. . ...... .. ... 073ZSFZ .. .. .... . .. .. 162.8 048 0000 0/24 0/00 003 0047 ...... .. ... 073ELEV 00046FT ATIS:ATA . . . . . . . . . . .FIRS ZSHA/0040DESTINATION ATIS:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DESTINATION ALTERNATEDIV RTE - ZSFZ..FQG A470 AMURI..ZSAMCPT LAT LONG MCS DISTFQG 238 0039ENVEN 231 0035ATSAB 232 0022AMURI 230 0034ZSAM 198 0040MSA TTK DIST FL W/C TIME FUEL ALTERNATE - 2 ZSWZ 073 028 186 207 P039 00.36 1622 DIV RTE - ZSFZ..LJG B221 DST..ZSWZCPT LAT LONG MCS DISTLJG 345 0038RUPOX037 0044ZSWZ 056 0040END OF JEPPESEN DATAPLANREQUEST NO. 9221Identifier: ZYTXStart: 2019-01-20T22:00:00ZEnd: 2019-01-21T04:11:00ZAlgorithm: fdeAlmanac Time: 233472Almanac Week: 1013Minimum Duration Outage: 5 Minute(s) 0 Second(s)Sample Period: 1 Minute(s) 0 Second(s)Mask Angle: 5RNP Value: 0.30Baro Aided: FALSEOutage Start: 2019-01-21T01:50:30ZOutage End: 2019-01-21T01:58:30ZMinimum Number of Satellites: 7Identifier: ZSFZStart: 2019-01-20T22:00:00ZEnd: 2019-01-21T04:11:00ZAlgorithm: fdeAlmanac Time: 233472Almanac Week: 1013Minimum Duration Outage: 5 Minute(s) 0 Second(s)Sample Period: 1 Minute(s) 0 Second(s)Mask Angle: 0RNP Value: 0.30Baro Aided: FALSENo Outages ReportedIdentifier: ZSAMStart: 2019-01-20T22:00:00ZEnd: 2019-01-21T04:11:00ZAlgorithm: fdeAlmanac Time: 233472Almanac Week: 1013Minimum Duration Outage: 5 Minute(s) 0 Second(s)Sample Period: 1 Minute(s) 0 Second(s)Mask Angle: 5RNP Value: 0.30Baro Aided: FALSENo Outages ReportedIdentifier: ZSWZStart: 2019-01-20T22:00:00ZEnd: 2019-01-21T04:11:00ZAlgorithm: fdeAlmanac Time: 233472Almanac Week: 1013Minimum Duration Outage: 5 Minute(s) 0 Second(s)Sample Period: 1 Minute(s) 0 Second(s)Mask Angle: 5RNP Value: 0.30Baro Aided: FALSENo Outages ReportedRoute Outage Report:Start: 2019-01-21T23:00:00ZAlgorithm: fdeAlmanac Time: 233472Almanac Week: 1013Minimum Duration Outage: 5 Minute(s) 0 Second(s)Sample Period: 1 Minute(s) 0 Second(s)Mask Angle: 5Baro Aided: FALSENANU: 2019009NANU: 2019010NANU: 2019011-------------------------------------- CFP END --------------------------------------。

表征颠簸的几个参数总结!

表征颠簸的几个参数总结!

表征颠簸的几个参数总结!前段时间网上传出上海航空的航班在空中遭遇严重颠簸,导致两名旅客和一名乘务员受伤的事,于是空中颠簸伤人这个话题又周期性地被推到了风口浪尖上。

其实在很早之前,这个公众号就发布过一篇关于颠簸的文章《盘一盘空中颠簸的那些事》,里面介绍了颠簸的形成原因、危害、预报方法和应对措施。

当时介绍的相对比较简单浅显,主要有两个原因。

一是像颠簸的形成原因和危害这些内容,只要对气象知识有点了解的人就知道大概是怎么一回事,而且大多数人还亲身体验过,虽说感受的颠簸强度不一定有那么剧烈,但也能想象到如果人跟杯子一样飞起来会是什么样子。

二是即使你对颠簸的形成原因和危害再怎么了解,它也解决不了实际问题,真正解决问题的还是在预报方法和应对措施上。

但不得不说,虽然这些年国内外航空公司在颠簸预报上投入了相当的精力,然而收效比较有限。

美国从2000年左右就开始对颠簸预报进行研究,推出了不少研究成果,也陆续在国内外一些公司投入应用,然而一直到现在20年过去了,颠簸伤人的事似乎没有太多改善。

FAA曾经对2002年至2017年之间,平均每年大概一千多万个航班进行颠簸伤人的统计,最后发现在这15年间,尽管颠簸预报技术在进步,但颠簸伤人的数量却在周期性变化,并没有直观的下降趋势。

周期性的变化大概可以理解为,当颠簸伤人频发时,会引起监管部门和航空公司的重视,采取一些预防性的措施来应对,从而在接下来的一段时间内会减少颠簸伤人事件的发生。

而从我个人主观感受来讲,相对于航空公司使用颠簸预报系统来说,局方推出一些预防措施和工作要求似乎确实在减少颠簸伤人方面效果更明显一些。

当然,这绝对不是说颠簸预报工作没有价值,换个角度来理解,就是我们虽然在颠簸预报方面做了很多工作,但是还没有达到量变引起质变的效果。

目前无论是国内还是国外的航空公司,在颠簸预报方面都有自己的参考指标。

今天我们就来详细地聊一聊那些与颠簸有关的参数。

一、飞行员报告(PIREP)飞行员会将飞机在空中遇到的实时天气情况(包括颠簸)报告给附近的空管单位,然后空管单位将这些信息汇总并发布出来供各运行单位参考,这就是飞行员报告,简称PIREP。

