函数不等式解法2难题汇编
初中数学方程与不等式之二元二次方程组难题汇编附答案解析
初中数学方程与不等式之二元二次方程组难题汇编附答案解析一、选择题1.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.2.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可.试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①②由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.3.解方程组:222023x xy y x y ⎧--=⎨+=⎩. 【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=②由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.4.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩ 【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.5.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩ 由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组:23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩ 分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.6.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩【答案】115 1x y =⎧⎨=⎩或22135xy=⎧⎨=⎩【解析】【分析】先将①中的x2 -6xy+9y2分解因式为:(x-3y)2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x﹣3y)2=4,∴x﹣3y=±2,∴原方程组可转化为:3323x yx y-=⎧⎨-=⎩或3-223x yx y-=⎧⎨-=⎩解得115 1x y =⎧⎨=⎩或22135xy=⎧⎨=⎩所以原方程组的解为:115 1x y =⎧⎨=⎩或22135xy=⎧⎨=⎩【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则7.解方程组:222449 x xyx xy y⎧+=⎪⎨++=⎪⎩【答案】123434 120033,,,3333 22x xx xy yy y==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩【解析】【分析】由第一个等式可得x(x+y)=0,从而讨论可①x=0,②x≠0,(x+y)=0,这两种情况下结合第二个等式(x+2y)2=9可得出x和y的值.【详解】∵x(x+y)=0,①当x=0时,(x+2y)2 =9,解得:y1=32,y2=−32;②当x≠0,x+y=0时,∵x+2y=±3,解得:33xy=-=⎧⎨⎩或33xy==-⎧⎨⎩.综上可得,原方程组的解是123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ . 【点睛】此题考查二元二次方程组,解题关键在于掌握运算法则.8.解方程组:223403x xy y x y ⎧--=⎨-=⎩ 【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得y =, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.9.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩. 【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①② 由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.10.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩【答案】231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】【分析】将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .【详解】解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩①②③ 由①得:12y x y -=-④ 由②得:382y z y -=-⑤ 将④⑤代入③得:1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,∴2(3)(25)0y y --=,3y ∴=或52=, 将3y =分别代入④⑤得:2x =,1z =; 将52y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.11.()()22244922120x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩【答案】117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:()()22244922120x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩①②将①因式分解得:2(2)9x y -=,∴23x y -=或23x y -=-将②因式分解得:(24)(23)0x y x y +-++=∴240x y +-=或230x y ++=∴原方程化为:23240x y x y -=⎧⎨+-=⎩或23230x y x y -=⎧⎨++=⎩或23240x y x y -=-⎧⎨+-=⎩或23230x y x y -=-⎧⎨++=⎩解上述方程组得:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ ∴原方程组的解为:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.12.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得 ()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩ 解得8020%x y =⎧⎨=⎩ 80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.13.解下列方程组:(1)222220560x y x xy y ⎧+=⎨-+=⎩(2)217,11 1.x y x y x y x y⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩ 【答案】(1)3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩2)112512x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)把原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩再分别解这两个方程组可得答案. (2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案. 