2019年保定市定州市九年级上期末数学模拟试卷有答案

合集下载

河北省定州市2019届九年级上学期期中质量检测数学试卷(扫描版)

河北省定州市2019届九年级上学期期中质量检测数学试卷(扫描版)

九年级数学参考答案一、 选择题1—6: CBDDAD ; 7—12:BCBCBD.二、 填空题13、x 1=0,x 2=5;14、﹣1;15、<﹣1;16、;17、121°;18、10;三、解答题19.解:(1)x 1=﹣4,x 2=1;(2)x 1=﹣6,x 2=2;(3)x 1=3,x 2=﹣4.20.解:如图,设AO 与BC 交于点D . ∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC ,∴=∴AD ⊥BC ,∴BD=CD ,∴在直角△ACD 中,可求得CD=,∴BC=2CD=2.21. 解:(1)B 1(1,0).(2)如图,①过点O 作OA 的垂线,在上面取一点A 2使OA 2=OA ,②同样的方法画出点B 2,顺次连接A 2、B 2、O 就得出△A 2OB 2,∴△A 2OB 2是所求作的图形.由作图得A 2(﹣2,3).(3)由勾股定理,得OA=,∴线段OA 扫过的图形的面积为: =.22.解:(1)设剪成两段后其中一段为x ㎝,则另一段为(40-x )㎝, 由题意得:52)440()4(22=+x x —,解得:x 1=16,x 2=24, 当x 1=16时,40-x=24;当x 2=24时,40-x=16所以,两段的长度分别为16,24.(2)不能。

理由是:48)440()4(22=+x x —,整理得x 2-40x+416=0 判别式的值小于零,此方程无解。

即不能剪成两段,使得围成的正方形面积之和为48㎝223.解:(1)BE=CD ,BE ⊥CD ;(2)(1)结论成立, 理由:如图,∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC ,AE=AD ,由旋转的性质得,∠BAE=∠CAD ,在△BAE 与△CAD 中,, ∴△BAE ≌△CAD (SAS )∴BE=CD ;∠AEB=∠ADC ,∴∠BED+∠EDF=∠AED+∠AEB+∠EDF=∠AED+∠ADC+∠EDF=∠AED+∠ADE=90°,∴∠EFD=90°,即:BE ⊥CD24.解:(1)证明:在方程x 2﹣(t ﹣1)x+t ﹣2=0中,△=[﹣(t ﹣1)]2﹣4×1×(t ﹣2)=t 2﹣6t+9=(t ﹣3)2≥0,∴对于任意实数t ,方程都有实数根;(2)由题意可知,二次函数y=x 2﹣(t ﹣1)x+t ﹣2的图象与x 轴的两个交点横坐标互为相反数,即抛物线的对称轴为y 轴。

2019-2020学年河北省保定市定州市九年级(上)期末数学试卷含解析

2019-2020学年河北省保定市定州市九年级(上)期末数学试卷含解析

2019-2020学年河北省保定市定州市九年级(上)期末数学试卷一、选择题(本大题共15个小题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1B.﹣3C.3D.﹣42.(3分)点P(4,﹣3)关于原点的对称点是()A.(4,3)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)3.(3分)下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔4.(3分)下列四个点中,在反比例函数y=的图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)5.(3分)若,则的值是()A.1B.2C.3D.46.(3分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°7.(3分)给出下列函数,其中y随x的增大而减小的函数是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④B.②③④C.②④D.②③8.(3分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为()A.30°B.40°C.50°D.60°9.(3分)如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6B.15C.24D.2710.(3分)在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆与y轴所在直线的位置关系是()A.相离B.相切C.相交D.无法确定11.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣C.4D.﹣112.(3分)如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.213.(3分)如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°14.(3分)如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6B.8C.10D.1215.(3分)如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④c=﹣3a,其中正确的命题是()A.①②B.②③C.①③D.①③④二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)16.(3分)某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是.17.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.18.(3分)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是.19.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.三、解答下列各题(本大题共7个小题,共63分,解答应写出文宇说明、证明过程或演算步骤)20.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.21.(8分)不透明的袋子中装有4个完全相同的小球,它们的标号分别为:1、2、3、4.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取出的小球标号相同”的概率;(2)随机摸出两个小球,用列表或画树状图的方法求出“取出的两个小球标号之和为奇数”的概率.22.(8分)如图,已知点A(a,3)是一次函数y1=x+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围;(3)求点A与两坐标轴围成的矩形OBAC的面积.23.(8分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?24.(8分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;25.(11分)如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作DE⊥AP交AP于E点.(1)求证:DE为⊙O的切线;(2)若DE=3,AC=8,求直径AB的长.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.2019-2020学年河北省保定市定州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.2.【解答】解:点P(4,﹣3)关于原点的对称点是(﹣4,3),故选:C.3.【解答】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.4.【解答】解:∵﹣3×(﹣2)=6,3×2=6,﹣2×3=﹣6,﹣2×(﹣3)=6,∴点(﹣2,3)在反比例函数y=的图象上.故选:C.5.【解答】解:设=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入,故选:B.6.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.7.【解答】解:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;②∵y=﹣2x+1中k=﹣2<0,∴y随x的增大而减小,故本小题正确;③∵y=(x<0)中k=2>0,∴x<0时,y随x的增大而减小,故本小题正确;④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.故选:D.8.【解答】解:根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°﹣100°)=40°.故选:B.9.【解答】解:∵AD=2OA,BE=2OB,CF=2OC,∴===,∴△ABC∽△DEF,∴==,∵△ABC的面积是3,∴S△DEF=27,∴S阴影=S△DEF﹣S△ABC=24.故选:C.10.【解答】解:依题意得:圆心到y轴的距离为:3<半径4,所以圆与y轴相交,故选:C.11.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A.12.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选:C.13.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,所以∠BAC=135°,故选:D.14.【解答】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=8.故选:B.15.【解答】解:观察图象可知:①当x=1时,y=0,即a+b+c=0,所以①正确;②对称轴x=﹣1,即﹣=﹣1,b=2a,∴②错误;③∵抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0)∴ax2+bx+c=0的两根分别为﹣3和1,∴③正确;④∵当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,∴c=﹣3a,∴④正确.所以正确的命题是①③④.故选:D.二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)16.【解答】解:第一次降价后的价格为300(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为300(1﹣x)×(1﹣x),则列出的方程是300(1﹣x)2=260,故答案为:300(1﹣x)2=260.17.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.18.【解答】解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.19.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.三、解答下列各题(本大题共7个小题,共63分,解答应写出文宇说明、证明过程或演算步骤)20.【解答】解:(1)由题意得,b2﹣4ac>0即42﹣4k•2>0k<2,又∵一元二次方程k≠0∴k<2且k≠0;(2)∵k<2且k取最大整数∴k=1,当k=1时,x2﹣4x+2=0解得,x1=2+,x2=2﹣.21.【解答】解:(1)画树状图如下:共有16种等可能的结果数,其中两次取的球标号相同的结果数为4,所以“两次取的球标号相同”的概率==;(2)画树状图如下:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率=.22.【解答】解:(1)将A(a,3)代入一次函数y1=x+1得a+1=3,解得a=2,∴A(2,3),将A(2,3)代入反比例函数y2=得=3,解得k=6,∴y2=;(2)∵A(2,3),y1=x+1,y2=,∴在y轴的右侧,当y1>y2时,x的取值范围是x>2;(3)∵k=6,∴点A与两坐标轴围成的矩形OBAC的面积是6.23.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x﹣400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.24.【解答】证明:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB,且∠APB=∠BPC=135°,∴△P AB∽△PBC;(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴AB=BC,∴PB=PC,P A=PB,∴P A=2PC.25.【解答】(1)证明:连接OD.∵OC=OD,∴∠1=∠3.∵CD平分∠PCO,∴∠1=∠2.∴∠2=∠3.∵DE⊥AP,∴∠2+∠EDC=90°.∴∠3+∠EDC=90°.即∠ODE=90°.∴OD⊥DE.∴DE为⊙O的切线.(2)过点O作OF⊥AP于F.由垂径定理得,AF=CF.∵AC=8,∴AF=4.∵OD⊥DE,DE⊥AP,∴四边形ODEF为矩形.∴OF=DE.∵DE=3,∴OF=3.在Rt△AOF中,OA2=OF2+AF2=42+32=25.∴OA=5.∴AB=2OA=10.26.【解答】解:(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1.∴A(﹣2,0),把点A(﹣2,0)、B(4,0)、点C(0,3),分别代入y=ax2+bx+c(a≠0),得,解得,所以该抛物线的解析式为:y=﹣x2+x+3;(2)设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC==5.如图1,过点N作NH⊥AB于点H.∴NH∥CO,∴△BHN∽△BOC,∴,即=,∴HN=t.∴S△MBN=MB•HN=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+,当△MBN存在时,0<t<2,∴当t=1时,S△MBN最大=.答:运动1秒使△MBN的面积最大,最大面积是;(3)如图2,在Rt△OBC中,cos∠B==.设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.当∠MNB=90°时,cos∠B==,即=,化简,得17t=24,解得t=,当∠BMN=90°时,cos∠B===(在图2中,当∠BM'N'=90°时,cos∠B=)化简,得19t=30,解得t=,综上所述:t=或t=时,△MBN为直角三角形.。