黑翼飞行模拟器用户手册说明书

黑翼飞行模拟器用户手册说明书

IntroductionThe Blackwing BW 635RG is an ultralight two-seater aeroplane designed for recreational flying and training purposes. It features a sleek and modern design, with a composite airframe and a low-wing configuration. The Blackwing has a cruising speed of up to 120 knots and a range of approximately 700 nautical miles, making it suitable for both short and long-distance flights. The cockpit is equipped with state-of-the-art avionics, including a glass cockpit display and an autopilot system. The Blackwing is also known for its superior handling and stability, making it a popular choice among flying enthusiasts and flight schools. The BW 635RG is powered by the venerable Rotax 915 iS engine.Development Credits:Mal Cartwright Product LeadRuss White3D Modelling, Interior and Exterior TexturingJack Lavigne IntegrationHarry Stringer AnimationPropAir Flight Model and SystemsJordan Gough ManualWith special thanks to our Beta Testers:Rob Abernathy John BurgessNick Cooper John DowMatt McGee Darryl WightmanTable of ContentsIntroduction (2)Development Credits: (2)With special thanks to our Beta Testers: (2)Table of Contents (3)Notes on Hardware (4)Overview (5)Aircraft Limitations (6)Airspeed Limitations (6)Engine Limitations (6)Operating Conditions (6)Fuel (7)Other Limitations (7)Emergency Procedures (8)Engine Failure on the Take-off Roll (8)Engine Failure after Take-off (8)Glide Performance (8)Emergency Landing (9)Spin Recovery (9)Normal Procedures (10)Before Starting Engine (10)Starting Engine (10)Before Taxiing (11)Taxiing (11)Engine Runup (11)Before Take-off (11)Take-Off (12)Initial Climb (12)Cruise Climb (12)Cruise (12)Landing (13)Balked Landing (13)After Landing (13)Securing Aircraft (14)Basic Performance (15)Stall Speeds (15)Take-Off Performance (15)Landing Performance (16)Systems Description (17)Instrument Panel Layout (17)Switch Logic and Electrical System (18)Master Switch (18)Fuel Pump Switch (19)LAND/TAXI Switch (19)Strobe/Nav Switch (19)Electrical System Diagram (20)Engine (21)Propeller (21)Fuel (21)Notes on HardwareDue to the unusual 3-position switches in this aircraft, conventional hardware 2position toggle switches (eg. strobe or nav light switches) cannot be translated tothe single 3-position switch which combine these.Additionally, as this aircraft utilises a single level power control (throttle), conventional throttle/prop/mixture hardware may interfere with the function of this system, and not work as intended. It is recommended to place your propeller and mixture levers in the IDLE position, and not move them while the engine is running.OverviewThe Orbx BW 635RG has been developed using official documentation and Computer Aided Design (CAD) resources from Blackwing Sweden. As a result, the aeroplane has been created through masterful modelling, texturing, systems integration, and flight model development.Figure 1 – Aircraft 3-viewAircraft DimensionsLength 6.6m Height 2.2m Wingspan8.4mWeightsBasic Empty Weight 375kg Maximum Take-off Weight 600kg Maximum Fuel Capacity (Litres)130LThe content in this manual and the operation of the BW 635RG in Microsoft Flight Simulator strictly must not be used as reference material in any form for operating the real aircraft.Aircraft LimitationsAirspeed LimitationsAirspeed Description Airspeed (KIAS) RemarksVne Never Exceed Speed 157 Must not exceed this speed in any operation.Va Manoeuvring Speed 109 If full or abrupt control deflection is made, the airframe may be overstressed.Vfe1 Max flap extended speed20 degrees90 Maximum speed for flaps 20°Vfe2 Max flap extended speed35-45 degrees 70 Maximum speed for flaps 35-45°Vlo Maximum landing gearoperating speed 70Do not extended or retract the landing gearabove this speed.Vle Maximum landing gear extended speed 90 Do not exceed this speed with the landing gearalready down.Vs0 Stall speed flaps/gearextended 38 Stall speed with gear down/flaps >0° and in level flight at MTOWVs1 Stall speed clean 49 Stall speed flaps retracted, gear up and in level flight at MTOWEngine LimitationsEngineEngine Manufacturer Rotax Engine Model Rotax 915 iSMaximum Power Take-off (Max 5 min.) 141 hp Continuous 135 hpMaximum RPM Take-off (Max 5 min.) 5800 Continuous 5500Critical Altitude 15000ft AMSL Maximum OperatingAltitude23000ft AMSL Operating ConditionsAerobatic manoeuvres, flight in IFR conditionsand flights in icing conditions are prohibited inthis aircraft.FuelFuel TanksLeft Right Litres US Gal Litres US GalTotal Fuel in Tank 67.5 17.8 62.5 16.5Unusable Fuel 2.5 0.7 2.5 0.7 Total Useable Fuel in Tanks 66.5 17.6 61.5 16.2Other LimitationsMaximum demonstrated crosswind for the BW 635RG is 20 knots.Emergency ProceduresNote: The following procedures have been modified to be suitable for simulation. It does not cover emergencies that are a) not simulated and b) not reasonable. Checklist items from the real procedures have been omitted and these procedures must not under any circumstances be used for training purposes.Engine Failure on the Take-off RollThrottle: IDLEIgnition: OFFFuel Pump: MAIN (DOWN POS)Brakes: APPLYWhen stopped: SECURE AIRCRAFTEngine Failure after Take-offNose: IMMEDIATELY LOWERAirspeed: 65 KNOTSLanding Area: DETERMINE WITHIN 30° OF NOSEFlaps: USE AS REQUIREDLanding Gear: USE DESCRETIONFuel Selector: OFFIgnition: OFFMaster Switch: OFFGlide PerformanceThe BW 635RG, the approximate performance for a glide is 65 KIAS which willgive approximately a 545ft/min rate of descent in the clean configuration.Glide performance will degrade significantly on extension of flaps and landinggear.Emergency LandingAirspeed: 65 KIASField: PICK BEST OPTIONLanding Gear: USE DISCRETION DEPENDING ON FIELD TYPEFlaps: AS REQUIREDFuel Selector: OFFIgnition: OFFFuel Pump: MAIN (down)Master Switch: OFF BEFORE LANDINGSpin RecoveryThrottle: IDLEControl Stick: AILERON NEUTRALRudder: FULL OPPOSITE TO DIRECTION OF ROTATIONControl Stick: POSITIVELY FORWARD OF NEUTRALRudder: NEUTRAL WHEN ROTATION STOPSControl Stick: SMOOTHLY PULL OUT OF DIVEWARNING:INTENTIONAL SPINS ARE NOT APPROVED INTHIS AIRCRAFT.Normal ProceduresNote: The pre-flight inspection portion of the normal procedures has been removed due to impracticality in the simulator.Before Starting EngineIgnition: OFFMaster Switch: OFF (down)Backup Battery: OFF/AUTO (down)Landing Gear Lever: DOWNCircuit Breakers: INCanopy CLOSED (CLICKING THE LATCHON THE INSIDE LEFT SIDEWALL.) Starting EngineParking Brake: HOLD TOE BRAKES AND ENGAGE PARKINGBRAKEMaster Switch: ENGINE START (middle position)Fuel Selector: SETFuel Gauge: CHECKFuel Pump: BOTH (up)Ignition: BOTHNav Lights: STROBE (middle position)Throttle: SET ½-1 INCH OPENIgnition: STARTOil Pressure: GREEN WITHIN 10 SECWarnings: NONEBefore TaxiingMaster Switch: NORMAL OPERATION (up)Altimeter: SETAvionics: SETParking Brake: DISENGAGETaxiingInstruments: CHECKED (COMPASS/HSI/BALL/ATT) Engine RunupParking Brake: ENGAGERPM: 2500 RPMFuel Pump: CYCLE, CHECK FUEL PRESSUREIdle: CHECK IDLE 1800 +/- 100 RPM Before Take-offCanopy: CLOSED AND LOCKEDFlaps: 1 STAGE (20°)Elevator Trim: SET FOR TAKE-OFFEngine Instruments: NORMALLanding Light: ON (up)Controls: FULL FREE AND CORRECT MOVEMENTParking Brake: DISENGAGETake-OffThrottle: FULLControls: NEUTRAL45 Knots: ROTATEAccelerate: NOSE ON HORIZON, ACCEL TO 80 KIASPositive Rate of Climb: GEAR UPLanding Light: OFF (down)Flaps: RETRACT ABOVE 500’ AGLInitial ClimbThrottle: MAX CONTINUOUS (5500 RPM)Airspeed: 90 KIASFuel Pump: MAIN (down) ABOVE 500’ AGL Cruise ClimbThrottle: MAX CONTINUOUS (5500 RPM)Airspeed: 130 KIASCruiseThrottle: 55-75% PowerAirspeed: 120-157 KIAS (<130 KIAS IN TURB)LandingFuel: QTY CHECKEDFuel Selector: FULLEST TANKFuel Pump: BOTH (up position)Airspeed: 90 KIASFlaps: EXTEND FLAP 1 <90 KIASDownwind Airspeed: 65 KIASLanding Gear: DOWN @ 65 KIAS; CHECK 3 GREENLanding Light: ON (up position)Base Leg: EXTEND FLAP 2 < 65 KIASFinal Approach Airspeed: 60 KIASBalked LandingThrottle: SMOOTHLY INCREASEAirspeed: 60 KIASTrim: COURSE TRIM TO RELIEVE PRESSUREFlaps: RETRACT TO POSITION 1 (20°)Gear: UPTrim: TRIM FOR CLIMBAfter LandingFlaps: RETRACTExterior Lights: AS REQ’DFuel Pump: MAIN (down)Securing AircraftParking Brake: ENGAGEDThrottle: IDLESwitches: ALL OFF EXCEPT ACL AND MASTERIgnition: OFFNav Lights: OFF (down)Master Switch: OFFBasic PerformanceStall SpeedsMTOW 600kg | CG 32% MAC | Power Idle | Level FlightFlap Position Stall Speed (KIAS) 0° 49 20° 44 35° 39 45°38Take-Off PerformanceMTOW | ISA CONDITIONS | SEA LEVEL | FLAPS 1 (20°) | MTOW (600kg)Cruise PerformanceRunway Surface Ground RollOver 50ft Obstacleft mft mPaved Runway328 100 656 200 Unpaved (Grass) Runway 361110689208Pressure Altitude Power (%) TAS Fuel Flow LPH MAP (inHg) Endurance(hr)Range (nm) 500055 161 19.7 30 5.8 941 65 170 23.3 34.1 4.9 827 7517826.937.44.1738Landing PerformanceMTOW | ISA CONDITIONS | FLAPS 2 (35°) | MTOW (600kg) | Speed 1.3 x VsoRunway Surface Ground Roll Over 50ft Obstacle ft m ft mPaved Runway 525 160 951 290 Unpaved (Grass) Runway 558 170 984 300Systems Description Instrument Panel LayoutSwitch Logic and Electrical SystemThe electrical switches in the BW 635RG are 3-position switches. These are generally known as “DOWN”, “MIDDLE” and “UP”. They are briefly explained below.Master SwitchThe MASTER switch functions in a unique way, with the following switch logic:1.When the MASTER switch is DOWN, all battery power is off. There will beno electrical power provided to the aircraft.