【详解】解:(1)因为222220560x y x xy y ⎧+=⎨-+=⎩ 把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩因为222020x y x y ⎧+=⎨-=⎩把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩ 同理解222030x y x y ⎧+=⎨-=⎩得方程组的解是x y ⎧=⎪⎨=⎪⎩或x y ⎧=-⎪⎨=⎪⎩所以原方程组的解是:3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩(2)因为217,111.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩①② 所以①+②得:36x y =+,所以12x y +=,把12x y +=代入② 得:13x y -=-, 所以1213x y x y ⎧+=⎪⎪⎨⎪-=-⎪⎩,解得:112512x y ⎧=⎪⎪⎨⎪=⎪⎩ 经检验112512x y ⎧=⎪⎪⎨⎪=⎪⎩是原方程组的解,所以原方程的解是112512x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.14.解方程:22310x y x y ⎧-=-⎨++=⎩【答案】12x y =⎧⎨=-⎩【解析】【分析】本题可用代入消元法进行求解,即把方程2写成x=-1-y ,代入方程1,得到一个关于y 的一元二次方程,求出y 值,进而求x .【详解】解:()()2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)把(3)代入(1):22(1)3y y ---=-∴2y =-∴1x =原方程组的解是12x y =⎧⎨=-⎩ 【点睛】本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.15.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】解:222603x y y mx ⎧+-=⎨=+⎩①② 把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±, 当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.16.解方程: 【答案】【解析】 解:原方程组即为···································· (2分)由方程(1)代人(2)并整理得: ······························································· (2分) 解得,························································ (2分) 代人得17.解方程组:222220,21,x xy y x xy y ⎧--=⎨++=⎩ 【答案】1123;13x y ⎧=⎪⎪⎨⎪=⎪⎩222313x y ⎧=-⎪⎪⎨⎪=-⎪⎩【解析】【分析】先对方程①②分解因式转化为两个一元一次方程,然后联立,组成4个二元一次方程组,解之即可.【详解】2222x 2y 0x 2y 1xy xy ⎧--=⎨++=⎩①②, 由①得 (x+y )(x-2y )=0,∴x+y=0或x-2y=0,由②得 (x+y )2=1,∴x+y=1或x+y=-1,所以原方程组化为01x y x y +=⎧⎨+=⎩或01x y x y +=⎧⎨+=-⎩或201x y x y -=⎧⎨+=⎩或201x y x y -=⎧⎨+=-⎩, 所以原方程组的解为121222x x 3311y y 33⎧⎧==-⎪⎪⎪⎪⎨⎨⎪⎪==-⎪⎪⎩⎩. 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.18.解方程22220x y x xy y -=⎧⎨--=⎩①② 【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩. 【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.19.解方程组:2234021x xy y x y ⎧--=⎨+=⎩. 【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【解析】【分析】方程组中第一个方程可因式分解为两个二元一次方程,这两个方程与组中的另一个方程组成两个二元一次方程组,解这两个二元一次方程组即可求得原方程组的解.【详解】解:2234021x xy y x y ①②⎧--=⎨+=⎩, 由①得:(x ﹣4y )(x +y )=0,∴x ﹣4y =0或x +y =0.原方程组可化为4021x y x y -=⎧⎨+=⎩,021x y x y +=⎧⎨+=⎩. 解4021x y x y -=⎧⎨+=⎩,得112316x y ⎧=⎪⎪⎨⎪=⎪⎩;解021x y x y +=⎧⎨+=⎩,得,2211x y =-⎧⎨=⎩. ∴原方程组的解为112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【点睛】本题考查了二元二次方程组的解法,熟练掌握解法是求解的关键.20.解方程组:22560{21x xy y x y +-=-=①②【答案】11613{113x y ==-,221{1x y ==. 【解析】【分析】 先将方程①变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0,分别与方程②组成二元一次方程组,从而求出方程的解.【详解】解:方程①可变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0将它们与方程②分别组成方程组,得(Ⅰ)6021x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,解方程组(Ⅱ)11x y =⎧⎨=⎩, 所以原方程组的解是11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 故答案为11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 【点睛】此题是解高次方程,解题思路与解一元一次方程组差不多,都是先消元再代入来求解,只是计算麻烦点.。
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案
所以9-m<0
解得m>9
故选:A.
点睛:此题主要考查了非负数的应用,关键是根据平方数和绝对值的非负性构造二元一次方程组.
2.二元一次方程 的正整数解有()
A.1组B.2组C.3组D.4组
【答案】A
【解析】
【分析】
通过将方程变形,得到以 的代数式,利用倍数逻辑关系,枚举法可得.
【详解】
∵由 可得, , 是正整数.
16.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )
A.106cmB.110cmC.114cmD.116cm
【答案】A
【解析】
【分析】
通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.
x-y=-1.