河北省保定市定州市2018-2019学年人教版九年级(上)期末数学试卷 含解析

河北省保定市定州市2018-2019学年人教版九年级(上)期末数学试卷  含解析

2018-2019学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同2.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)3.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为()A.B.C.D.5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣2)2+4 C.y=(x﹣2)2+2 D.y=(x﹣1)2+3 6.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1﹣2x)=16 B.16(1+2x)=28C.28(1﹣x)2=16 D.16(1+x)2=287.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.78.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°9.反比例函数y=(m≠0)的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,其中正确的是()A.①②B.②③C.③④D.①④10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=11.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.10πcm B.20πcm C.24πcm D.30πcm12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二.填空题(共6小题)13.等边三角形绕它的中心至少旋转度,才能和原图形重合.14.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是.15.已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1y2.(用>、<、=填空).16.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y =(k>0,x>0)的图象上,若△OAB的面积为,则k的值为.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.18.如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t=秒时,△CPQ与△ABC相似.三.解答题(共8小题)19.用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=020.如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22.甲、乙两人分别都有标记为A、B、C的三张牌做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表的方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD =,AE=3,求AF的长.24.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.25.某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?26.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B (3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.参考答案与试题解析一.选择题(共12小题)1.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视,它正在播广告是随机事件,故A不符合题意;B、抛掷一枚硬币,正面朝上是随机事件,故B不符合题意;C、打雷后会下雨是随机事件,故C不符合题意;D、367人中有至少两人的生日相同是必然事件,故D符合题意.故选:D.2.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:点P(﹣1,2)关于原点的对称点的坐标为(1,﹣2),故选:B.3.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.4.在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为()A.B.C.D.【分析】根据题意可知,此题是不放回实验,一共有12×11=132种情况,两人的血型均为O型的有两种可能性,从而可以求得相应的概率.【解答】解:由题意可得,这两人的血型均为O型的概率为:=,故选:A.5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣2)2+4 C.y=(x﹣2)2+2 D.y=(x﹣1)2+3 【分析】利用配方法整理即可得解.【解答】解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.6.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1﹣2x)=16 B.16(1+2x)=28C.28(1﹣x)2=16 D.16(1+x)2=28【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=16,把相应数值代入即可求解.【解答】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(1﹣x)元,则列出的方程是28(1﹣x)2=16.故选:C.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.7【分析】直接利用相似三角形的性质得出,故=,进而得出AM的长即可得出答案.【解答】解:由题意可得:OC∥AB,则△MBA∽△MCO,故=,即=,解得:AM=5.故选:B.8.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.9.反比例函数y=(m≠0)的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,其中正确的是()A.①②B.②③C.③④D.①④【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:C.10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=﹣,D选项正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.11.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.10πcm B.20πcm C.24πcm D.30πcm【分析】根据题意可知点O移动的距离正好是灰色扇形的弧长,所以先根据扇形的面积求得扇形的圆心角的度数,再根据弧长公式求得弧长,即点O移动的距离.【解答】解:设扇形的圆心角为n度,则=30π∴n=300.∵扇形的弧长为=10π(cm),∴点O移动的距离10πcm.故选:A.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选:B.二.填空题(共6小题)13.等边三角形绕它的中心至少旋转120 度,才能和原图形重合.【分析】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形作答即可.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是.【分析】把方程化为一般形式,利用根与系数的关系直接求解即可.【解答】解:把方程7x2﹣5=x+8化为一般形式可得7x2﹣x﹣13=0,∵x1,x2是一元二次方程7x2﹣5=x+8的两个根,∴x1+x2=,故答案为:.15.已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1>y2.(用>、<、=填空).【分析】先根据已知条件求出二次函数的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【解答】解:∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大,∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,﹣7>﹣8,∴y1>y2.故答案为:>.16.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y =(k>0,x>0)的图象上,若△OAB的面积为,则k的值为10 .【分析】连接OC,求出△BCO面积即可解决问题.【解答】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=10,故答案为10.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为2.【分析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,根据勾股定理得到(R﹣2)2+42=R2,解得R =5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.18.如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t= 4.8或秒时,△CPQ与△ABC相似.【分析】分CP和CB是对应边,CP和CA是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:CP和CB是对应边时,△CPQ∽△CBA,所以,,即,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,,即,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.故答案为4.8或.三.解答题(共8小题)19.用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=0【分析】(1)先求出b'2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣6x﹣6=0,b'2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x=,x1=3+,x2=3﹣;(2)2x2﹣x﹣15=0,(2x+5)(x﹣3)=0,2x+5=0,x﹣3=0,x1=﹣2.5,x2=3.20.如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.【分析】由点A的坐标以及AB∥x轴,可得出点B的坐标,从而得出AD、AB的长度,利用矩形的面积公式即可得出结论.【解答】解:∵A(,3),AB∥x轴,点B在双曲线y=之上,∴B(1,3),∴AB=1﹣=,AD=3,∴S=AB•AD=×3=2.21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;【解答】解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA=,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则S扇形OAA1==2π.答:扫过的图形面积为2π.22.甲、乙两人分别都有标记为A、B、C的三张牌做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表的方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果,(2)利用概率公式求解即可求得答案.【解答】解:(1)列表如下:(2)由列出的表格或画出的树状图,得甲、乙两人一次游戏的所有等可能的结果有9种,其中出现平局的结果有3种,所以出现平局的概率为=.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD,AD∥BC,再根据平行线的性质得出∠B+∠C=180°,∠ADF=∠DEC,然后根据∠AFD+∠AFE=180°,∠AFE=∠B,得出∠AFD=∠C,从而得出△ADF∽△DEC;(2)根据已知和勾股定理得出DE=,再根据△ADF∽△DEC,得出=,即可求出AF的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.24.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.【分析】(1)连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC为直角,即可得证;(2)由平行得相似,根据题意确定出所求即可.【解答】(1)证明:连接OD,∵OA=OD,∴∠ODA=∠OAD,∵AD∥OC,∴∠OAD=∠COD,∠ODA=∠COD,∴∠COD=∠BOC,在△COD和△BOC中,,∴△COD≌△BOC,∴∠ODC=∠OBC=90°,∴CD为圆O的切线;(2)解:∵△COD≌△COB,∴BC=CD,∵DE=2BC,∴DE=2CD,∵AD∥OC,∴△DAE∽△COE,∴AD:OC=ED:AC=2:3.25.某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x 之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式;(3)将所得函数解析式配方成顶点式即可得最值情况.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,则,解得,即y与x之间的函数表达式是y=﹣2x+180;(2)由题意可得,W=(x﹣30)(﹣2x+180)=﹣2x2+240x﹣5400,即W与x之间的函数表达式是W=﹣2x2+240x﹣5400;(3)∵W=﹣2x2+240x﹣5400=﹣2(x﹣60)2+1800,30≤x≤70,∴当30≤x≤60时,W随x的增大而增大;当60≤x≤70时,W随x的增大而减小;当x=60时,W取得最大值,此时W=1800.26.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B (3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣x2+2x+3=,解得x1=,x2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.。

保定市定州市九级上期末数学试卷(含答案解析)

保定市定州市九级上期末数学试卷(含答案解析)

2017-2018学年河北省保定市定州市九年级(上)期末数学试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.43.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=24.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=36.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A .B .C .2倍D .3倍9.如图,正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,连接DM ,若⊙O 的半径为2,则MD 的长度为( )A .B .C .2D .110.一次函数y=ax ﹣a 与反比例函数y=(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,把直角△ABC 的斜边AC 放在直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 1C 2的位置,设AB=,∠BAC=30°,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( )A .( +)πB .( +)πC .2πD .π12.如图,抛物线y 1=a (x+2)2﹣3与y 2=(x ﹣3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y2=2y的解为.14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为.15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x 轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2017-2018学年河北省保定市定州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形,故A 选项错误;B 、不是轴对称图形,是中心对称图形,故B 选项错误;C 、既是轴对称图形,也是中心对称图形,故C 选项正确;D 、是轴对称图形,不是中心对称图形,故D 选项错误.故选:C .【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知反比例函数y=(k ≠0)的图象经过点M (﹣2,2),则k 的值是( )A .﹣4B .﹣1C .1D .4【分析】把点(﹣2,2)代入反比例函数y=(k ≠0)中,可直接求k 的值.【解答】解:把点(﹣2,2)代入反比例函数y=(k ≠0)中得2=所以,k=xy=﹣4,故选:A .【点评】本题主要考查反比例函数图象上点的坐标特征,反比例函数的比例系数等于在函数图象上面的点的横纵坐标的乘积.3.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选:B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.4.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得, =,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3【分析】移项后两边配上一次项系数一半的平方即可.【解答】解:∵x2+4x=﹣1,∴x2+4x+4=﹣1+4,即(x+2)2=3,故选:C.【点评】本题主要考查配方法解一元二次方程,掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解,是解题的关键.6.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.【分析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点评】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍【分析】如图,作OE⊥AB于E,EO的延长线交CD于F.由△AOB∽△DOC,推出===(相似三角形的对应高的比等于相似比),由此即可解决问题.【解答】解:如图,作OE⊥AB于E,EO的延长线交CD于F.∵AB∥CD,∴FO⊥CD,△AOB∽△DOC,∴===(相似三角形的对应高的比等于相似比),∴CD=AB,故选:A.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比,属于中考常考题型.9.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O的半径为2,则MD的长度为()A.B.C.2D.1【分析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【解答】解:连接OM、OD、OF,如图所示:∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD===;故选:A.【点评】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.10.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C .D .【分析】先根据一次函数的性质判断出a 取值,再根据反比例函数的性质判断出a 的取值,二者一致的即为正确答案.【解答】解:A 、由函数y=ax ﹣a 的图象可知a <0,由函数y=(a ≠0)的图象可知a >0,相矛盾,故错误;B 、由函数y=ax ﹣a 的图象可知a >0,﹣a >0,由函数y=(a ≠0)的图象可知a <0,错误;C 、由函数y=ax ﹣a 的图象可知a <0,由函数y=(a ≠0)的图象可知a <0,正确;D 、由函数y=ax ﹣a 的图象可知m >0,﹣a <0,一次函数与y 轴交与负半轴,相矛盾,故错误; 故选:C .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.11.如图,把直角△ABC 的斜边AC 放在直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 1C 2的位置,设AB=,∠BAC=30°,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( )A .( +)πB .( +)πC .2πD .π【分析】A 点所经过的弧长有两段,①以C 为圆心,CA 长为半径,∠ACA 1为圆心角的弧长;②以B 1为圆心,AB 长为半径,∠A 1B 1A 2为圆心角的弧长.分别求出两段弧长,然后相加即可得到所求的结论.【解答】解:在Rt △ABC 中,AB=,∠BAC=30°,∴∠ACB=60°,AC=2;由分析知:点A 经过的路程是由两段弧长所构成的:①A ~A 1段的弧长:L 1==,②A 1~A 2段的弧长:L 2==,∴点A 所经过的路线为(+)π,故选:A .【点评】本题考查的是弧长的计算,30度角直角三角形的性质,旋转的性质,难点在于与动点知识相结合,但是只要将运动的过程分解清楚,就能顺利作答.12.如图,抛物线y 1=a (x+2)2﹣3与y 2=(x ﹣3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结沦:①无论x 取何值,y 2的值总是正数;②2a=1;③当x=0时,y 2﹣y 1=4;④2AB=3AC ;其中正确结论是( )A .①②B .②③C .③④D .①④【分析】利用二次函数的性质得到y 2的最小值为1,则可对①进行判断;把A 点坐标代入y 1=a (x+2)2﹣3中求出a ,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y 2﹣y 1的值,则可对③进行判断;利用抛物线的对称性计算出AB 和AC ,则可对④进行判断. 【解答】解:∵y 2=(x ﹣3)2+1, ∴y 2的最小值为1,所以①正确;把A (1,3)代入y 1=a (x+2)2﹣3得a (1+2)2﹣3=3, ∴3a=2,所以②错误;当x=0时,y 1=(x+2)2﹣3=﹣,y 2=(x ﹣3)2+1=,∴y 2﹣y 1=+=,所以③错误;抛物线y 1=a (x+2)2﹣3的对称轴为直线x=﹣2,抛物线y 2=(x ﹣3)2+1的对称轴为直线x=3, ∴AB=2×3=6,AC=2×2=4, ∴2AB=3AC ,所以④正确. 故选:D .【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y 轴交于(0,c).也考查了二次函数的性质.二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y2=2y的解为y1=0,y2=2 .【分析】利用因式分解法解方程.【解答】解:y2﹣2y=0,y(y﹣2)=0,y=0或y﹣2=0,所以y1=0,y2=2.故答案为y1=0,y2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为4(1+x)2=5.8 .【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x,根据“由2010年的年收入4万元增加到2012年年收入5.8万元”,即可得出方程.【解答】解:设每年的年增长率为x,则2011年的年收入为4(1+x)万元,2012年的年收入为4(1+x)2万元,根据题意得:4(1+x)2=5.8.故答案为4(1+x)2=5.8.【点评】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为m>.【分析】由二次函数y=2x2﹣6x+m的图象与x轴没有交点,可知△<0,解不等式即可.【解答】解:∵二次函数y=2x2﹣6x+m的图象与x轴没有交点,∴△<0,∴(﹣6)2﹣4×2×m<0,解得:m>;故答案为:m>.【点评】本题考查了抛物线与x轴的交点,熟记:有两个交点,△>0;有一个交点,△=0;没有交点,△<0是解决问题的关键.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为10 .【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例可解得AB的长,而在▱ABCD中,CD=AB.【解答】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD.∴CD=10.【点评】本题考查了相似三角形的判定和相似三角形的性质,以及平行四边形的性质,注意对应边的比不要搞错.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为 1 .【分析】根据题意扇形DAE的面积与扇形FBE的面积相等,则阴影部分的面积等于矩形面积的一半.【解答】解:∵AF=BF,AD=1,AB=2,∴AD=BF=1,∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1.故答案为1.【点评】考查了扇形面积的求法以及拼图的能力.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x 轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于 5 .【分析】先设C(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数与的图象上,可得到A点坐标为(,b),B点坐标为(﹣,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设C(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=,即A点坐标为(,b),又∵点B在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即B点坐标为(﹣,b),∴AB=﹣(﹣)=,=•AB•OC=••b=5.∴S△ABC故答案为:5.【点评】本题考查的是反比例函数系数k的几何意义,即在反比例函数y=的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得 x 2﹣6x=﹣4,等式的两边同时加上一次项系数的一半的平方,得 x 2﹣6x+9=﹣4+9, 即(x ﹣3)2=5,∴x=±+3,∴x 1=+3,x 2=﹣+3.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B (树底)8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB 的高度.【分析】先过E 作EF ⊥BD 于点E ,再根据入射角等于反射角可知,∠1=∠2,故可得出∠DEC=∠AEB ,由CD ⊥BD ,AB ⊥BD 可知∠CDE=∠ABE ,进而可得出△CDE ∽△ABE ,再由相似三角形的对应边成比例即可求出大树AB 的高度.【解答】解:过点E 作EF ⊥BD 于点E ,则∠1=∠2, ∵∠DEF=∠BEF=90°, ∴∠DEC=∠AEB , ∵CD ⊥BD ,AB ⊥BD , ∴∠CDE=∠ABE=90°, ∴△CDE ∽△ABE ,∴=,∵DE=3.2米,CD=1.6米,EB=8.4米,∴=,解得AB=4.2(米).答:树AB的高度为4.2米.【点评】本题考查的是相似三角形在实际生活中的应用、光的反射定律等知识,解答此题的关键知道入射角等于反射角,熟练掌握相似三角形的判定和性质,属于中考常考题型.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的直径.【解答】解:如图,设光盘的圆心为O,三角板的另外两点为C,D,连接OB,OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径为6cm.【点评】本题考查了切线的性质,勾股定理,是基础知识要熟练掌握.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.【分析】先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.【解答】解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1﹣=,因为>,所以这个游戏规则不公平.【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.【分析】(1)根据题意可得中点D的坐标为(2,6),可求解析式,即可求k和点E的坐标;(2)由题意可证Rt△FBC∽Rt△DEB,可求CF的长,则可得OF的长,即可求点F的坐标.【解答】解:(1)在矩形OABC中,B(4,6),∴BC边中点D的坐标为(2,6),∵又曲线y=的图象经过点(2,6),∴k=12,∴解析式y=∵E点在AB上,∴E点的横坐标为4,∵反比例函数y=图象经过点E,∴E点纵坐标为3,∴E点坐标为(4,3);(2)由(1)得,BD=2,BE=3,BC=4,∵∠CBF=∠BED,∠BCF=∠DBE=90°∴Rt△FBC∽Rt△DEB,∴,即,∴CF=,∵OF=OC﹣CF∴OF=,即点F的坐标为(0,).【点评】本题考查了反比例函数综合题,反比例函数的性质,矩形的性质,相似三角形的性质和判定,熟练运用相似三角形的判定和性质是解决问题的关键.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.【分析】(1)欲证明PA为⊙O的切线,只需证明OA⊥AP;(2)通过相似三角形△ABC∽△PAO的对应边成比例来求线段AC的长度.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP∥BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°.∵∠P=∠BAC.∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.【点评】本题考查的知识点有切线的判定与性质,三角形相似的判定与性质,得到两个三角形中的两组对应角相等,进而得到两个三角形相似,是解答(2)题的关键.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w=4.5(万元).最大答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点评】本题考查了二次函数的顶点式:y=a(x﹣k)2+h,(a≠0),当a<0,抛物线的开口向下,函数有最大值,当x=k,函数的最大值为h.也考查了代数式的表示和利润的含义以及配方法.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【分析】方法一:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.方法二:(3)用参数表示点M坐标,分类讨论三种情况,利用两点间距离公式便可求解.(4)列出点M的参数坐标,利用MO=MB求解.此问也可通过求出OB的垂直平分线与y轴的交点得出M点.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,。