•Note: The engine CANNOT be shut down when the master switch isoff. Electrical power must be present for the engine to turn off.2.When the MASTER switch is in the MIDDLE (Engine Start) position, limitedsystem functionality will be present. The backup battery will be activatedand power the following systems:•Primary Flight Display•Compass•AHRS (Attitude Heading Reference System)•Radio3.When the MASTER switch is UP (Normal Operation), full electrical supplywill be provided to the aircraft. The following systems will be powered on: •Note: the engine CANNOT be started with the MASTER switch in theUP position. If the engine won’t start, check the switch is in theMIDDLE position•Multi-Function Display•Transponder•Autopilot•Audio panel•STBY instruments•Pitot Heat•Main battery is disconnected from running engine. Alternatorprovides power.See Section NORMAL PROCEDURES for positioning of the MASTER switch.Fuel Pump SwitchThe Fuel Pump switch also has some advanced logic to it, due to two fuel pumpsbeing present, however, to put it simply, it operates in the following way:1.In the DOWN position, the main fuel pump is in use.2.In the MIDDLE position, the auxiliary fuel pump is in use.3.In the UP position, both fuel pumps will be on.LAND/TAXI SwitchThe LAND/TAXI switch powers the Taxi and Landing lights. It operates in the following logic:1.In the DOWN position, both lights will be OFF.2.In the MIDDLE position, the taxi light will switch on when the landinggear is extended.3.In the UP position, the Landing Light will switch on when the landinggear is extended.Strobe/Nav SwitchThe Strobe/Nav switch powers the Navigation (Red/Green) and Strobe (flashingwhite) lights. It operates in the following logic:1.In the DOWN position, both lights will be OFF.2.In the MIDDLE position, the STROBE light will be on.3.In the UP position, both the strobe and Nav lights will be on.Electrical System DiagramThe BW 635RG’s electrical system is modelled in the following way in Microsoft Flight Simulator.Because the starter system is connected to the BACKUP BUS, this means you cannot start the engine with the MASTER switch in the UP position, due to the BACKUP BUS being disconnected from the circuit once the MAIN BAT BUS is powered.Page 21 of 21User Guide v1.0 –RevisionEngineThe BW 635RG is powered by the Rotax 915iS. The Rotax 915iS is a four-stroke, four-cylinder, fuel-injected, turbocharged aircraft engine with a maximum power output of141 horsepower. The engine utilizes electronic fuel injection (EFI) technology toprovide precise fuel delivery and improved fuel efficiency. It also features a modernliquid-cooling system and a dual electronic ignition system for reliable performance.The Rotax 915iS engine has a maximum operating RPM of 5,200, with a recommended continuous operation range of 5,000 RPM or less.PropellerThe propeller is a 3-blade wood-composite design, which is hydraulically adjustable for operation at various pitch angles, controlled independently of the pilot. The propeller is linked to the engine through an electronically controlled governor, where RPM isadjusted in accordance with the position of the throttle control. This pitch curve cannot be adjusted in flight, however is designed to ensure maximum performance in allphases of flight.FuelBoth wings have fuel tanks, which are fed to the engine via electric fuel pumps. Fuelsystem information is fed via sensors to the Garmin avionics suite and can be viewedon the displays inside the cockpit.AIRPLANE WEIGHTSBasic Empty Weight……………………….…375 KgMaximum Takeoff Weight…………………..600 KgMaximum Fuel Weight………………………...95 Kg Maximum Landing Weight………………….600 Kg TANK USABLE FUEL LEFT WING TANK67.5 litres 17.8 US Gallons RIGHT WING TANK62.5 litres 16.5 US Gallons TOTAL 130 litres34.3 US GallonsFUEL CAPACITY AIRSPEEDS Never Exceed Speed ……….…………….173 KIAS Max Structural Cruising Speed…………..156 KIAS Maneuvering Speed MTOW……………….109 KIAS Initial Climb………………………………………80 KIASBest Angle Climb……………………………….75 KIASBest Rate of Climb……………………………..90 KIASMax Flap Ext 20°……………………..............90 KIASMax Flap Ext 35-45°……………………………70 KIASMax Landing Gear Operation……………….70 KIASMax Landing Gear Extended………………..90 KIASPlanned Cruise TAS………………………….130 KIASFinal Approach Speed………………………..60 KIAS POWERPLANT LIMITATIONSENGINE LIMITS (RPM)Take-off (5 Minutes)………....5800 RPM Max Continuous……………….5500 RPMALTITUDE LIMITSMaximum Operating Altitude………………23 000ftFor Microsoft Flight Simulator Use Only0-12023 Orbx Simulation Systems Pty. Ltd BW 635RG QUICK REFERENCESHEETIssued: 21 Apr 2023Revised: 21 Apr 20230-2PROCEDURESBEFORE STARTING ENGINEPreflight Inspection………………………….COMPLETECrew Briefing………………………………….COMPLETEIgnition…………………………………………………….OFFMaster Switch…………………………………………..OFFBackup Battery …..…………………………….OFF/AUTOLanding Gear Lever………………………………..DOWNCircuit Breakers…………………………………………..IN Canopy………………………………………………CLOSED STARTING ENGINEArea……………………………………………………..CLEARParking Brake……………….HOLD TOE BRAKES ANDENGAGEMaster Switch …..……………….ENGINE START (MID)Fuel Selector…………………………………………….SETFuel Pump………………………………………BOTH (UP)Ignition………………………………………………….BOTHExternal Lights……………………………………..AS REQThrottle ………………………..………..Τ12-1 INCH OPENIgnition………………………………………………….START AFTER START Oil Pressure.…………………………………………RISING Master Switch ……………………………..NORMAL (UP)Radios………………………………………………………SET Altimeter…………………………………………………..SET ATIS and Clearance…………………………..OBTAINEDBEFORE TAXIBrakes/Park Brake ………………………….DISENGAGEFlight Instruments……………………………..CHECKEDCompass…………………………………………CHECKED BEFORE TAKEOFFCanopy/Harnesses………………………………SECURE Flaps…………………………………….……1 STAGE (20°)Trim ..……………………………………SET FOR TAKEOFF Flight Instruments………………………………………SET Engine Instruments………………CHECKED NORMAL Avionics…………………………………………………….SET External Lights………………………………………AS REQ Flight Controls…………..FULL, FREE AND CORRECT Takeoff Safety Brief………………………….DELIVERED TAKEOFFBrakes/Park Brake………………………….DISENGAGEPower…………SMOOTHLY INCREASE TO MAXIMUM45 knots………………………………………………ROTATEAccelerate……….…NOSE ON HORIZON, TO 80 KTSPositive Rate of Climb………………………….GEAR UPLanding Light.……………………………….OFF (DOWN)Flaps ………………………..RETRACT ABOVE 500’ AGLMEMORY ITEMS 2023 Orbx Simulation Systems Pty. Ltd ENGINE RUN UP Parking Brake ……………………………………..ENGAGE Engine Instruments……………………………CHECKED Engine RPM…………………………………SET 2500 RPM Fuel Pump…………………………………………….CYCLE Idle …………………..…..CHECK IDLE 1800 ±100RPM Navigation Equipment …..…………………………….SETFor Microsoft Flight Simulator Use OnlyIssued: 21 Apr 2023Revised: 21 Apr 2023AFTER TAKEOFF Engine Instruments……………………..WITHIN LIMITS Climb Speed…………………………………………90 KIAS Fuel Pump………….MAIN (DOWN ) ABOVE 500’ AGL0-3CRUISEPower….……………………………………….SET 55-75%Airspeed…..……….120-157KTS (<130KTS IN TURB.)DESCENTAltimeter…………………………………………………..SETFuel Selector………………………………FULLEST TANKPower Lever………………….AS REQUIRED FOR RODApproach Brief………………………………PLETE BEFORE LANDINGBrakes……………………………………………………..OFFFuel ………….………………………………QTY CHECKEDFuel Selector………………………………FULLEST TANK Fuel Pump……….………………………………BOTH (UP)LANDINGDOWNWINDAirspeed….………………………………………….90 KIASFlaps….………………………………………STAGE 1 (20°)Airspeed………….………………………………….65 KIASLanding Gear…..…………………….DOWN @ 65 KIASCHECK 3 GREENLanding Light………………………………………ON (UP)BASEFlaps…………………………… STAGE 2 (35°) < 65 KIASFINALAirspeed………….………………………………….60 KIASTouchdown ……………………….MAIN WHEELS FIRSTStick………………………………………………FULL BACK Brakes…………………………………………………..APPLYAFTER LANDING Flaps………………………………………………..RETRACT Landing Lights…………………………………………..OFFFuel Pump….………………………………MAIN (DOWN)SHUTDOWNParking Brake ……………………………………..ENGAGE Throttle……………………………………………………IDLE Switches….………………………….OFF EXCL. MASTERIgnition..…………………………………………………..OFFLights….……………………………………….OFF (DOWN)Master Switch..……………………………..OFF (DOWN)MEMORY ITEMS 2023 Orbx Simulation Systems Pty. Ltd For Microsoft Flight Simulator Use OnlyPROCEDURESIssued: 21 Apr 2023Revised: 21 Apr 2023。