故选A.
【点睛】
本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.
12.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()
A. B. C. D.
【答案】A
【解析】
【分析】
设有x人,物品价值y钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组.
最新初中数学方程与不等式之二元一次方程组难题汇编及解析(1)
最新初中数学方程与不等式之二元一次方程组难题汇编及解析(1)一、选择题1.若215(3)()x mx x x n +-=++,则m 的值为()A .-2B .2C .-5D .5【答案】A 【解析】 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解. 【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =- ∴m 的值为2-. 故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.2.方程组的解为,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4【答案】C 【解析】 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解. 【详解】 根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5 故被遮盖的两个数分别为5和1. 故选C. 【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.3.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.4.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A .1204016x y y x +=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x +=⎧⎨=⨯⎩D .以上都不对【答案】C 【解析】 【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x =40y ; 制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x +y =120, 故可得方程组12040210x y y x +=⎧⎨=⨯⎩.故选:C . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.5.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组. 【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,故选D . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.6.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( )A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x文钱,乙原有y文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.7.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =. 故选:B 【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.8.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x 个班,分配到的入场券有y 张,列出方程组为( )A .1051215x y x y +=⎧⎨-=⎩B .1051215x yx y -=⎧⎨+=⎩C .1051215x y x y =-⎧⎨+=⎩D .1051215x y x y -=⎧⎨=+⎩【答案】A 【解析】 【分析】假设初一班级共有x 个班,分配到的入场券有y 张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组. 【详解】设初一班级共有x 个班,分配到的入场券有y 张,则1051215x yx y +=⎧⎨-=⎩. 故选:A . 【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( )A .2018B .2019C .2020D .2021【答案】D 【解析】 【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可. 【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①②①+②得 5x +5y =5k-5, ∴x +y =k -1. ∵2020x y +=, ∴k -1=2020, ∴k=2021. 故选:D . 【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( )A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A 【解析】 【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可. 【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩,故选:A . 【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.11.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩【答案】B 【解析】 【分析】根据路程=时间乘以速度得到方程351.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.12.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C 【解析】 【分析】先解方程组求得5x m =+、3y m =-,再将其相减即可得解. 【详解】解:∵53x m y m -=⎧⎨+=⎩①②由①得,5x m =+ 由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=. 故选:C 【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.13.