2018-2019学年河北省保定市定州市九年级(上)期末数学模拟试卷答案

2018-2019学年河北省保定市定州市九年级(上)期末数学模拟试卷答案

= ,
∴FH=27, ∴OH=OF+FH=12+27=39, 故选:A. 6. 【解答】解:由题意可知:∠DOB=85°, ∵△DCO≌△BAO,
∴∠D=∠B=40°, ∴∠AOB=180°﹣40°﹣110°=30° ∴∠α=85°﹣30°=55° 故选:C. 7. 【解答】解:连接 DO, ∵PD 与⊙O 相切于点 D, ∴∠PDO=90°, ∵∠C=90°, ∴DO∥BC, ∴△PDO∽△PCB, ∴ = = = , = ,
∵正五边形 ABCDE 绕点 A 顺时针旋转后得到正五边形 AB′C′D′E′,旋转角为α(0° ∴∠BAB′=α,∠B′=∠B=108°, ∵DE⊥B′C′, ∴∠B′OE=90°, ∴∠B′AE=360°﹣∠B′﹣∠E﹣∠B′OE=360°﹣108°﹣108°﹣90°=54°, ∴∠BAB′=∠BAE﹣∠B′AE=108°﹣54°=54°, ≤α≤90°) ,
11. 【解答】解:作 PM⊥AB 于 M,PN⊥x 轴于 N,如图,设⊙P 的半径为 r, ∵⊙P 与边 AB,AO 都相切, ∴PM=PN=r, ∵OA=4,OB=3,AC=1, ∴AB= =5,
∵S△PAB+S△PAC=S△ABC, ∴ •5r+ •r•1= •3•1,解得 r= , ∴BN= , ∵OB=OC, ∴△OBC 为等腰直角三角形, ∴∠OCB=45°, ∴NC=NB= , ∴ON=3﹣ = , ∴P 点坐标为( ,﹣ ) , 把 P( ,﹣ )代入 y= 得 k= ×(﹣ )=﹣ . 故选:A.
②在第二象限,函数值都随着自变量的增大而增大; ①图象的形状不同;
②自变量的取值范围不同.
14. 【解答】解:如图,AD=8m,AB=30m,DE=3.2m; 由于 DE∥BC,则△ADE∽△ABC,得: ,即 解得:BC=12m, 故旗杆的高度为 12m. ,