上航DM放行单和飞行计划注解ETOPS 二放【民用航空器 维修人员精品资料】

上航DM放行单和飞行计划注解ETOPS 二放【民用航空器 维修人员精品资料】

上航SABRE DM计算机飞行计划中英文对照注解FPRLS. 1P210402 REV.NO. 放行单号SHANGHAI AIRLINE DISPATCH RELEASE MESSAGE 上海航空公司签派放行单------------------------------------------------------------------- -----------------------------------------------------------DISP SHAO WEI 邵伟DISPDESK E3- 签派员姓名席位号即ACARS报文识别代码021- 席位电话(区号—电话号码)CES 737A/25 ZSPD / YMML ALTN YSSY T/O ALTN 航班号/日期起飞机场/目的地机场备降机场起飞备降机场REFILE INIT DEST YPAD INIT ALTN YMML 二次放行初始目的地机场初始备降机场REG B9999 FM330-243 PID 1P210402 机号机型计划号ETD 25JAN13/1215Z FLT TIME 1014 STD 1215 STA 2115Z 预计起飞时间/日期预计飞行时间航班计划时间计划到达时刻------------------------------------------------------------------- -----------------------------------------------------------1读万卷书行万里路FILED ATS PLAN FPL-------------- -------------(FPL-CES737A-IS-A332/H-SDE2E3FGHIJ5M1RWY/S-ZSPD1215-K0885S1010 DCT PONAB W13 TOGUG/K0889S0980 W13 BEGMO W117 DST B221LJG A470 SWA/K0882S1040 A470 DOTMI/N0477F340 DCT MONTA DCTSABNO/M080F330 A583 ZAM/N0479F330 A461 BONDA/N0474F350 A461BOYDI/N0466F370 A461 LEC H119 ARBEY DCT-YMML1014 YSSY-PBN/A1B2C1D1L1O1S2 REG/B9999EET/ZGZU0133 VHHK0145 RPHI0214 WAAF0421 YBBB0606 YMMM0754SEL/BRMQ OPR/CHINA EASTERNRALT/RPVM YPDNRIF/DOSAM J30 TN J251 SCOTI J251 AS A461 LEC J114 AD DCT YPAD2读万卷书行万里路。

[签派]国泰航空

[签派]国泰航空

国泰航空的IOC整体运行控制是于1999年4月份开始投入运行的,在萨伯瑞航空解决方案公司(Sabre)开发的AirOps系统的支持下,为IOC的人员提供了新的功能和从整体上计划和调度航班的能力。初到IOC,让人不禁为其环境的简洁和人员的精干感到吃惊,难以想象这便是国泰航空运行体系的核心,如此寥寥六七个人就指挥了整个国泰航空的所有航班。
在国泰的运行体系中,签派的放行和监控职能被认为是具有不同的性质,所以分别置于两个不同的单位。飞行签派Flight Despatch属于Operations Services,位于国泰航空城的一楼,与其他如飞行前体检、机组准备、机组出入境检查等单位在一起,主要承担向机组提供签派放行和飞行计划等服务。整体运行控制(Integrated Operations Control)则是一个负责从整体上计划和调度航班的单位。
TELECOM以外没有其他的电话或话音通信设备,整个台面显得整洁干净,即便是IOC内只有一个人值班,也不会因为接听电话而跑来跑去
应急演练与危机处理
每年国泰都要与香港机场管理局合作进行一次应急演练。每年国泰内部自己则要组织两次应急演练。国泰将应急事件分成三个等级,不同的等级相应要动员不同的资源。在应急事件的等级划分上,国泰没有规定明确的标准。
二、 主要考察内容
国泰航空的运行组织机构 现在国泰航空公司的董事长是James Hughes-Hallett (何礼泰),在他的手下有9个董事(Director)分别负责国泰的某一方面的工作。国泰的机构划分完全从职能出发,董事长手下的9名董事就是某一职能部门的最高负责人。在国泰负责处理全球航班运作的所有事务的是航务部,包括了所有与飞行、运行相关的单位,甚至还包括了与机组相关的人力资源和人际关系部门。负责这个部门的是航务董事Nick Rhodes(罗礼祺),在他手下有2-3名总经理,分管运行和人员,在总经理之下又有若干个负责专门事务的经理对其负责,如在分管人员(Air Crew)的总经理下面有机组管理、机组排班、人力资源、基地、人际关系等经理对其负责,在分管运行(Operations)的总经理下面则有飞行标准、飞行技术、运行服务、整体运行控制和航班运行等经理对其负责。

管理信息系统(美国航空公司与sabre系统运用)

管理信息系统(美国航空公司与sabre系统运用)

提供精确的售票保证
使用证实邮件确保客户得到明确的订购信 息,减少了客户因担心网络出错而导致的忧虑。
对于网上订票方式,美国航空公司发现,客 户对以电子方式订购的票比给他们通过网点订票需要 更多的保证。客户的确可以在任何时候看到他们的预 订情况,也能把它们打印出来并带在身边,但客户需 要的不止这些,客户需要得到再一次的通知以确保电 子方式不出任何差错。所以,美国航空公司在每位客 户每次预订或修改预定后,都给他们发一封证实邮件。 这是客户所寻求的保证。
机票信息的途径少。 大增加,维护设施
压,增加了航空公
司的管理成本。
•拥有sabre系统的航空公司获得了巨大的竞争优势,没有自己订票系统的 航空公司,只能通过支付租金的方式在sabre系统公布自己公司的航班信息, 增加了成本。并且系统在为旅客推荐航班时,出现在屏幕上的首先是自己 航空公司的航班信息,仅这一系统优先设置就给该公司带来相当的利润
6.通过互联网构建自己的全球贸易营销网,争取成为市场全球化 的跨国企业; 7.通过互联网电子商务企业可以将自己的产品和服务转移到网上 去经营,且随网络24小时*365天的全候天运转,以降低企业经 营成本,提高企业运行效率和服务质量; 8.利用互联网,使消费者获得空前规模的商品选择余地和个性需 求得到充分满足的机会,收集消费者的意见和反馈信息,指导自 己的生产经营活动,“一对一”的营销和定制化生产将成为未来 企业的经营发展趋势; 9.在战略制定过程中,将现代IT技术纳入企业战略中作为一个组 成部分进行科学规划与管理;
各位旅客你们好!欢迎乘坐美国航 空公司XX号航班,我是你们的领班 接下来请允许我介绍本航班的机组 xx 人员
空姐xx
机长xx
空姐xx
副机长xx
空姐xx