已知点()3,1P -关于y 轴的对称点(),1Q a b b +-,则b a 的值为( ) A .9 B .25C .32D .16【答案】B 【解析】 【分析】根据关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,即可求出a 、b ,从而求出b a 的值. 【详解】解:∵点P (3,1-)关于y 轴的对称点(),1Q a b b +-,∴311+=-⎧⎨-=-⎩a b b 解得:52a b ìï=-í=ïïïî ∴()2-5=25=b a 故选:B. 【点睛】此题考查的是求一个点关于y 轴的对称点,掌握关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,是解决此题的关键.14.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1C .2D .无数【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】 解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.15.|21|0a b -+=,则2019()b a -等于( ) A .1- B .1C .20195D .20195-【答案】A 【解析】 【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值. 【详解】12110a b -+=, 所以50,210,a b a b ++=⎧⎨-+=⎩①②由②,得21b a =+③,将③代入①,得2150a a +++=, 解得2a =-, 把2a =-代入③中, 得3b =-, 所以20192019()(1)1b a -=-=-.故选A. 【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.16.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩ D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ).A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A 【解析】 【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可. 【详解】解325x y m x y m -=+⎧⎨+=⎩,得212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ ,解之得 m >2. 故选A. 【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( )A .4B .1-C .2D .1【答案】D 【解析】 【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值. 【详解】2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.19.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A【解析】【分析】【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得: 2010x y x z y z =+⎧⎨-=++⎩解得z=5答:被移动石头的重量为5克.故选A .【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.20.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=10【答案】A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.。
(专题精选)初中数学方程与不等式之二元二次方程组难题汇编及解析
(专题精选)初中数学方程与不等式之二元二次方程组难题汇编及解析一、选择题1.解方程组22222()08x y x y x y ⎧-++=⎨+=⎩【答案】121231133113x x y y ⎧⎧=-=--⎪⎪⎨⎨=+=-⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x y x y ⎧-++=⎨+=⎩①②, ①式左边分解因式得,()20x y x y -++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i )22208x y x y -+=⎧⎨+=⎩或(ii )22+08x y x y =⎧⎨+=⎩ 解方程组(i )得,121231133113x x y y ⎧⎧=-=--⎪⎪⎨⎨=+=-⎪⎪⎩⎩, 解方程组(ii )得,3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩, 所以,原方程组的解是:121231133113x x y y ⎧⎧=-=--⎪⎪⎨⎨=+=-⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.2.阅读材料,解答问题材料:利用解二元一次方程组的代入消元法可解形如的方程组.如:由(2)得,代入(1)消元得到关于的方程:, 将代入得:,方程组的解为 请你用代入消元法解方程组:【答案】解:由(1)得,代入(2)得化简得:, 把,分别代入得:, ,【解析】这是阅读理解题,考查学生的阅读理解能力,把二元二次方程组利用代入消元转化成一元二次方程,解出一元二次方程的解,再求另一个未知数的解即可3.直角坐标系xOy 中,有反比例函数()830y x =>上的一动点P ,以点P 为圆心的圆始终与y 轴相切,设切点为A(1)如图1,⊙P 运动到与x 轴相切时,求OP 2的值.(2)设圆P 运动时与x 轴相交,交点为B 、C ,如图2,当四边形ABCP 是菱形时, ①求出A 、B 、C 三点的坐标.②设一抛物线过A 、B 、C 三点,在该抛物线上是否存在点Q ,使△QBP 的面积是菱形ABCP 面积的12?若存在,求出所有满足条件的Q 点的坐标;若不存在,说明理由.【答案】(1)32)①A (0,3B (2,0),C (6,0);②存在,满足条件的Q 点有(0,14,8,6,0).【解析】【分析】(1)当⊙P 分别与两坐标轴相切时,PA ⊥y 轴,PK ⊥x 轴,x 轴⊥y 轴,且PA =PK ,进而得出PK 2,即可得出OP 2的值;(2)①连接PB ,设AP =m ,过P 点向x 轴作垂线,垂足为H ,则PH =sin60°BP 2m =,P (m ,2),进而得出答案; ②求直线PB 的解析式,利用过A 点或C 点且平行于PB 的直线解析式与抛物线解析式联立,列方程组求满足条件的Q 点坐标即可.