河北省保定市定州市2019年中考数学一模试卷

河北省保定市定州市2019年中考数学一模试卷

河北省保定市定州市2019年中考数学一模试卷一、选择题:1.气温2℃比气温﹣18℃高()A.16℃B.20℃C.﹣16℃D.﹣20℃2.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为()A.6.75×10﹣5克B.6.74×10﹣5克C.6.74×10﹣6克D.6.75×10﹣6克3.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3D.x≥2且x≠34.下列运算中,结果正确的是()A.x3•x3=x6B.3x2+2x2=5x4 C.(x2)3=x5D.(x+y)2=x2+y25.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.6.若,则=()A.0 B.2 C.3 D.47.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.下列调查中,适合采用抽样调查的是()A.调查本班同学的视力B.调查一批节能灯管的使用寿命C.学校招聘教师,对应聘人员面试D.对乘坐某班客车的乘客进行安检10.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y11.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是()A.B.C.D.12.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A.y=x﹣2 B.y=﹣x+2 C.y=﹣x﹣2 D.y=﹣2x﹣113.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A.15个B.13个C.11个D.5个14.如图,正六边形DEFGHI的顶点分别在等边△ABC各边上,则=()A.B.C.D.15.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°16.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.一、填空题:1.计算:|1-|-=__________2.分解因式:2a2﹣8b2= .3.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.二、计算题:4.18+42÷(-2)-(-3)2×5.5.三、解答题:6.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.7.如图,已知△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.8.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).9.A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.(2)若总运费不超过9000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.10.如图,电信部门计划修建一条连接B、C两地电缆,测量人员在山脚A处测得B、C两处的仰角分别是37°和45°,在B处测得C处的仰角为67°.已知C地比A地髙330米(图中各点均在同一平面内),求电缆BC长至少多少米?(精确到米,参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)11.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)直接写出点A坐标,并求出该抛物线的解析式.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点B开始向点A以2个单位/秒的速度运动,过点P作PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?河北省保定市定州市2019年中考数学一模试卷参考答案1.气温2℃比气温﹣18℃高()A.16℃B.20℃C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】用2℃减去﹣18℃,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为()A.6.75×10﹣5克B.6.74×10﹣5克C.6.74×10﹣6克D.6.75×10﹣6克【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,首先把0.00006746用科学记数法表示,再保留有效数字即可.【解答】解:0.00006746=6.746×10﹣5≈6.75×10﹣5,故选:A.【点评】本题考查用科学记数法表示较小的数,以及有效数字,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.下列运算中,结果正确的是()A.x3•x3=x6B.3x2+2x2=5x4 C.(x2)3=x5D.(x+y)2=x2+y2【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选A【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.若,则=()A.0 B.2 C.3 D.4【考点】分式的化简求值.【分析】将原式变形为,由可得x﹣1=1,整体代入可得答案.【解答】解:由可得x﹣1=1,∴==+1=4,故选:D.【点评】本题主要考查分式的化简求值,将原式和已知方程变形整体代入是关键,体现整体思想.7.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°【考点】平行线的性质;对顶角、邻补角;三角形内角和定理.【专题】计算题.【分析】先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.【解答】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.【点评】本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】估算无理数的大小;算术平方根.【专题】探究型.【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键.9.下列调查中,适合采用抽样调查的是()A.调查本班同学的视力B.调查一批节能灯管的使用寿命C.学校招聘教师,对应聘人员面试D.对乘坐某班客车的乘客进行安检【考点】全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、调查本班同学的视力,必须准确,故必须普查;B、调查一批节能灯管的使用寿命,适合采取抽样调查;C、学校招聘教师,对应聘人员面试,人数不多,容易调查,适合普查;D、对乘坐某班客车的乘客进行安检,必须采取全面调查.故选:B.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.10.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y【考点】命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.【分析】根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.【解答】解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.【点评】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.11.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题.【分析】关键描述语是:甲、乙两种纯净水共用250元;乙种水的桶数是甲种水桶数的75%.等量关系为:甲种水的桶数是×8+乙种水桶数×6=250;乙种水的桶数=甲种水桶数×75%.则设买甲种水x桶,买乙种水y桶.【解答】解:设买甲种水x桶,买乙种水y桶,列方程.故选A.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A.y=x﹣2 B.y=﹣x+2 C.y=﹣x﹣2 D.y=﹣2x﹣1【考点】一次函数图象与几何变换.【专题】计算题;压轴题.【分析】根据旋转90°后直线的k值与原直线l的k值互为负倒数,且函数仍过点A即可得出答案.【解答】解:∵直线l:y=x+2与y轴交于点A,∴A(0,2).设旋转后的直线解析式为:y=﹣x+b,则:2=0+b,解得:b=2,故解析式为:y=﹣x+2.故选B.【点评】本题考查一次函数图象与几何变换的知识,难度不大,关键是掌握旋转90°后,函数的k 值变为原来的负倒数.13.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A.15个B.13个C.11个D.5个【考点】由三视图判断几何体.【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个).不可能为15个,故选A.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.14.如图,正六边形DEFGHI的顶点分别在等边△ABC各边上,则=()A.B.C.D.【考点】正多边形和圆.【分析】根据正六边形的每一个内角是120°得到△ADI是等边三角形,得到=,根据相似三角形的性质得到S△ADI=S△ABC,计算即可.【解答】解:∵六边形DEFGHI是正六边形,∴∠EDI=120°,∴∠ADI=60°,∴△ADI是等边三角形,∴AD=DE,同理,BE=DE,∴AD=DE=EB,∴=,∴S△ADI=S△ABC,同理S△BEF=S△ABC,S△CGH=S△ABC,∴=,故选:C.【点评】本题考查的是正多边形和圆,掌握正多边形的概念和性质以及相似三角形的面积比等于相似比的平方是解题的关键.15.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°【考点】圆周角定理;平行线的性质.【专题】压轴题;探究型.【分析】先根据弦AB∥CD得出∠ABC=∠BCD,再根据∠ABC=40°即可得出∠BOD的度数.【解答】解:∵弦AB∥CD,∴∠ABC=∠BCD,∴∠BOD=2∠ABC=2×40°=80°.故选D.【点评】本题考查的是圆周角定理及平行线的性质,根据题意得到∠ABC=∠BCD,是解答此题的关键.16.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】压轴题.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.17.答案为:-1-18.答案为:2(a+2b)(a﹣2b).19.答案为:6.20.-35;21.22.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).23.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.24.解:(1)100÷50%=200,所以调查的总人数为200名;故答案为200;(2)B类人数=200×25%=50(名);D类人数=200﹣100﹣50﹣40=10(名);C类所占百分比=20%,D类所占百分比=5%,如图:(3)画树状图为:共有12种等可能的结果数,其中两名学生为同一类型的结果数为4,所以这两名学生为同一类型的概率=1/3.25.(1)();(2)有三种方案;(3)总运费最低的方案是,10台,2台,0台,6台,此时总运费为8600元.26.解:如图,过点C作经过点A的水平直线的垂线,垂足为点D,CD交过点B的水平直线于点E,过点B作BF⊥AD于点F,则CD=330米,∵∠CAD=45°∴∠ACD=45°∴AD=CD=330米,设AF=4x,则BF=AF•tan37°≈4x•0.75=3x(米)FD=(330﹣4x)米,由四边形BEDF是矩形可得:BE=FD=(330﹣4x)米,ED=BF=3x米,∴CE=CD﹣ED=(330﹣3x)米,在Rt△BCE中,CE=BE•tan67°,∴330﹣3x=(330﹣4x)×2.4,解得x=70,∴CE=330﹣3×70=120(米),∴BC==≈130(米)答:电缆BC长至少130米.27.(1)解: A(1,4),∵抛物线顶点A(1,4),∴设抛物线解析式为y=a(x-1)2+4,∵过C(3,0),∴a=-1.∴y=-x2+2x+3.(2)依题意得:OC=3,OE=4,在Rt△OCE中,∠COE=90°,∴CE=5.当∠QPC=90°时,∵cos∠QCP==,∴,解得t=.当∠PQC=90°时,∵cos∠QCP==,∴,解得t=.∴当t=或t=时,△PCQ为直角三角形.(3)∵A(1,4),C(3,0),∴可求得直线AC的解析式为y=-2x+6.∵P(1,2t),将y=2t代入y=-2x+6中,得x=3-t,∴Q点的横坐标为3-t;将x=3-t代入得y=-t2+2t,∴Q点的纵坐标为-t2+4t,∴QF=-t2+2t,∴S△ACQ = S△AFQ+ S△CFQ=0.5FQ·AG +0.5FQ·DG=0.5FQ(AG +DG) =0.5FQ·AD=0.5×2(-t2+2t)=-(t-1)2+1.∴当t=1时,S△ACQ最大,最大值为1.。

九年级上册保定数学期末试卷复习练习(Word版 含答案)

九年级上册保定数学期末试卷复习练习(Word版 含答案)

九年级上册保定数学期末试卷复习练习(Word 版 含答案)一、选择题1.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .33D .10102.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin a AO β=C .tan BC a β=D .cos a BD β= 3.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º4.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定 5.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =- 6.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°7.下列说法中,不正确的是( )A .圆既是轴对称图形又是中心对称图形B .圆有无数条对称轴C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心 8.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定 9.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( )A .74B .44C .42D .40 10.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DE AB BC = D .AD AE AC AB= 11.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0).A .1B .2C .3D .412.如图,△AOB 为等腰三角形,顶点A 的坐标(25),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103)B .(163,453)C .(203,453) D .(163,43) 二、填空题13.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.14.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.15.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)16.抛物线21(5)33y x =--+的顶点坐标是_______.17.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .18.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.19.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.20.已知3a =4b ≠0,那么a b=_____. 21.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.22.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.23.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m24.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题25.⊙O 中,直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,且60DEB ∠=︒,求CD 的长.26.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.27.已知二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),若这个二次函数与x 轴交于A .B 两点,与y 轴交于点C ,求出△ABC 的面积.28.如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行60米到达C 处,再测得山顶A 的仰角为45°,求山高AD 的长度.(测角仪高度忽略不计)29.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?30.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B3为半径画⊙B,若直线3与⊙B的“最美三3B的横坐标Bx的取值范围.31.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接 E C′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.(1)V D= ,C 坐标为;(2)图2中,m= ,n= ,k= .(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).32.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,CD=2,AD=22,tanA=21222CDAD==,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 3.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.5.C解析:C【解析】【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.6.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E 的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE =OB =CO=OD ,∴∠E =∠1,∠2=∠D∴∠D=∠2=∠E +∠1=2∠E .∴∠3=∠E +∠D =∠E +2∠E =3∠E .由∠3=72°,得3∠E =72°.解得∠E =24°.故选:B .【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.7.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大8.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.9.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.10.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.11.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y =x 2+2x +3,a =1>0,函数的图象的开口向上,故①错误;②y =x 2+2x +3的对称轴是直线x =221-⨯=﹣1, 即函数的对称轴是过点(﹣1,3)且平行于y 轴的直线,故②正确;③y =x 2+2x +3,△=22﹣4×1×3=﹣8<0,即函数的图象与x 轴没有交点,故③正确;④y =x 2+2x +3,当x =0时,y =3,即函数的图象与y 轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B .【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.12.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=3O'F 2⋅=,∴O .在Rt △O′FB 中,由勾股定理可求83=,∴OF=820433+=.∴O′的坐标为(2045,33).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题13.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB2222513433 OB OA⎛⎫=+=+=⎪⎝⎭,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.14.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.15.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有解析:555或1555【解析】【分析】根据黄金分割比为512计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有51-51-×10=555,当AC<BC时,则有51-51-×10=555-,∴AC=AB-BC=10-(555)=155-,∴AC长为555 cm或1555 cm.故答案为:555或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.16.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 17..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理. 18.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n⨯=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.19.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.20..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.21.10【解析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.22.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 23.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.24.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题25.26(cm)【解析】【分析】先求出圆的半径,再通过作OP⊥CD于P,求出OP长,再根据勾股定理求出DP长,最后利用垂径定理确定CD长度.【详解】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt △OPE 中,OP =OE•sin ∠DEB,∴PD,∴CD =2PD =(cm ).【点睛】本题考查了垂径定理,勾股定理及直角三角形的性质,根据题意作出辅助线,构造直角 三角形及构造出符合垂径定理的条件是解答此题的关键.26.(1)b=2,c=1,D (2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A 分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M 是直角时,如图1,点M 在线段DN 的垂直平分线上,此时N 1(2,0);当∠M 是直角时,如图2,作DE ⊥x 轴,M 2E ⊥HE ,N 2H ⊥HE,∴∠H=∠E=90︒,∵△M 2N 2D 是等腰直角三角形,∴N 2M 2=M 2D,∠N 2M 2D=90︒,∵∠N 2M 2H=∠M 2DE,∴△N 2M 2H ≌△M 2DE,∴N 2H=M 2E=2-0.5=1.5,M 2H=DE ,∴E(2,-1.5),∴M 2H=DE=3+1.5=4.5,∴ON 2=4.5-0.5=4,∴N 2(-4,0);当∠N 是直角时,如图3,作DE ⊥x 轴,∴∠N 3HM 3=∠DEN 3=90︒,∵△M 3N 3D 是等腰直角三角形,∴N 3M 3=N 3D,∠DN 3M 3=90︒,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90︒,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90︒,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N的坐标.27.【解析】【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=12×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=12×AB×OC=12×4×6=12.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.28.30(31)米【解析】【分析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.【详解】由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD=xm,在Rt△ACD中,∵tan∠ACD=AD CD,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=AD BD,∴360)x x=+,∴30(31)x=米,答:山高AD为30(31)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.29.(3+17)cm.【解析】【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠3.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴33(cm).答:此时灯罩顶端C到桌面的高度CE是(3)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF 的长是解题的关键.30.(1)②;(2)±1;(3)23<B x<33或733-<B x<23-【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线,∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-,∵1=2PMO S PM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF . 则由已知可得:111=1222AEF S AE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==∵A(0,2),即OA=2, ∴在直角△AFO 中,22=2OF OA AF AF -==,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F 点代入y=kx 可得:1k =-.②当k >0时,同理可得k=1.故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D ,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°,在直角△BDN 中,sin BN BDN BD ∠=, 故23=sin sin 60?BN BN BD BN BDN =∠. ∵⊙B 3, ∴3BM =.当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=3222BMN S MN BM MN MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD <33,OB BD OD =- <333-33, 则23<B x <33. ②当⊙B 在直线CD 左侧时,同理可得:73B x <23- 故综上:23<B x 3733-<B x <23- 【点睛】 本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.31.(1)点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).(285;45;25.(3)①当点C′在线段BC上时,S=14t2;②当点C′在CB的延长线上,S=−1312t2+85t−203;③当点E在x轴负半轴, S=t2−45t+20.【解析】【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=5时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=12BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k 时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=5时,B和C′点重合,如图1所示,此时S=12×12CE•OB=54,∴CE=52,∴BE=52.∵OB=2,∴OE2253222⎛⎫-=⎪⎝⎭,∴OC=OE+EC=32+52=4,BC222425+=CD55÷5=1(单位长度/秒), ∴点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t =k 时,点D 与点B 重合,此时k =1BC =25; 当t =m 时,点E 和点O 重合,如图2所示.sin ∠C =OB BC =25=5,cos ∠C =25525OC BC ==, OD =OC •sin ∠C =4×5=455,CD =OC •cos ∠C =4×25=855. ∴m =1CD =855,n =12BD •OD =12×(25−855)×455=45. 故答案为:855;45;25. (3)随着D 点的运动,按△DEC ′与△BOC 的重叠部分形状分三种情况考虑: ①当点C ′在线段BC 上时,如图3所示.此时CD =t ,CC ′=2t ,0<CC ′≤BC ,∴0<t 5∵tan ∠C =12OB OC =, ∴DE =CD •tan ∠C =12t , 此时S =12CD •DE =14t2; ②当点C ′在CB 的延长线上,点E 在线段OC 上时,如图4所示.此时CD =t ,BC ′=2t−25,DE =CD •tan ∠C=12t ,CE =CD cos C∠=5t ,OE =OC−CE =4−5t , ∵CC BC CE OC '⎧⎨≤⎩>,即22554t t ⎧⎪⎨≤⎪>, 解得:5<t ≤855. 由(1)可知tan ∠OEF =232=43, ∴OF =OE •tan ∠OEF =162533-t ,BF =OB−OF =251033t -, ∴FM =BF •cos ∠C =4453t -. 此时S =12CD•DE−12BC ′•FM =−2138520123t t +-; ③当点E 在x 轴负半轴,点D 在线段BC 上时,如图5所示.此时CD =t ,BD =BC−CD =5,CE 5t ,DF =2452BD BD t tan C==∠, ∵CE OC CD BC ⎧⎨≤⎩>,即5425t t ⎪⎨⎪≤⎩>, 85<t ≤5。