美航与sabre系统

美航与sabre系统

Page 3
美航的发展历程
1959年末与1960年初 文本 早期美国航空公司与 第二次世界大战期间, 1959年末和1960年初, 道格拉斯飞机公司合 美国航空的半数飞机 1957年, 美国航空与美国国际 作开发了DC-3飞机, 与机组人员都转向为 1939 年6月10日, 世界上第一个培训空 商用机器公司联手推 美国航空公司在 1936 军方工作。 美国航空公司在 客服务员的专门机构, 出了SABR,成为当时 年将DC-3投入飞行。 1949年时,美国航空 纽约证券交易所上市。 美国航空空乘服务学院 仅次于美国政府的 成为了美国唯一拥有 在达拉斯/沃斯堡成立。 SAGE系统的最大的 完整增压客舱客机 实时数据处理系统。 机型的航空公司。
早起(-1936 ) 年 1936
第二次世界大战 1957 -1949 年
二。什么是sabre系统
Sabre(半自动业务研究环境)中央订票系统最初是美国 航空公司的一个系统,是联机交易的先锋。计算机有史以 来第一次能够通过网络连接,使世界各地的人们能够输入 数据、处理信息请求,并开展业务。该系统使整个旅行业 发生了革命性变化,标志着当前用于买卖旅行服务的综合 系统的开端。此外,它还是在 20世纪 90年代飞速发展且 在当今广泛使用的整个电子商务领域的前身。 目前,Sabre 仍是全球旅行技术产品和服务的领先提供商。 Sabre 系统每天 24 小时、每周 7 天不间断运行。每天, 全球 57,000 多个旅行代理机构登录 Sabre 桌面,而且 Sabre 系统每秒钟处理 42,000 多笔交易。
管理信息系统第10小组
组长:郭小帆 组员:王健健,石希敏,丁姸芬,何绮雯,朱锋
主题
美国航空公司与sabre订票系统
一。美航的简介

空客a320飞行手册英文

空客a320飞行手册英文

空客a320飞行手册英文Title: Airbus A320 Flight Manual OverviewThe Airbus A320 Flight Manual is a comprehensive document that provides pilots with essential information for safe and efficient operation of the aircraft. Covering various aspects of flight, from pre-flight procedures to emergency protocols, the manual serves as a crucial reference for pilots throughout their careers. In this overview, we'll delve into key sections of the manual, highlighting important information for pilots.1. Introduction:The introduction section of the manual provides an overview of the aircraft's design, capabilities, and intended use. It outlines the purpose of the manual and sets the context for subsequent sections.2. Aircraft Description:This section offers detailed descriptions of theaircraft's systems, including flight controls, electrical systems, hydraulic systems, and avionics. Pilots gain insight into the layout and functionality of critical components, facilitating better understanding and troubleshooting during flight.3. Normal Procedures:Normal procedures encompass routine tasks performed by pilots during standard flight operations. This section covers pre-flight checks, startup procedures, taxiing, takeoff, climb, cruise, descent, approach, and landing. It includes step-by-step instructions and checklists to ensure adherence to standardized protocols.4. Performance:Performance charts and tables provide pilots with essential data for optimizing aircraft performance during different phases of flight. This includes takeoff and landingdistances, climb rates, cruise speeds, fuel consumption, and weight limitations. Pilots use this information to make informed decisions and achieve optimal efficiency.5. Limitations:Understanding aircraft limitations is crucial for safe operation. This section outlines various limitations related to airspeed, altitude, weight, and operational conditions. Pilots must adhere to these limitations to mitigate risks and ensure compliance with regulatory requirements.6. Emergency Procedures:Emergency procedures detail actions to be taken in response to various in-flight emergencies, such as engine failure, loss of pressurization, or fire. Pilots are trained to react swiftly and decisively in critical situations, following prescribed procedures outlined in the manual to ensure the safety of the aircraft and its occupants.7. Systems Description:A detailed overview of aircraft systems, including air conditioning, fuel, lighting, navigation, and communication systems, is provided in this section. Pilots gain insightsinto the functionality and interconnectivity of these systems, enhancing their ability to troubleshoot issues and make informed decisions during flight.8. Abbreviations and Terminology:Given the technical nature of aviation, pilots encounter numerous abbreviations and terminology specific to the industry. This section serves as a reference guide,clarifying commonly used terms and abbreviations found throughout the manual.In conclusion, the Airbus A320 Flight Manual is an indispensable resource for pilots, providing comprehensive guidance on aircraft operation, procedures, and systems. By familiarizing themselves with the manual's contents andadhering to its guidelines, pilots can ensure safe and efficient flight operations in diverse conditions and environments.。

sabre航空公司白皮书

sabre航空公司白皮书

航空公司员工如是说
“我没有时间研究所有可能的选择得不关掉这个窗口,打开那个系统, 再跳转到另一个窗口…” “我不太清楚为什么会作出那个决策”
“我很抱歉…我没有关于这方面的新 信息” “我希望我能早点知道” “航班计划变了,所以我也不确定接下 来要去哪里或是做什么”
2
互联航空公司: 统一航空公司运营,增强客户体验并提高利润
白皮书
根据 IATA 2015 年全球乘客调查,准点率是对航空公司品 牌知名度影响最大的因素 (75%),其次是飞机质量和内饰 (66%) 以及客户互动 (54%)(图 2)。
图3
2016 年 5 月美国交通部跟踪投诉
其他 (29)
航班问题
• 通 过基于服务的整合纳入第三方和内 部数据 • 支 持共享情境、任务和活动的系统可 加快和优化跨部门决策制定 • 在 不同部门之间建立共同的业务视角, 提高情景感知能力
• 向 这些全世界机动性最强的员工发布实 时信息,让他们能够集中精力执行计划 • 让 员工能够自主安排航班计划和任 务,从而提高满意度和生活质量 • 确 保员工消息灵通、更加自信,从而 为客户提供积极的体验
从长远来看,技术被确定为最有可能推动变革的业务职能 (61%),其次是跨职能协作(图 6)。 显然,技术、信息共享和跨职能协作在推动航空公司运营 改善方面起着主要作用。让我们来深入了解这些因素如何 挑战运营,而航空公司又该如何解决这些挑战。
图5
改善现今航空公司绩效的主要障碍
1 2 3 4
缺少先进技术 获取可行动数据受限 组织结构 缺乏信息共享
图1
航空公司首要的品牌承诺
品服务和令人难忘的飞行体验。但是,航空公司客户体 验最基础的部分——让乘客按时到达目的地,仍然还有 提升的空间。

公司航班运行的CI成本指数由时间成本和燃油价格两个变量决定

公司航班运行的CI成本指数由时间成本和燃油价格两个变量决定

中国东方航空股份有限公司动态成本指数管理规定(试行)第一章总则公司直接运行成本控制和奖励方案实施以来,为公司降低运行成本、促进节油管理规范化起到了重要作用。

但各机型常年使用固定的成本指数,尽管便于操作,但不能及时反映油价的变化以及公司人力资源成本的变化,不能及时反映机队成本的变化,管理模式较为粗放。

为进一步深化直接运行成本控制(DOC),使航班运行的成本指数更加符合实际运行情况,以更加科学有效的方法实施DOC运行,现发布动态成本指数的管理规定(试行),以进一步节约运行成本。

第二章定义直接运营成本:即DOC(Direct Operation Cost),它是直接与飞行运营有关的成本,包括燃油费用、空勤人员飞行小时费以及与设备寿命和使用时间有关的其它费用。

时间相关成本:在直接运营成本中,除燃油成本以外的与飞行时间有关的成本简称为时间相关成本。

燃油成本:即燃油价格。

成本指数:即CI(Cost Index),它是使航空公司直接运行总成本最小的一个运行参数,数值上等于时间相关成本与燃油成本的比值,其计算细则见附件《动态成本指数CI计算细则》。

第三章数据来源成本指数实施动态计算过程中所需的各項数据来源规定如下:一、飞机单位飞行时间相关成本(主要由五大项组成):由财务部根据上一年度财务统计数据,分机型于每年一月底前向运控中心提供。

如飞机组件折旧和飞机租赁等其他维护和运行费用按飞行时间平摊,则此类费用也应一并提供并注明。

二、飞行机组单位飞行时间成本:由人力资源部根据公司小时费政策,分机型于每年一月底前向运控中心提供。

在公司空勤人员小时费政策变化时,人力资源部应提前一个月将具体情况和预计的小时费总额变化量向运控中心提供,以便及时根据公司薪酬政策对成本指数进行计算调整。

三、单位燃油平均油价:由规划部根据上月财务统计数据,于每月10日前向运控中心提供。

第四章指数的动态计算、调整和发布一、成本指数的动态计算动态成本指数必然伴随着动态计算过程。

simbrief飞行计划阅读

simbrief飞行计划阅读

simbrief飞行计划阅读论述飞行计划在签派中的地位与作用飞行计划(FLIGHT PLANNING)是飞行签派最主要的工作之一。

签派员制作的飞行计划既要满足CCAR121部及《运行规范》和民航相关规章的要求,又要保证航班运行的安全、舒适。

运行控制部门向飞行人员提供的具体飞行计划应包括:起飞时刻、起飞滑行油量、天气数据、航路点数据(包括航路点名称、位置及到达航路点距离、时间、油量、天气等)、高度/速度剖面。