【详解】解:(1)∵⊙P 分别与两坐标轴相切,∴PA ⊥OA ,PK ⊥OK .∴∠PAO =∠OKP =90°.又∵∠AOK =90°,∴∠PAO =∠OKP =∠AOK =90°.∴四边形OKPA 是矩形.又∵AP =KP ,∴四边形OKPA 是正方形,∴OP 2=OK 2+PK 2=2PK •OK =2xy ==(2)①连结BP ,则AP =BP ,由于四边形ABCP 为菱形,所以AB =BP =AP ,△ABP 为正三角形,设AP =m ,过P 点向x 轴作垂线,垂足为H ,则PH =sin60°BP =,P (m ), 将P 点坐标代入到反比例函数解析式中,2= 解得:m =4,(m =﹣4舍去),故P (4,),则AP =4,OA =OB =BH =2,CH =BH =2,故A (0,B (2,0),C (6,0);②设过A 、B 、C 三点的抛物线解析式为y =a (x ﹣2)(x ﹣6),将A 点坐标代入得,a =,故解析式为2y =+ 过A 点作BP 的平行线l 抛物线于点Q ,则Q 点为所求.设BP所在直线解析式为:y=kx+d,则20423k dk d+=⎧⎪⎨+=⎪⎩,解得:323 kd⎧=⎪⎨=-⎪⎩,故BP所在的直线解析式为:323y x=-,故直线l的解析式为323y x=+,直线l与抛物线的交点是方程组23432363323y x xy x⎧=-+⎪⎨⎪=+⎩的解,解得:1123xy=⎧⎪⎨=⎪⎩,2214163xy=⎧⎪⎨=⎪⎩,故得Q(0,23),Q(14,163),同理,过C点作BP的平行线交抛物线于点Q1,则设其解析式为:y3=x+e,则0=63+e,解得:e=﹣63,故其解析式为:y3=x﹣63,其直线与抛物线的交点是方程组234323363y x xy x⎧=-+⎪⎨⎪=-⎩的解,可求得Q1(8,23)和(6,0).故所求满足条件的Q点有(0,23),(14,163),(8,23)和(6,0).【点睛】本题考查了二次函数的综合运用以及二元二次方程组解法和正方形的判定以及菱形的性质等知识,关键是由菱形、圆的性质,数形结合解题.4.已知A ,B 两地公路长300km ,甲、乙两车同时从A 地出发沿同一公路驶往B 地,2小时后,甲车接到电话需返回这条公路上与A 地相距105km 的C 处取回货物,于是甲车立即原路返回C 地,取了货物又立即赶往B 地(取货物的时间忽略不计),结果两下车同时到达B 地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A 地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR 和线段OR .(1)求乙车从A 地到B 地所用的时问;(2)求图中线段PQ 的解析式(不要求写自变量的取值范围);(3)在甲车返回到C 地取货的过程中,当x= ,两车相距25千米的路程.【答案】(1)5h (2)90360y x =-+(3)67h 30或77h 30【解析】(1)由图可知,求甲车2小时行驶了180千米的速度,甲车行驶的总路程,再求甲车从A 地到B 地所花时间;即可求出乙车从A 地到B 地所用的时间;(2)由题意可知,求出线段PQ 的解析式;(3)由路程,速度,时间的关系求出x 的值.(1)解:由图知,甲车2小时行驶了180千米,其速度为180290÷=(km/h ) 甲车行驶的总路程为: ()2180105300450⨯-+=(km)甲车从A 地到B 地所花时间为: 450905÷=(h )又∵两车同时到达B 地,∴乙车从A 地到B 地所用用的时间为5h.(2)由题意可知,甲返回的路程为18010575-=(km),所需时间为575906÷=(h ),517266+=.∴Q 点的坐标为(105, 176).设线段PQ 的解析式为: y kx b =+, 把(2,180)和(105, 176)代入得: 1802{171086k b k b =+=+,解得90360k b =-=,, ∴线段PQ 的解析式为90360y x =-+.(3)6730 h 或7730“点睛”本题考查了一次函数的应用,解题关键是明确题意,找出所求问题需要的条件,利用数型结合的思想解答问题.5.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或 44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.6.解方程组 1730x y xy -=⎧⎨=-⎩【答案】1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据第一个式子,得出x 与y 的关系,代入第二个式子求解.【详解】解:1730x y xy -=⎧⎨=-⎩①②, 由①,得x=17+y③,把③代入②式,化简得y 2+17y+30=0,解之,得y 1=-15,y 2=-2.把y 1=-15代入x=17+y ,得x 1=2,把y 2=-2代入x=17+y ,得x 2=15.故原方程组的解为1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】 本题考查了二元二次方程的解法,解题的关键是运用代入法得出x 、y 的值.7.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.8.解方程组:231437xy y y x ⎧-=⎨-=⎩①②【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2,所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.9.解方程组:223403x xy y x y ⎧--=⎨-=⎩ 【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得326y -±=⨯, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.10.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.11.21220y x x xy -=⎧⎨--=⎩【答案】10x y =-⎧⎨=⎩或23x y =⎧⎨=⎩【解析】【分析】本题考查二元二次方程组的解法,在解题时观察本题的特点,可用代入法先消去未知数y ,求出未知数x 的值后,进而求得这个方程组的解.【详解】解:由①得:1y x =+③把③代入②,得22(1)20x x x -+-=,整理得:220x x --=,解得11x =-,22x =.当11x =-时,1110y =-+=当22x =时,2213y =+=∴原方程组的解为1110x y =-⎧⎨=⎩,2223x y =⎧⎨=⎩.本题考查了二元二次方程组的解法,二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组.12.