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。

河北省保定市定州市2019-2020学年九年级上学期期末数学试题(word无答案)

河北省保定市定州市2019-2020学年九年级上学期期末数学试题(word无答案)

河北省保定市定州市2019-2020学年九年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 一元二次方程 x 2﹣3 x﹣4=0的一次项系数是()A.1B.﹣3C.3D.﹣4(★) 2 . 点关于原点的对称点是A.B.C.D.(★) 3 . 下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔(★) 4 . 下列四个点中,在反比例函数 y=的图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)(★★) 5 . 若,则的值是()A.1B.2C.3D.4(★) 6 . 如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°(★) 7 . 给出下列函数,其中 y随 x的增大而减小的函数是()① y=2 x;② y=﹣2 x+1;③ y=( x<0);④ y= x 2( x<1).A.①③④B.②③④C.②④D.②③(★) 8 . 如图,将△ ABC绕点 A逆时针旋转100°,得到△ ADE.若点 D在线段 BC的延长线上,则∠ B的大小为()A.30°B.40°C.50°D.60°(★★) 9 . 如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6B.15C.24 D. 27(★) 10 . 在平面直角坐标系 xOy中,以点(3,4)为圆心,4为半径的圆与 y轴( )A.相交B.相切C.相离D.无法确定(★★) 11 . 已知x 1,x 2是关于x的方程x 2+ax-2b=0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a的值是( )A.B.-C.4D.-1(★★) 12 . 如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O 于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.2(★) 13 . 如图,在正方形网格上有两个相似三角形△ ABC和△ DEF,则∠ BAC的度数为()A.105°B.115°C.125°D.135°(★) 14 . 如图,正方形 ABCD的顶点 C、 D在 x轴上, A、 B恰好在二次函数 y=2 x 2﹣4的图象上,则图中阴影部分的面积之和为()A.6B.8C.10D.12(★) 15 . 如图是二次函数 y= ax 2+ bx+ c(a≠0)的图象的一部分,给出下列命题:① a+ b+ c=0;② b>2 a;③ ax 2+ bx+ c=0的两根分别为﹣3和1;④ c=﹣3 a,其中正确的命题是()A.①②B.②③C.①③D.①③④二、填空题(★) 16 . 某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是 ______ .(★) 17 . 如图,抛物线 y= ax 2与直线 y= bx+ c的两个交点坐标分别为 A(﹣2,4), B(1,1),则方程 ax 2= bx+ c的解是_____.(★) 18 . 如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是___ .(★★) 19 . 如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;三、解答题(★) 20 . 已知关于 x的一元二次方程 kx 2﹣4 x+2=0有两个不相等的实数根.(1)求实数 k的取值范围;(2)写出满足条件的 k的最大整数值,并求此时方程的根.(★★) 21 . 不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.(★★) 22 . 如图,已知点A(a,3)是一次函数y 1=x+1与反比例函数y 2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y 1>y 2时,直接写出x的取值范围;(3)求点A 与两坐标轴围成的矩形OBAC 的面积.(★★) 23 . 某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价 x (元)与该士特产的日销售量 y (袋)之间的关系如表:x (元)152030…y (袋)252010…若日销售量 y是销售价x的一次函数,试求:(1)日销售量 y (袋)与销售价 x (元)的函数关系式; (2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?(★★★★) 24 . 如图,中, , , 为 内部一点,且.(1)求证: ;(2)求证:.(★★) 25 . 如图,AB 为⊙O 的直径,射线AP 交⊙O 于C 点,∠PCO 的平分线交⊙O 于D 点,过点D 作 交AP 于E 点.(1)求证:DE 为⊙O 的切线;(2)若DE=3,AC=8,求直径AB 的长.(★★) 26 . 如图,在平面直角坐标系中,抛物线 (a≠0)与y 轴交与点C (0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.。