飞行计划由签派员制作并向飞行机组提供,它还包括向所在机场发布的飞行签派放行单和飞行计划,涵盖了公司航班号、飞机型号、导航设备、导航点名称、航路代码、巡航高度/速度、航路时间、航行通告,以及机场气象机构发布的专用气象资料等。

一、飞行计划是安全的“助推器” 飞行计划是飞行员执行任务中最重要的飞行文件之一。

在飞行前,飞行员要按照飞行计划进行准备;在飞行中,飞行员要严格按照飞行计划进行实施。

一份飞行计划的好坏、质量高低不仅与飞行安全密切相关,而且越来越成为航空公司实施安全高效运行的“助推器”。

已经飞行了近10000个小时的东航安徽分公司机长李春晓说:“空中飞行的飞行员一定要严格按照管制员的指令飞行,就像地面行车除必须遵守交通信号规则外,有时候即使有信号灯也必须服从交警的手势指挥一样。

” 飞行计划的每一项内容都牵涉到飞行安全。

航空公司签派员制作一份完整的飞行计划是分几个连贯性的步骤展开的。

一是依据载量。

即:根据当天该航班的实际载重量,通过各机场的平衡代理机构和民航中航信系统向航空公司的签派中心发送;二是依据适时的天气条件。

即:通过民航局的气象终端系统、日本的WNI系统、美国的SABRE系统等气象机构提供的起飞机场、降落机场、备降机场、航路的天气实况和预报;三是依据机长可执行的最低天气标准。

即:通过系统转换,签派员能够准确掌握本次飞行任务的机长、副驾驶、乘务长等全部机组人员名单,以及本次责任机长能够执行的RVR/VIS/ILS 天气标准;四是依据最低设备清单(MEL)。

SABRE发动机是空天飞机的唯一选择?

SABRE发动机是空天飞机的唯一选择?

SABRE发动机是空天飞机的唯一选择?每期一篇原创文章从这里读懂空天一、SABRE发动机的前世今生SARBRE(协同吸气式火箭发动机,简称“佩刀”),是来自英国反作用力发动机(Reaction Engines)公司的研发项目,其目标是研制一种适用于高速飞行的新原理发动机,即SARBRE。

我们来看下该发动机的由来。

“佩刀”空天发动机(英国反作用发动机公司图片)“佩刀”发动机诞生在80年代中期,这得从当时的空天飞机项目说起,当时提出了许多空天飞机方案,有美国采用的超燃冲压发动机为动力装置的“东方快车”国家空天飞机,德国采用涡轮冲压发动机为动力装置的“桑格尔”空天飞机,然后就是英国的采用预冷式吸气火箭发动机为动力装置的“霍托尔”空天飞机。

[1] 90年代,这三个国家空天飞机项目相继下马。

(这些项目的发展除了技术因素外,也离不开世界大环境的变化,90年代苏联解体、美国打了海湾战争以及后来的科索沃危机等等)虽然三个国家的空天飞机项目下马了,但是英国参与“霍托尔”项目的三名工程师仍在坚持,终于于1989年成立反作用发动机公司(Reaction Engines),低调实施了“云霄塔”空天飞机计划。

[1 ]佩刀之后的发展经历了以下以下三大阶段。

图片来自参考文献[2],作者张连庆、刘博等最新消息,该公司于2018年4月12日获得英国罗罗公司和波音公司投资2650万英镑,折合人民币约2.38亿元。

并且该公司计划于2020年之前对示范发动机进行核心机地面测试,并在今年晚些时候对热换热器进行高温测试。

二、SABRE发动机的双模态工作“佩刀发动机”具有双模态,即吸气式发动机模态(如我们一般看到的民航客机的发动机,吸气式发动机需要依赖大气中的氧气与自带的燃料燃烧以产生高速气流获得反作用推力),另一模态即火箭发动机模态(不用吸气,自身携带氧化剂和燃料燃烧后喷气产生推力)。

而“佩刀”发动机就是能实现这两种模态,据报道在吸气工作模式它能够达到5马赫的速度,而在火箭模式工作模式时可以达到25马赫。

你的飞行计划(亚伯拉罕)

你的飞行计划(亚伯拉罕)

你的飞行计划(亚伯拉罕)人的脑袋何其奥妙,能够了解错综复杂的概念,但有时却对明显而简单的事情视而不见。

以下是一些真实的案例:冰淇淋是在公元前 2000 年发明的,但一直到 3900 年后,才终于有人发明了蛋卷冰淇淋。

可提供肉食的生物早在人种出现之前就存在于地球上,而在公元前 2,600 年前有人烘焙出面包。

但总之又花了 4300 年,才有某人忽然将肉类和面包合而为一,「发明」了三明治。

现代人所使用的抽水马桶则是于公元 1775 年问世,但直到 1857 年,才有人发明了厕纸。

一旦这些明显的连结产生,大家才觉得「就这么简单啊!」但为什么我们没有早点发现这些明显的事实呢?在现代,尤其在商业社会,仍有无数这种明显事实尚未被连结起来。

其实你的四周充满着这种简单而明显的解决之道,可以让你的收入、权力、影响力,以及成功事迹遽增。

问题是:你对它们根本视若无睹。

我将告诉你如何找到这些增加收入及成功的连结,提供你一些有效的策略和施行方法,替你带来更多的财富、尊敬及成功。

一旦你领略其中滋味,一切都将改头换面。

本书主要重点是你如何改进你的商业生涯,但事实上,这些策略可以应用在你生活中的各个领域,用以说服他人接受你的想法及观念。

教你成为一个拥有影响力并赢得尊敬的领导人物,以及如何用光明正大的手段得到你想要的东西。

有关如何成功在商场上应用这些策略,我至少有两百个以上的特殊案例,但重点是当你读到这些策略及例证时,必须集中注意力,了解他们如何将这些要点成功地应用在你全部的生活当中。

你即将展开一趟神奇的旅行,将去发掘隐而未现的资源和机会,并且监控未能产生最大效果的可能性。

这一切都将被改变。

你将会对这些目的如此轻易达成而大吃一惊。

好到难以置信吗?其实不然。

就让我举个看似庞大而复杂的增加收入问题为例证。

你曾想过有多少种办法,可以增加贵公司的业务量呢?一百种?两百种?还是五百种?光想想从哪里里开始就够烦人了。

但好消息是:只有三种增加生意的方法:∙增加客户数目∙增加每一客户单笔生意平均交易量∙增加客户回头交易数目∙增加客户数目我有一个客户,他卖什么并不重要,重要的是他的收入停滞不前。

A320起飞性能计算

A320起飞性能计算

A320起飞性能计算摘要:A320是国内民用航空公司使用最广的机型。

机组一般使用飞行管理计算机FMC进行性能计算,飞行签派员和性能工程师在计算起飞性能时多使用空客公司提供飞行机组操作手册中的图表和相关性能软件。

本文简要介绍了这些计算机和图表的计算原理,通过工程计算的方法进行演示计算。

通过与实际飞行数据比较,计算结果符合实际,该计算方法可以应用至民用飞机性能计算。

关键词:起飞性能;离地速度;起飞距离;爬升性能;爬升梯度;爬升耗油;1 起飞简介1.1 起飞剖面运输类飞机起飞的定义: 飞机从地面开始加速滑跑到离地高度不低于1500英尺,完成从起飞到航路爬升构型的转换,速度不低于1.25VS,爬升梯度达到规定值的过程。

1.2 起飞航迹起飞场道阶段:从地面开始加速滑跑到飞机离地高度35ft(10.7m),速度不小于起飞安全速度V2的过程。

起飞航迹阶段:从35ft到起飞结束的过程。

整个起飞阶段包括起飞场道航段和起飞航迹阶段。

2 性能计算2.1 条件1)标准大气条件,静风,不考虑坡度,跑道平均摩擦系数μ= 0.032)起飞重量:70T;3)A320起飞推力TOGA:115000N;燃油流量:4800lb/h;最大连续推力MCT:104000N;燃油流量:4350lb/h。