河北省保定市定州市2019-2020学年九年级(上)期中检测数学试卷 含解析

河北省保定市定州市2019-2020学年九年级(上)期中检测数学试卷  含解析

2019-2020学年九年级(上)期中数学试卷一、选择题(本大题共12个小题;每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y=x2+1的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=0 D.直线y=12.点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)3.下列App图标中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.4.用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3 B.(x﹣1)2=4 C.(x﹣1)2=5 D.(x+1)2=3 5.如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°6.如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.7.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+38.若x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,则1+a+b的值是()A.2017 B.2018 C.2019 D.20209.关于x的一元二次方程kx2﹣4x+1=0有实数根,则k的取值范围是()A.k≥﹣4 B.k≥﹣4且k≠0 C.k≤4 D.k≤4且k≠0 10.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N 分别是AB、AC的中点,则MN长的最大值是()A.B.5C.D.311.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒点P位于点C的位置,……,则第2019秒点P所在位置的坐标为()A.(,)B.(﹣,﹣)C.(0,﹣1)D.(,﹣)12.某公司一月份获利400万元,计划第一季度的利润达到1324万元.若该公司每月的增长率相同,则该增长率是()A.10% B.20% C.100% D.231%二、填空题(本大题共6个小题;每小题3分,共18分把答案写在题中横线上)13.已知关于x的方程x2+mx﹣6=0的一个根为2,则m=.14.已知x1、x2是一元二次方程x2+x+m=0的两个根,且x1+x2=2+x1x2,则m=.15.若二次函数y=ax2+bx+c的图象如图所示,则ac0(填“>”或“=”或“<”).16.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为.17.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为度.18.元且到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有个同学.三、解答下列各题(本题有8个小题,共66分)19.解下列一元二次方程(1)x2﹣8x+1=0;(2)2x2+1=3x.20.已知关于x的一元二次方程x2﹣(n+3)x+3n=0.(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n值,写出这个方程并求出此时方程的根.21.如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上.求证:DB平分∠ADE.22.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,求弦BC的长.23.在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧)(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.当a=2时,求PB+PC的值.24.如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,将一个∠EDF=60°的三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转这个三角形纸片,使它的两边分别交CB,BA(或它们的延长线)于点E,F;(1)当CE=AF时,如图①,DE与DF的数量关系是;(2)继续旋转三角形纸片,当CE≠AF时,如图②,(1)的结论是否成立?若成立,加以证明;若不成立,请说明理由;(3)再次旋转三角形纸片,当点E,F分别在CB,BA的延长线上时,如图③,请直接写出DE与DF的数量关系.25.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?26.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.参考答案与试题解析一.选择题(共12小题)1.抛物线y=x2+1的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=0 D.直线y=1【分析】由抛物线解析式可直接求得答案.【解答】解:∵抛物线y=x2+1,∴抛物线对称轴为直线x=0,即y轴,故选:C.2.点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接写出答案.【解答】解:点P(2,﹣1)关于原点对称的点P′的坐标是(﹣2,1),故选:A.3.下列App图标中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.此图案是轴对称图形,不符合题意;B.此图案既不是中心对称图形也不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是中心对称图形,不符合题意;故选:B.4.用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3 B.(x﹣1)2=4 C.(x﹣1)2=5 D.(x+1)2=3 【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣2x﹣4=0∴x2﹣2x=4∴x2﹣2x+1=4+1∴(x﹣1)2=5故选:C.5.如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.6.如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.【分析】根据旋转对称图形的概念解答.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.7.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.8.若x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,则1+a+b的值是()A.2017 B.2018 C.2019 D.2020【分析】根据x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,可以得到a+b的值,从而可以求得所求式子的值.【解答】解:∵x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故选:D.9.关于x的一元二次方程kx2﹣4x+1=0有实数根,则k的取值范围是()A.k≥﹣4 B.k≥﹣4且k≠0 C.k≤4 D.k≤4且k≠0 【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程kx2﹣4x+1=0有实数根,∴k≠0且△=(﹣4)2﹣4k≥0,解得:k≤4且k≠0.故选:D.10.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N 分别是AB、AC的中点,则MN长的最大值是()A.B.5C.D.3【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′==5,∴MN最大=.故选:A.11.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒点P位于点C的位置,……,则第2019秒点P所在位置的坐标为()A.(,)B.(﹣,﹣)C.(0,﹣1)D.(,﹣)【分析】先求出点P的位置,再过P作PM⊥x轴于M,解直角三角形求出PM、OM,即可得出答案.【解答】解:2019÷8=252…3,即第2019秒点P所在位置如图:过P作PM⊥x轴于M,则∠PMO=90°,∵OP=1,∠POM=45°,∴PM=OM=1×sin45°=,即此时P点的坐标是(﹣,﹣),故选:B.12.某公司一月份获利400万元,计划第一季度的利润达到1324万元.若该公司每月的增长率相同,则该增长率是()A.10% B.20% C.100% D.231%【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=1324,把相关数值代入计算即可.【解答】解:设二、三月份平均每月增长的百分率是x,则400+400(1+x)+400(1+x)2=1324,解得:x=0.1或x=﹣2.1(舍去)故选:A.二.填空题(共6小题)13.已知关于x的方程x2+mx﹣6=0的一个根为2,则m= 1 .【分析】把x=2代入方程x2+mx﹣6=0得到一个关于m的一元一次方程,求出方程的解即可.【解答】解:把x=2代入方程x2+mx﹣6=0,得:4+2m﹣6=0,解方程得:m=1.故答案为:1.14.已知x1、x2是一元二次方程x2+x+m=0的两个根,且x1+x2=2+x1x2,则m=﹣3 .【分析】根据根与系数的关系可得出x1+x2=﹣1、x1x2=m,结合x1+x2=2+x1x2即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:∵x1、x2是一元二次方程x2+x+m=0的两个根,∴x1+x2=﹣1,x1x2=m.∵x1+x2=2+x1x2,即﹣1=2+m,∴m=﹣3.故答案为:﹣3.15.若二次函数y=ax2+bx+c的图象如图所示,则ac<0(填“>”或“=”或“<”).【分析】首先由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,进而判断ac与0的关系.【解答】解:∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∴ac<0.故答案为<.16.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为16cm.【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D∵CD=4,OD=10,∴OC=6,又∵OB=10,∴Rt△BCO中,BC==8,∴AB=2BC=16.故答案为:16cm.17.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为15 度.【分析】根据图形旋转的性质得出△ABC≌△EBD,可得出BC=BD,根据图形旋转的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.【解答】解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故答案为:15.18.元且到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有40 个同学.【分析】设该班有x个同学,则每个同学需交换(x﹣1)件小礼物,根据全班交换小礼物共1560件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该班有x个同学,则每个同学需交换(x﹣1)件小礼物,依题意,得:x(x﹣1)=1560,解得:x1=40,x2=﹣39(不合题意,舍去).故答案为:40.三.解答题(共8小题)19.解下列一元二次方程(1)x2﹣8x+1=0;(2)2x2+1=3x.【分析】(1)利用配方法得到(x﹣4)2=15,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)x2﹣8x=﹣1,x2﹣8x+16=15,(x﹣4)2=15,x﹣4=±,所以x1=4+,x2=4﹣;(2)2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0或x﹣1=0,所以x1=,x2=1.20.已知关于x的一元二次方程x2﹣(n+3)x+3n=0.(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n值,写出这个方程并求出此时方程的根.【分析】(1)计算判别式的值得到△=(n﹣3)2,然后利用非负数的性质得到△≥0,从而根据判别式的意义可得到结论;(2)n可取0,方程化为x2﹣3x=0,然后利用因式分解法解方程.【解答】(1)证明:∵△=(n+3)2﹣12m=(n﹣3)2,∵(n﹣3)2≥0,∴方程有两个实数根;(2)解:∵方程有两个不相等的实根∴n可取0,则方程化为x2﹣3x=0,因式分解为x(x﹣3)=0∴x1=0,x2=3.21.如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上.求证:DB平分∠ADE.【分析】根据旋转的性质得到△ABC≌△DBE,进一步得到BA=BD,从而得到∠A=∠ADB,根据∠A=∠BDE得到∠ADB=∠BDE,从而证得结论.【解答】证明:∵将△ABC绕点B旋转得到△DBE,∴△ABC≌△DBE∴BA=BD.∴∠A=∠ADB.∵∠A=∠BDE,∴∠ADB=∠BDE.∴DB平分∠ADE.22.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,求弦BC的长.【分析】作直径CF,连结BF,如图,利用等角的补角相等得到∠DAE=∠BAF,则DE=BF=6,再根据圆周角定理得到∠CBF=90°,然后利用勾股定理计算BC的长.【解答】解:作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE=BF=6,∵CF是直径,∴CF=10,∠CBF=90°,在Rt△CBF中,BC==8.23.在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧)(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.当a=2时,求PB+PC的值.【分析】(1)把a=﹣1代入解析式解答即可;(2)把a=2代入解析式解答即可.【解答】解:(1)当a=﹣1时,有y=﹣x2﹣2x.令y=0,得:﹣x2﹣2x=0.解得x1=0,x2=﹣2.∵点A在点B的左侧,∴A(﹣2,0),B(0,0).(2)当a=2时,有y=2x2﹣2x.令y=0,得2x2﹣2x=0.解得x1=0,x2=1.∵点A在点B的左侧,∴A(0,0),B(1,0).∴PB=2.当x=3时,y C=2×9﹣2×3=12.∴PC=12.∴PB+PC=14.24.如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,将一个∠EDF=60°的三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转这个三角形纸片,使它的两边分别交CB,BA(或它们的延长线)于点E,F;(1)当CE=AF时,如图①,DE与DF的数量关系是DE=DF;(2)继续旋转三角形纸片,当CE≠AF时,如图②,(1)的结论是否成立?若成立,加以证明;若不成立,请说明理由;(3)再次旋转三角形纸片,当点E,F分别在CB,BA的延长线上时,如图③,请直接写出DE与DF的数量关系.【分析】(1)证明△DAF≌△DCE(SAS)即可判断;(2)由菱形的性质得到△ABD是等边三角形,再证明△ADF≌△BDE即可;(3)由菱形的性质得到△ABD是等边三角形,再证明△ADF≌△BDE即可;【解答】解:(1)DE=DF;理由:∵四边形ABCD是菱形,∴DA=DC,∠A=∠C,∵AF=CE,∴△DAF≌△DCE(SAS),∴DE=DF.(2)成立.理由:连接BD.∵四边形ABCD是菱形,∴AD=AB.又∵∠DAB=60°,∴△ABD是等边三角形,∴AD=BD,∠ADB=60°,∴∠DBE=∠DAF=60°.∵∠EDF=60°,∴∠ADB=∠EDF=60°,∴∠ADF=∠BDE,∴△ADF≌△BDE(ASA),∴DE=DF.(3)结论:DF=DE.理由:如图3,连接BD.∵四边形ABCD是菱形,∴AD=AB.又∵∠A=60°,∴△ABD是等边三角形,∴AD=BD,∠ADB=60°,同法可证∠DBC=60°,∴∠DBE=∠DAF=120°∵∠EDF=ADB=60°,∴∠ADF=∠BDE,∴△ADF≌△BDE(ASA),∴DF=DE;25.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为60﹣3a米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?【分析】(1)用总长减去3a后加上三个1米宽的门即为所求;(2)由(1)表示饲养场面积计算即可,注意a的范围讨论;(3)设出饲养场面积y与x之间的函数关系,根据已知条件确定自变量a的范围,求函数最大值.【解答】解:(1)由已知饲养场的长为57﹣2a﹣(a﹣1)+2=60﹣3a;故答案为:60﹣3a;(2)由(1)饲养场面积为a(60﹣3a)=288,解得a=12或a=8;当a=8时,60﹣3a=60﹣24=36>27,故a=8舍去,则a=12;(3)设饲养场面积为y,则y=a(60﹣3a)=﹣3a2+60a=﹣3(a﹣10)2+300,∵2<60﹣3a≤27,∴11≤a<,∴当a=11时,y最大=297.26.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.【分析】(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标;(2)根据直角三角形的性质,推出AC2=OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C′(0,2),OC'=2.连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.首先确定最小值,然后根据三角形相似的有关性质定理,求m的值【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得b=∴抛物线的解析式为y=x2﹣x﹣2.y=x2﹣x﹣2=(x2﹣3x﹣4 )=(x﹣)2﹣,∴顶点D的坐标为(,﹣).(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,x2﹣x﹣2=0,∴x1=﹣1,x2=4,∴B(4,0)∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.解法一:设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=.解法二:设直线C′D的解析式为y=kx+n,则,解得:.∴.∴当y=0时,,.∴.。

河北省保定市定州市2019学年九年级上期末数学模拟试卷(含答案)

河北省保定市定州市2019学年九年级上期末数学模拟试卷(含答案)