4)第三阶段飞行时间:5min5)升力系数、阻力系数、机翼面积等需查资料获得。

起飞时迎角为14°:由升力系数曲线可知,CL =1.49 ,DL=0.155机翼面积:122.6m22.2起飞滑跑2.2.1离地速度=78.3 m/s≈282km/h(152kt)2.2.2起飞滑跑距离、时间和耗油运用工程估算法,将整个滑跑过程看作等加速运动,可得:其中TOR为起飞滑跑距离,t为起飞滑跑时间。

查表可知滑跑时CL =0.57,CD=0.023取滑跑段的平均速度V= (0+ )/2=39.2m/s滑跑平均升力 =0.36*0.5*0.125*39.22*122.6=4238.8kg滑跑平均阻力 =0.023*0.5*0.125*39.22*122.6=270.8kg2.6m/s21180m (1.15TOR=1357m)耗油用空客PEP软件计算的结果如下:图 1 PEP起飞滑跑计算2.2.3起飞爬升距离、时间和耗油爬升坡度为10°,起飞时迎角为14°,由升力系数曲线可知,CL =1.49 ,DL=0.155。

飞行计划

飞行计划

论述飞行计划在签派中的地位与作用飞行计划(FLIGHT PLANNING)是飞行签派最主要的工作之一。

签派员制作的飞行计划既要满足CCAR121部及《运行规范》和民航相关规章的要求,又要保证航班运行的安全、舒适。

运行控制部门向飞行人员提供的具体飞行计划应包括:起飞时刻、起飞滑行油量、天气数据、航路点数据(包括航路点名称、位置及到达航路点距离、时间、油量、天气等)、高度/速度剖面。

飞行计划由签派员制作并向飞行机组提供,它还包括向所在机场发布的飞行签派放行单和飞行计划,涵盖了公司航班号、飞机型号、导航设备、导航点名称、航路代码、巡航高度/速度、航路时间、航行通告,以及机场气象机构发布的专用气象资料等。

一、飞行计划是安全的“助推器”飞行计划是飞行员执行任务中最重要的飞行文件之一。

在飞行前,飞行员要按照飞行计划进行准备;在飞行中,飞行员要严格按照飞行计划进行实施。

一份飞行计划的好坏、质量高低不仅与飞行安全密切相关,而且越来越成为航空公司实施安全高效运行的“助推器”。

已经飞行了近10000个小时的东航安徽分公司机长李春晓说:“空中飞行的飞行员一定要严格按照管制员的指令飞行,就像地面行车除必须遵守交通信号规则外,有时候即使有信号灯也必须服从交警的手势指挥一样。

”飞行计划的每一项内容都牵涉到飞行安全。

航空公司签派员制作一份完整的飞行计划是分几个连贯性的步骤展开的。

一是依据载量。

即:根据当天该航班的实际载重量,通过各机场的平衡代理机构和民航中航信系统向航空公司的签派中心发送;二是依据适时的天气条件。

即:通过民航局的气象终端系统、日本的WNI系统、美国的SABRE系统等气象机构提供的起飞机场、降落机场、备降机场、航路的天气实况和预报;三是依据机长可执行的最低天气标准。

即:通过系统转换,签派员能够准确掌握本次飞行任务的机长、副驾驶、乘务长等全部机组人员名单,以及本次责任机长能够执行的RVR/VIS/ILS 天气标准;四是依据最低设备清单(MEL)。

B737NG ATA章节中英文对照表

B737NG ATA章节中英文对照表
区域温度控制和指示
62
TRIM AIR PRESSURE REGULATION AND SHUTOFF CONTROL
配平空气压力调节和关断控制
73
OZONE
臭氧
21
74
HUMIDITY CONTROL
湿度控制
75
PACK SUPPLY AIR CLENAER SYSTEM
组件供气清洁系统
22
00
AUTO FLIGHT
释压活门
33
CABIN PRESSURE INDICATION SYSTEM
客舱增压指示系统
45
DOOR AREA HEATING SYSTEM
门区域加热系统
51
PACK FLOW CONTROL AND COOLING SYSTEM
组件流量控制和冷却系统
61
ZONE TEMPERATURE CONTROL AND INDICATION
滑油勤务
14
POTABLE WATER
饮用水勤务
15
MISCELLANEOUS REPLENISHING
杂项补充
16
WINDOWS

17
WASTE TANK
废水箱
20
AIRPLANE LUBRICATION
飞机润滑
21
PERIODIC LUBRICATION
间隔润滑
22
PERIODIC LUBRICATION
乘务员座椅和面板
27
FLOOR COVERING
地板覆盖物
31
GALLEYS
厨房
40
LAVATORIES
厕所
25

在旅游行业中运用Sabre进行航空订票和旅行规划

在旅游行业中运用Sabre进行航空订票和旅行规划

在旅游行业中运用Sabre进行航空订票和旅行规划Sabre是一家全球领先的旅游技术公司,提供面向旅游行业的多种解决方案。

其中,Sabre系统在航空订票和旅行规划方面发挥着重要作用。

本文将介绍Sabre系统在旅游行业中的应用以及它的优势。

一、Sabre系统简介Sabre系统是一种电脑预订系统(CRS),最初由美国航空运输协会(ATA)于1960年代开发,旨在简化航空公司的航班管理和销售。

随着时间的推移,Sabre系统逐渐扩展到全球范围,成为旅游行业中最常用的CRS之一。

二、航空订票Sabre系统通过与各大航空公司的预订系统互联,为旅行社、旅游代理和个人提供了快捷、方便的航班预订服务。

用户可以通过Sabre系统查询航班信息、选择航班、预订座位并支付机票费用。

Sabre系统可以提供实时航班信息,包括起飞时间、到达时间、航班状态等,方便旅客及时调整行程。

三、旅行规划除了航空订票,Sabre系统还可以用于旅行规划。

用户可以根据自身需求,通过Sabre系统查询目的地的旅游信息,包括酒店、租车、旅游景点等。

Sabre系统可以提供不同价格和类型的酒店房间供用户选择,还可以预订租车服务和购买旅游景点门票。

通过Sabre系统,用户可以轻松规划和组织完整的旅行行程。

四、Sabre系统的优势1. 广泛的合作伙伴:Sabre系统与全球众多航空公司、酒店集团、租车公司等建立了合作关系,用户可以通过Sabre系统预订到各个合作伙伴的服务,享受全球范围内的旅行便利。