2018-2019 学年河北省保定市定州市九年级(上)期末数学模拟试卷一.选择题(共12 小题,满分36 分,每小题 3 分)1.点M(a,2a)在反比例函数y=的图象上,那么a 的值是()A.4 B.﹣4 C.2 D.±22.如果⊙O 的半径为7cm,圆心O 到直线l 的距离为d,且d=5cm,那么⊙O 和直线l 的位置关系是()A.相交B.相切C.相离D.不确定3.如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的大小为()A.40°B.50°C.80°D.100°4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y 随x 值的增大而减小5.如图,AB∥CD,OH 分别与AB、CD 交于点F、H,OG 分别与AB、CD 交于点E、G,若,OF=12,则OH 的长为()A.39 B.27 C.12 D.266.如图,△OAB 绕点O 逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D,过点B作PD 的垂线交PD 的延长线于点C,若⊙O 的半径为4,BC=6,则PA 的长为()A.4 B.2 C.3 D.2.58.在一个不透明的纸箱中放入m 个除颜色外其他都完全相同的球,这些球中有4 个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m 的值大约是()A.8 B.12 C.16 D.209.如图,AB 为半圆O 的直径,C 是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC 的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3 B.S2<S1<S3 C.S1<S3<S2 D.S3<S2<S110.已知关于x 的方程,若a 为正实数,则下列判断正确的是()A.有三个不等实数根B.有两个不等实数根C.有一个实数根D.无实数根11.如图,OA 在x 轴上,OB 在y 轴上,OA=4,OB=3,点C 在边OA 上,AC=1,⊙P的圆心P 在线段BC 上,且⊙P 与边AB,AO 都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k 的值是()A.B.C.D.﹣212.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)二.填空题(共6 小题,满分18 分,每小题3 分)13.对于反比例函数与二次函数y=﹣x2+3,请说出它们的两个相同点①,②;再说出它们的两个不同点①,②.14.如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为.15.如图是一个可以自由转动的转盘,如表是一次活动中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68 111 136 345 546 701转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).16.如图,△ABC 内接于⊙O,AB=BC,∠ABC=120°,AD 为⊙O 的直径,AD=8,那么BD 的值为.17.如图,正比例函数y=kx(k>0)与反比例函数的图象相交于A,C 两点,过A 作x 轴的垂线交x 轴于B,连接BC,则△ABC 的面积为.18.如图,正五边形ABCDE 绕点A 顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=°.三.解答题(共8 小题,满分66 分)19.如图,在△ABC 中,D、E 分别在AB 与AC 上,且AD=5,DB=7,AE=6,EC=4.求证:△ADE∽△ACB.20.如图,AB=AC,CD⊥AB 于点D,点O 是∠BAC 的平分线上一点,⊙O 与AB 相切于点M,与CD 相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2 ,求DM 的长.21.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n 和b 的值;(2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.22.有4 个完全一样的小球,上面分别标着数字,2,1,﹣3,﹣4.现随机摸出一个小球后不放回,将该小球上的数字记为m,再随机地摸出一个小球,将小球上的数字记为n.(1)请列表或画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n 能使一次函数y=mx+n 的图象经过第二、三、四象限的概率.23.如图8×8 正方形网格中,点A、B、C 和O 都为格点.(1)利用位似作图的方法,以点O 为位似中心,可将格点三角形ABC 扩大为原来的2 倍.请你在网格中完成以上的作图(点A、B、C的对应点分别用A′、B′、C′表示);(2)当以点O为原点建立平面坐标系后,点C的坐标为(﹣1,2),则A′、B′、C′三点的坐标分别为:A′:B′:C′:.24.阅读下列材料:实验数据显示,一般成人喝250 毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6 小时内11 个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x>0)的变化情况.150 200 150下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y 随时间x 变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20 毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00 能否驾车去上班?请说明理由.25.如图,已知三角形ABC 的边AB 是⊙O 的切线,切点为B.AC 经过圆心O 并与圆相交于点D、C,过C 作直线CE 丄AB,交AB 的延长线于点E.(1)求证:CB 平分∠ACE;(2)若BE=3,CE=4,求⊙O 的半径.26.如图,在△ABC 中,BA=BC=20cm,AC=30cm,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 秒.(1)当x 为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP 的长;若不存在,请说理由;(3)当CQ=10 时,求的值.参考答案一.选择题(共12 小题,满分36 分,每小题 3 分)1.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.2.【解答】解:∵⊙O 的半径为7cm,圆心O 到直线l 的距离为d,且d=5cm,∴5<7,∴直线l 与⊙O 的位置关系是相交,故选:A.3.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B 正确;C、若x<﹣2,则y<3,故C 正确;D、在每一个象限内,y 随x 值的增大而增大,故D 正确;故选:D.5.【解答】解:∵EF∥GH,∴==,∴=,∴FH=27,∴OH=OF+FH=12+27=39,故选:A.6.【解答】解:由题意可知:∠DOB=85°,∵△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.7.【解答】解:连接DO,∵PD 与⊙O 相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.8.【解答】解:根据题意得,=,解得,m=20.故选:D.9.【解答】解:作OD⊥BC 交BC 与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.=;∴S扇形AOCS 扇形BOC=.在三角形OCD 中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC=,S 弓形==,>>,∴S2<S1<S3.故选:B.10.【解答】解:方程可化为x2﹣4x+5=﹣a(+2),所以,方程的解的个数等于函数y=x2﹣4x+5 与y=﹣a(+2)的交点的个数,函数y=x2﹣4x+5 的图象经过第一、二象限,∵a 是正实数,∴﹣a 是负实数,∴y=﹣a(+2)的图象位于第二、四象限,两个函数图象一定有一个交点,∴方程有一个实数根.故选:C.1.【解答】解:作PM⊥AB 于M,PN⊥x 轴于N,如图,设⊙P 的半径为r,∵⊙P 与边AB,AO 都相切,∴PM=PN=r,∵OA=4,OB=3,AC=1,∴AB==5,+S△PAC=S△ABC,∵S△PAB∴•5r+ •r•1=•3•1,解得r=,∴BN=,∵OB=OC,∴△OBC 为等腰直角三角形,∴∠OCB=45°,∴NC=NB=,∴ON=3﹣=,∴P点坐标为(,﹣),把P(,﹣)代入y=得k=×(﹣)=﹣.故选:A.12.【解答】解:△ABC 中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E 的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E 的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE 与△ABC 不相似,故本选项符合题意;C、当点E 的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E 的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.二.填空题(共6 小题,满分18 分,每小题 3 分)13.【解答】解:不唯一,如:相同点:①都过点(﹣1,2),②在第二象限,函数值都随着自变量的增大而增大;不同点:①图象的形状不同;②自变量的取值范围不同.14.【解答】解:如图,AD=8m,AB=30m,DE=3.2m;由于DE∥BC,则△ADE∽△ABC,得:,即,解得:BC=12m,故旗杆的高度为12m.15.【解答】解:转动转盘一次,落在“铅笔”的概率约是0.7.故答案为0.7.16.【解答】解:∵AB=BC,∠ABC=120°,∴∠C=30°,∴∠D=30°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴AB=AD=4,∴BD==4 ,故答案为:4 .17.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=|k|,依题意有S=2S△AOB=2××|k|=△ABC1.故答案为:1.18.【解答】解:DE 与B′C′相交于O 点,如图,∵五边形ABCDE 为正五边形,∴∠B=∠BAE=∠E==108°,∵正五边形ABCDE 绕点A 顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),∴∠BAB′=α,∠B′=∠B=108°,∵DE⊥B′C′,∴∠B′OE=90°,∴∠B′AE=360°﹣∠B′﹣∠E﹣∠B′OE=360°﹣108°﹣108°﹣90°=54°,∴∠BAB′=∠BAE﹣∠B′AE=108°﹣54°=54°,即∠α=54°.故答案为54.三.解答题(共8 小题,满分66 分)19.【解答】证明:∵AD=5,DB=7,AE=6,EC=4,∴AB=5+7=12,AC=6+4=10,∴====,∴ =,又∵∠A=∠A,∴△ADE∽△ACB.20.【解答】解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O 与AB 相切于点M,与CD 相切于点N,∴OM⊥AB,ON⊥CD,∵OA 平分∠BAC,OE⊥AC,∴OM=OE,∴AC 是⊙O 的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC 平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC 是⊙O 的切线,M,N,E 是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC 中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1 或﹣1(舍弃)∴DM=1.21.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k =1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3 与y 轴的交点为C,∵当x=0 时,y=3,∴C(0,3),=S△AOC+S△BOC=×3×1+ ×3×4=7.5;∴S△AOB(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1 或﹣4<x<0 时,一次函数值大于反比例函数值.2.【解答】解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的有:(﹣3,﹣4),(﹣4,﹣3),∴所选出的m,n 能使一次函数y=mx+n 的图象经过第第二、三、四象限的概率==.23.【解答】解:(1)如图,△A′B′C′就是所求作的三角形;(4分)(2)A′:(4,﹣4),B′:(4,0)C′:(2,﹣4).(7分)24.【解答】解:(1)图象如图所示,(2)由函数图象知当x>时,y 与x 成反比例函数关系,设y=,将点(5,45)代入,得:k=225,∴y=;(3)不能.理由如下:把y=20 代入反比例函数y=得x=11.25.∵晚上20:30 经过11.25 小时为第二天早上7:45,∴第二天早上7:45 以后才可以驾车上路,∴第二天早上7:00 不能驾车去上班.25.【解答】(1)证明:如图1,连接OB,∵AB 是⊙0 的切线,∴OB⊥AB,∵CE 丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB 平分∠ACE;(2)如图2,连接BD,∵CE 丄AB,∴∠E=90°,∴BC===5,∵CD 是⊙O 的直径,∴∠DBC=90°,∴∠E=∠DBC,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O 的半径=.26.【解答】解:(1)由题可得AP=4x,CQ=3x.∵BA=BC=20,AC=30,∴BP=20﹣4x,AQ=30﹣3x.若PQ∥BC,则有△APQ∽△ABC,∴=,∴=,解得:x=.∴当x=时,PQ∥BC;(2)存在.∵BA=BC,∴∠A=∠C.只需=.此时=,解得:x=,∴AP=4x=;(3)当CQ=10 时,3x=10,∴x=,∴AP=4x=,∴===.。

保定市定州市九年级上册期末数学试卷(有答案)

保定市定州市九年级上册期末数学试卷(有答案)