2. 多样化的服务:Sabre系统提供了多种旅游服务,包括航空订票、酒店预订、租车服务等,用户可以根据自身需求选择适合的服务,实现个性化的旅行规划。

3. 实时更新的信息:Sabre系统与各大航空公司和酒店集团实时互联,用户可以获得准确的、最新的旅行信息,避免行程中的不确定因素。

4. 简便的操作界面:Sabre系统的操作界面简洁直观,用户可以轻松上手,快速完成航班订票和旅行规划等操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SABRE飞行计划的说明 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXFLT NBR/DATE ORG /DST ACFT/REG PLAN ID GRIB AVGWC/TD 航班号/日期 城市对 机型/机号 计划编号 大气数据 平均风/温度偏差MU 583/26OCT04 ZSPD/KLAX A346/B6052 AQ083101 2512 P080/P05 DDHH P顺风M逆风/P ISA+ M ISA-0700/1727 计划起飞/预达时刻FMS ROUTE - PVGLAX/F02 FMS航路 城市对/公司航路代号(0国内8地区9国际F灵活航路) ZSPD AKA11D AKARA A593 FU V17 OJC OTR8 KAGIS OTR11 GARRY FLX3 DACEMPAINT PIRAT AVE SADDE6 KLAX .....................................................................FL PROFILE 飞行剖面246 LAMEN 290 ONIKU 330 SAGRA 370 ..................................................................... 实际高度剖面如与计划不符,请记录DISTANCE / 5809NM ESAD/ 4980 NM WC/P083 地面距离 空中距离 平均风/P 顺风 M 逆风PERFORMANCE SCHEDULE - CLB/300.M83 - CRZ/M83 - DSC/M83.300 使用的性能表 爬升 巡航 下降ACFTTYPE A340-642 TRENT556 机型 发动机PLANNED FUEL TIME WEIGHTS ACTUAL STRUCTURAL OR 计划 油量 时间 重量 实际 结构或性能限制 BURN ZSPD-KLAX 98713 10.27 DOW 183758 183758 PERF LIMIT 航程耗油 营运空重 *请*CONT 868 00.07 PLD 50500 ...... 备份油 业载XHLD DEST 0 00.00 ZFW 234258 ...... MZFW 242000 目的地额外等待 无油重量 最大无油重量 ALTN KSFO 6820 00.49 RPF 111244 ...... FCAP 152900 首选备降场/地名代码 机坪油量 *记* 最大燃油容量* XHLD ALTN 0 00.00 RPW 345502 ...... MRPW 369000 备降场额外等待 机坪重量 最大机坪重量 STD HOLDING 3793 00.30 TOW 344452 ...... MTOW 365000 标准等待 起飞重量 最大起飞重量 ETP/BU 0 00.00 TIF 98713 ...... ETP油量 航程耗油 *录*REFILE BU 0 00.00 LDW 245739 ...... MLDW 256000 二放油量 着陆重量 最大着陆重量 MIN REQUIRED 110194 11.53 ACTUAL TRIP TIME...... 必需油量 实际航程时间(不包括等待,请记录) EXTRA 0 00.00 ACTUAL HLDG TIME...... 额外燃油 实际等待时间(目的地机场,请记录) TKOF FUEL 110194 11.53 起飞油量TAXI FUEL 1050 FUEL ORDERED . . . . . . . . 滑行油量 实际加油RAMP FUEL 111244 11.53 REASON FOR INC/DEC . . . . . . . . 机坪燃油 比计划增加/减少加油的原因FUEL OVER DEST 11481 . . . . . . . . . . . . . . . . . 目的地上空剩油--------------------------------------------------------------------REFILE FUEL CALCULATIONS 二放计算------------------------RECLR FIX-DACEM TO KSFO FROM RECLR POINT -- DACEM 二放点/二放目的地机场 从二放点到目的地及二放目的地的油量 BURN ZSPD-KSFO 94249 09.56 FUEL RQD TO KLAX / 18153 航程耗油CONT 7955 01.00 FUEL RQD TO KSFO / 15655 备份油ALTN KOAK 323 00.02 二放目的地机场的备降场STD HOLDING 5169 00.40 标准等待(如备降场过近,少于十分钟,则标准等待+10分钟)REFILE FUEL RQD 107696 11.38 二放必需油量EXCESS 2498 00.18 差值TKOF FUEL ZSPD 110194 11.56 起飞油量--------------------------------------------------------------------PRIMARY ALTERNATE AIRPORT SUMMARY 首选备降场摘要---------------------------------FMSDIVRTE FL WC ETI TRIPFUEL FMS备降航路 飞行高度层 平均风 飞行时间 航段耗油SFO/KSFO LAXSFO/601 390 M029 00.49 6820ROUTE DESCRIPTIONKLAX DCT VTU RZS J501 BSR CARME ANJEE SKUNK BOLDR MENLO DCT KSFOCONTINGENCY PLAN SUMMARIES 备份计划摘要--------------------------LOWER LEVEL TIME 1023 B/O 101733 ZFW 234258 M83 低一高度层 时间 耗油 无油重量 巡航马赫226 LAMEN 250 ONIKU 290 SAGRA 330 OJC 350 DACEM 330 飞行高度剖面ZFW M2000 TIME 1028 B/O 100923 ZFW 232258 M83 无油重量-2000 时间 耗油 无油重量 巡航马赫246 LAMEN 290 ONIKU 330 OJC 350 DRIVR 370XXXXXXXXXXXXXXXXXXXXXXXX NAVIGATION LOG XXXXXXXXXXXXXXXXXXXXXXXXX 领航数据/FIR /情报区AWY /POINT/NAVFREQ DIST TRM GS ETO / ATO FUEL ACCBO 航路/点/导航台频率 距离 磁航迹 地速 预计/实际飞越 航段耗油 总耗油 FL /LATITUDE LONGITUDE ACCDIST MORA TIME WINDVEL/SR ACCTIME 高度层/纬度 经度 累计距离 MORA 航段时间 风/颠簸指数 总时间 --------------------------------------------------------------------- (SR为颠簸指数:0-2 无颠簸;3-4 可能有轻度颠簸;5-7 轻度至中度颠簸;大于7 中度至严重颠簸。

)ZSPD STD/0700 ETD/0700 DLA REASON . . . . . . . . . . . . 起飞机场 计划起飞/ 预计起飞/ 延误原因N31 08.5 纬度 撤轮档 机坪油量E121 47.4 OFF BLOCKS . . . . RAMPFUEL 111244 经度 起飞 起飞油量ELEVATION 00010FT AIRBORNE . . . . TKOFFUEL 110194---------------------------------------------------------------------AKA1/D109D / 4 085 265 .... / .... 288 288CLB /N31 09.1 E121 51.6 4 4000 1 000014/05 00.01---------------------------------------------------------------------FLX3/DACEM / 167 105 568 .... / .... 2445 92041 二放点370 /N38 28.0 W127 00.0 5283 1100 18 330093/02 09.22---------------------------------------------------------------------SADD/KLAX 8 217 365 .... / .... 43 98713 /目的地DSC /N33 56.6 W118 24.5 12400 1 10.27 /经纬度ELEVATION 00126FT 标高STA/1830 ETA/1727 ATA/. . . . ON BLOCKS/. . . . 计划到达/ 预计到达/ 实际到达/ 上轮档/---------------------------------------------------------------------XXXXXXXXXXXXXXXXXX ALTERNATE NAVIGATION LOG XXXXXXXXXXXXXXXXXXXXX 备降航段导航数据/FIRAWY /POINT/NAVFREQ DIST MT GS ETO / ATO FUEL ACCBOFL /LATITUDE LONGITUDE ACCDIST MORA TIME WINDVEL/SR ACCTIMEXXXXXXXXXXXXXXXXXXXX REFILE NAVIGATION LOG XXXXXXXXXXXXXXXXXXXXXX 二次放行航段导航数据ATD ZSPD . . . . ETI - RFP DACEM 09.22 ETA . . . . RETA . . . .XXXXXXXXXXXXXX ENROUTE WIND AND TEMPERATURE SUMMARY XXXXXXXXXXXXXXX 航路风温摘要FPRLS. AQ083101 REV.NO. MUFM-20-92 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXCHINA EASTERN DISPATCH RELEASE MESSAGE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXCOCKPIT CREWPOSITION /NAME / QUAL / HMIN 标准 新机长 Y-------- ------------------------------------------ ---- ----CA 时惠林 SHI HUI LIN R 1- I类ILS标准FO 刘安 LIU AN R- I类RVR标准FO 陈火浩 CHEN HUO HAO 2- II类标准FO 丁国伟 DING GUO WEI 1 T- II类过渡期标准------------------------------------------------------------------DISP ZHENG YAN DISPDESK D4-34418 签派员 席位号 ACARS报文识别代码21-51134418 席位 电话(区号-电话号码)CES 583 /26 ZSPD / KLAX ALTN KSFO T/O ALTN 首选备降场 起飞备降场REG B6052 A340-642 PID AQ083101 计划编号ETD 26OCT04/0700Z FLT TIME 1027 STD 0700 STA 1830Z 预计起飞 日期/时间 飞行时间 计划起飞 计划到达PLANNED WEIGHTS MAX STRUCTURAL LIMITS 计划重量 重量限制--------------- ---------------------PLANNED TAXI FUEL 1050 计划滑行油量PLANNED RAMP WT 345502 MAX RAMP WT 369000 计划机坪重量 最大机坪重量PLANNED RAMP FUEL 111244 MAX RAMP FUEL 152900 计划机坪油量 最大机坪油量PLANNED ZFWT 234258 MAX ZFWT 242000 计划无油重量 最大无油重量PLANNED T/O FUEL 110194 计划起飞油量PLANNED T/O WT 344452 MAX T/O WT 365000 计划起飞重量 最大起飞重量 PLANNED BURN OFF 98713 计划耗油PLANNED LAND WT 245739 MAX LAND WT 256000 计划着陆重量 最大着陆重量-------------------------------------------------------------------MINIMUM EQUIPMENT LIST ITEMS APPLICABLE FOR THIS AIRCRAFT MEL保留故障---------------------------------------------------------如有MEL。

相关文档
最新文档