2019-2020学年河北省保定市定州市九年级(上)期末数学试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.43.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=24.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=36.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍9.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O的半径为2,则MD的长度为()A.B.C.2D.110.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.11.如图,把直角△ABC的斜边AC放在直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB=,∠BAC=30°,则顶点A运动到点A2的位置时,点A所经过的路线为()A.( +)πB.( +)πC.2πD.π12.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y2=2y的解为.14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为.15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2019-2020学年河北省保定市定州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.4【分析】把点(﹣2,2)代入反比例函数y=(k≠0)中,可直接求k的值.【解答】解:把点(﹣2,2)代入反比例函数y=(k≠0)中得2=所以,k=xy=﹣4,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,反比例函数的比例系数等于在函数图象上面的点的横纵坐标的乘积.3.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选:B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.4.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得, =,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3【分析】移项后两边配上一次项系数一半的平方即可.【解答】解:∵x2+4x=﹣1,∴x2+4x+4=﹣1+4,即(x+2)2=3,故选:C.【点评】本题主要考查配方法解一元二次方程,掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解,是解题的关键.6.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.【分析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下123456 1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点评】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍【分析】如图,作OE⊥AB于E,EO的延长线交CD于F.由△AOB∽△DOC,推出===(相似三角形的对应高的比等于相似比),由此即可解决问题.【解答】解:如图,作OE⊥AB于E,EO的延长线交CD于F.∵AB∥CD,∴FO⊥CD,△AOB∽△DOC,∴===(相似三角形的对应高的比等于相似比),∴CD=AB,故选:A.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比,属于中考常考题型.9.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O的半径为2,则MD的长度为()A.B.C.2D.1【分析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【解答】解:连接OM、OD、OF,如图所示:∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD===;故选:A.【点评】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.10.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.【解答】解:A、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;B、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a<0,错误;C、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a<0,正确;D、由函数y=ax﹣a的图象可知m>0,﹣a<0,一次函数与y轴交与负半轴,相矛盾,故错误;故选:C.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.11.如图,把直角△ABC的斜边AC放在直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB=,∠BAC=30°,则顶点A运动到点A2的位置时,点A所经过的路线为()A.( +)πB.( +)πC.2πD.π【分析】A点所经过的弧长有两段,①以C为圆心,CA长为半径,∠ACA1为圆心角的弧长;②以B1为圆心,AB长为半径,∠A1B1A2为圆心角的弧长.分别求出两段弧长,然后相加即可得到所求的结论.【解答】解:在Rt△ABC中,AB=,∠BAC=30°,∴∠ACB=60°,AC=2;由分析知:点A经过的路程是由两段弧长所构成的:①A~A1段的弧长:L1==,②A1~A2段的弧长:L2==,∴点A所经过的路线为(+)π,故选:A.【点评】本题考查的是弧长的计算,30度角直角三角形的性质,旋转的性质,难点在于与动点知识相结合,但是只要将运动的过程分解清楚,就能顺利作答.12.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④【分析】利用二次函数的性质得到y2的最小值为1,则可对①进行判断;把A点坐标代入y1=a(x+2)2﹣3中求出a,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y2﹣y1的值,则可对③进行判断;利用抛物线的对称性计算出AB和AC,则可对④进行判断.【解答】解:∵y2=(x﹣3)2+1,∴y2的最小值为1,所以①正确;把A(1,3)代入y1=a(x+2)2﹣3得a(1+2)2﹣3=3,∴3a=2,所以②错误;当x=0时,y 1=(x+2)2﹣3=﹣,y 2=(x ﹣3)2+1=,∴y 2﹣y 1=+=,所以③错误; 抛物线y 1=a (x+2)2﹣3的对称轴为直线x=﹣2,抛物线y 2=(x ﹣3)2+1的对称轴为直线x=3,∴AB=2×3=6,AC=2×2=4,∴2AB=3AC ,所以④正确.故选:D .【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y 2=2y 的解为 y 1=0,y 2=2 .【分析】利用因式分解法解方程.【解答】解:y 2﹣2y=0,y (y ﹣2)=0,y=0或y ﹣2=0,所以y 1=0,y 2=2.故答案为y 1=0,y 2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x 相同,则可列出方程为 4(1+x )2=5.8 .【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x ,根据“由2010年的年收入4万元增加到2012年年收入5.8万元”,即可得出方程.【解答】解:设每年的年增长率为x,则2011年的年收入为4(1+x)万元,2012年的年收入为4(1+x)2万元,根据题意得:4(1+x)2=5.8.故答案为4(1+x)2=5.8.【点评】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为m>.【分析】由二次函数y=2x2﹣6x+m的图象与x轴没有交点,可知△<0,解不等式即可.【解答】解:∵二次函数y=2x2﹣6x+m的图象与x轴没有交点,∴△<0,∴(﹣6)2﹣4×2×m<0,解得:m>;故答案为:m>.【点评】本题考查了抛物线与x轴的交点,熟记:有两个交点,△>0;有一个交点,△=0;没有交点,△<0是解决问题的关键.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为10 .【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例可解得AB的长,而在▱ABCD中,CD=AB.【解答】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD.∴CD=10.【点评】本题考查了相似三角形的判定和相似三角形的性质,以及平行四边形的性质,注意对应边的比不要搞错.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为 1 .【分析】根据题意扇形DAE的面积与扇形FBE的面积相等,则阴影部分的面积等于矩形面积的一半.【解答】解:∵AF=BF,AD=1,AB=2,∴AD=BF=1,∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1.故答案为1.【点评】考查了扇形面积的求法以及拼图的能力.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于 5 .【分析】先设C(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数与的图象上,可得到A点坐标为(,b),B点坐标为(﹣,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设C(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=,即A点坐标为(,b),又∵点B在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即B点坐标为(﹣,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OC=••b=5.故答案为:5.【点评】本题考查的是反比例函数系数k的几何意义,即在反比例函数y=的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣4,等式的两边同时加上一次项系数的一半的平方,得x2﹣6x+9=﹣4+9,即(x﹣3)2=5,∴x=±+3,∴x1=+3,x2=﹣+3.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.【分析】先过E作EF⊥BD于点E,再根据入射角等于反射角可知,∠1=∠2,故可得出∠DEC=∠AEB,由CD⊥BD,AB⊥BD可知∠CDE=∠ABE,进而可得出△CDE∽△ABE,再由相似三角形的对应边成比例即可求出大树AB的高度.【解答】解:过点E作EF⊥BD于点E,则∠1=∠2,∵∠DEF=∠BEF=90°,∴∠DEC=∠AEB,∵CD⊥BD,AB⊥BD,∴∠CDE=∠ABE=90°,∴△CDE∽△ABE,∴=,∵DE=3.2米,CD=1.6米,EB=8.4米,∴=,解得AB=4.2(米).答:树AB的高度为4.2米.【点评】本题考查的是相似三角形在实际生活中的应用、光的反射定律等知识,解答此题的关键知道入射角等于反射角,熟练掌握相似三角形的判定和性质,属于中考常考题型.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的直径.【解答】解:如图,设光盘的圆心为O,三角板的另外两点为C,D,连接OB,OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径为6cm.【点评】本题考查了切线的性质,勾股定理,是基础知识要熟练掌握.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.【分析】先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.【解答】解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1﹣=,因为>,所以这个游戏规则不公平.【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.【分析】(1)根据题意可得中点D的坐标为(2,6),可求解析式,即可求k和点E的坐标;(2)由题意可证Rt△FBC∽Rt△DEB,可求CF的长,则可得OF的长,即可求点F的坐标.【解答】解:(1)在矩形OABC中,B(4,6),∴BC边中点D的坐标为(2,6),∵又曲线y=的图象经过点(2,6),∴k=12,∴解析式y=∵E点在AB上,∴E点的横坐标为4,∵反比例函数y=图象经过点E,∴E点纵坐标为3,∴E点坐标为(4,3);(2)由(1)得,BD=2,BE=3,BC=4,∵∠CBF=∠BED,∠BCF=∠DBE=90°∴Rt△FBC∽Rt△DEB,∴,即,∴CF=,∵OF=OC﹣CF∴OF=,即点F的坐标为(0,).【点评】本题考查了反比例函数综合题,反比例函数的性质,矩形的性质,相似三角形的性质和判定,熟练运用相似三角形的判定和性质是解决问题的关键.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.【分析】(1)欲证明PA为⊙O的切线,只需证明OA⊥AP;(2)通过相似三角形△ABC∽△PAO的对应边成比例来求线段AC的长度.21【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP∥BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°.∵∠P=∠BAC.∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.【点评】本题考查的知识点有切线的判定与性质,三角形相似的判定与性质,得到两个22三角形中的两组对应角相等,进而得到两个三角形相似,是解答(2)题的关键.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w=4.5(万元).最大23答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点评】本题考查了二次函数的顶点式:y=a(x﹣k)2+h,(a≠0),当a<0,抛物线的开口向下,函数有最大值,当x=k,函数的最大值为h.也考查了代数式的表示和利润的含义以及配方法.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【分析】方法一:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP 三种情况分类讨论,然后分辨是否存在符合条件的P点.方法二:(3)用参数表示点M坐标,分类讨论三种情况,利用两点间距离公式便可求解.(4)列出点M的参数坐标,利用MO=MB求解.此问也可通过求出OB的垂直平分线与y 轴的交点得出M点.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,24又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin ∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年河北省保定市定州市九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4B.﹣4C.2D.±22.如果⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是()A.相交B.相切C.相离D.不确定3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小5.如图,AB∥CD,OH分别与AB、CD交于点F、H,OG分别与AB、CD交于点E、G,若,OF=12,则OH的长为()A.39B.27C.12D.266.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.58.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8B.12C.16D.209.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S1 10.已知关于x的方程,若a为正实数,则下列判断正确的是()A.有三个不等实数根B.有两个不等实数根C.有一个实数根D.无实数根11.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P 的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k的值是()A.B.C.D.﹣212.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)二.填空题(共6小题,满分18分,每小题3分)13.对于反比例函数与二次函数y=﹣x2+3,请说出它们的两个相同点①,②;再说出它们的两个不同点①,②.14.如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为.15.如图是一个可以自由转动的转盘,如表是一次活动中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).16.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=8,那么BD的值为.17.如图,正比例函数y=kx(k>0)与反比例函数的图象相交于A,C两点,过A作x轴的垂线交x轴于B,连接BC,则△ABC的面积为.18.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=°.三.解答题(共8小题,满分66分)19.如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4.求证:△ADE∽△ACB.20.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.21.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B (﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.有4个完全一样的小球,上面分别标着数字,2,1,﹣3,﹣4.现随机摸出一个小球后不放回,将该小球上的数字记为m,再随机地摸出一个小球,将小球上的数字记为n.(1)请列表或画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.23.如图8×8正方形网格中,点A、B、C和O都为格点.(1)利用位似作图的方法,以点O为位似中心,可将格点三角形ABC扩大为原来的2倍.请你在网格中完成以上的作图(点A、B、C的对应点分别用A′、B′、C′表示);(2)当以点O为原点建立平面坐标系后,点C的坐标为(﹣1,2),则A′、B′、C′三点的坐标分别为:A′:B′:C′:.24.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y 是时间x 的函数,其中y 表示血液中酒精含量(毫克/百毫升),x 表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y (毫克/百毫升)随饮酒后的时间x (小时)(x >0)的变化情况.饮酒后的时间x(小时) (12345)6…血液中酒精含量y(毫克/百毫升)…150********…下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y 随时间x 变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.25.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.26.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.(1)当x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长;若不存在,请说理由;(3)当CQ=10时,求的值.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.2.【解答】解:∵⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,∴5<7,∴直线l与⊙O的位置关系是相交,故选:A.3.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.5.【解答】解:∵EF∥GH,∴==,∴=,∴FH=27,∴OH=OF+FH=12+27=39,故选:A.6.【解答】解:由题意可知:∠DOB=85°,∵△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.7.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.8.【解答】解:根据题意得,=,解得,m=20.故选:D.9.【解答】解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.=;∴S扇形AOCS扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,=,S弓形==,∴S△OBC>>,∴S2<S1<S3.故选:B.10.【解答】解:方程可化为x2﹣4x+5=﹣a(+2),所以,方程的解的个数等于函数y=x2﹣4x+5与y=﹣a(+2)的交点的个数,函数y=x2﹣4x+5的图象经过第一、二象限,∵a是正实数,∴﹣a是负实数,∴y=﹣a(+2)的图象位于第二、四象限,两个函数图象一定有一个交点,∴方程有一个实数根.故选:C.11.【解答】解:作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PM=PN=r,∵OA=4,OB=3,AC=1,∴AB==5,+S△P AC=S△ABC,∵S△P AB∴•5r+•r•1=•3•1,解得r=,∴BN=,∵OB=OC,∴△OBC为等腰直角三角形,∴∠OCB=45°,∴NC=NB=,∴ON=3﹣=,∴P点坐标为(,﹣),把P(,﹣)代入y=得k=×(﹣)=﹣.故选:A.12.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:不唯一,如:相同点:①都过点(﹣1,2),②在第二象限,函数值都随着自变量的增大而增大;不同点:①图象的形状不同;②自变量的取值范围不同.14.【解答】解:如图,AD=8m,AB=30m,DE=3.2m;由于DE∥BC,则△ADE∽△ABC,得:,即,解得:BC=12m,故旗杆的高度为12m.15.【解答】解:转动转盘一次,落在“铅笔”的概率约是0.7.故答案为0.7.16.【解答】解:∵AB=BC,∠ABC=120°,∴∠C=30°,∴∠D=30°,∵AD为⊙O的直径,∴∠ABD=90°,∴AB=AD=4,∴BD==4,故答案为:4.17.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,=2S△AOB=2××|k|=1.依题意有S△ABC故答案为:1.18.【解答】解:DE与B′C′相交于O点,如图,∵五边形ABCDE为正五边形,∴∠B=∠BAE=∠E==108°,∵正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),∴∠BAB′=α,∠B′=∠B=108°,∵DE⊥B′C′,∴∠B′OE=90°,∴∠B′AE=360°﹣∠B′﹣∠E﹣∠B′OE=360°﹣108°﹣108°﹣90°=54°,∴∠BAB′=∠BAE﹣∠B′AE=108°﹣54°=54°,即∠α=54°.故答案为54.三.解答题(共8小题,满分66分)19.【解答】证明:∵AD=5,DB=7,AE=6,EC=4,∴AB=5+7=12,AC=6+4=10,∴====,∴=,又∵∠A=∠A,∴△ADE∽△ACB.20.【解答】解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1或﹣1(舍弃)∴DM=1.21.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),=S△AOC+S△BOC=×3×1+×3×4=7.5;∴S△AOB(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.【解答】解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的有:(﹣3,﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的概率==.23.【解答】解:(1)如图,△A′B′C′就是所求作的三角形;(4分)(2)A′:(4,﹣4),B′:(4,0)C′:(2,﹣4).(7分)24.【解答】解:(1)图象如图所示,(2)由函数图象知当x>时,y与x成反比例函数关系,设y=,将点(5,45)代入,得:k=225,∴y=;(3)不能.理由如下:把y=20代入反比例函数y=得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45,∴第二天早上7:45以后才可以驾车上路,∴第二天早上7:00不能驾车去上班.25.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.26.【解答】解:(1)由题可得AP=4x,CQ=3x.∵BA=BC=20,AC=30,∴BP=20﹣4x,AQ=30﹣3x.若PQ∥BC,则有△APQ∽△ABC,∴=,∴=,解得:x=.∴当x=时,PQ∥BC;(2)存在.∵BA=BC,∴∠A=∠C.只需=.此时=,解得:x=,∴AP=4x=;(3)当CQ=10时,3x=10,∴x=,∴AP=4x=,∴===.。

相关文档
最新文档