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y ⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩,解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩, 解得:1213x y ⎧=⎪⎪⎨⎪=⎪⎩, 经检验,1213x y ⎧=⎪⎪⎨⎪=⎪⎩是方程组的解. 【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.13.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩【答案】114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.14.如图在矩形ABCD 中,AB= n AD,点E 、F 分别在AB 、AD 上且不与顶点A 、B 、D 重合, AEF BCE ∠=∠, 圆O 过A 、E 、F 三点。
高考数学压轴专题新备战高考《不等式》难题汇编含答案解析
【高中数学】《不等式》知识点一、选择题1.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4 B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以33323323a b a b a b a b ++=+=≥⋅, 故34a b +≥(当且仅当a b =时取等号).又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.2.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3.若33log (2)1log a b ab +=+42a b +的最小值为( )A .6B .83C .163D .173【答案】C 【解析】 【分析】由33log (2)1loga b ab +=+213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案.【详解】因为33log (2)1loga b ab +=+()()3333log 2log 3log log 3a b ab ab +=+=,所以,23a b ab +=,等式两边同时除以ab 得213b a+=,且0,0a b >>, 所以12118211642(42)()(8)(8216)3333a b a b a b b a b a +=++=++≥+=, 当且仅当82a b b a=,即2b a =时取等号,所以42a b +的最小值为163.故选:C. 【点睛】本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题.4.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2nx x ⎛ ⎝的展开式中2x 项的系数为( ) A .60 B .80C .90D .120【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,32z x y=-+,即322zy x=+,故z表示直线与y截距的2倍,根据图像知:当1,1x y=-=时,32z x y=-+的最大值为5,故5n=.52xx⎛-⎪⎝⎭展开式的通项为:()()35552155221rrr rr r rrT C x C xx---+⎛=⋅-=⋅⋅-⋅⎪⎝⎭,取2r=得到2x项的系数为:()225252180C-⋅⋅-=.故选:B.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力. 5.若,x y满足约束条件360601x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则122yx⎛⎫⋅ ⎪⎝⎭的最小值为( )A.116B.18C.1 D.2【答案】A【解析】【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yxx y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.6.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--,当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.7.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C.2 D.1【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.8.已知函数()()22log 1f x x x =+-,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值. 【详解】 因为2210,x x x x x x +->-≥-=所以定义域为R ,因为()22log 1f x x x =++,所以()f x 为减函数 因为()22log 1f x x x=++,()()22log 1f x x x -=++,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=,所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭, 因为9926b a b a a b a b+≥⨯=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则4y x -的最大值为( )A .72-B .52-C .32-D .1-【答案】D 【解析】 【分析】画出平面区域,结合目标函数的几何意义,求解即可. 【详解】该不等式组表示的平面区域,如下图所示4y x-表示该平面区域中的点(),x y 与(0,4)A 确定直线的斜率 由斜率的性质得出,当区域内的点为线段AB 上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D 【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.11.若0a >,0b >,23a b +=,则36a b+的最小值为( ) A .5 B .6C .8D .9【答案】D 【解析】 【分析】把36a b +看成(36a b +)×1的形式,把“1”换成()123a b +,整理后积为定值,然后用基本不等式求最小值. 【详解】∵3613a b +=(36a b +)(a +2b ) =13(366b aa b+++12) ≥1366b a a b⋅=)9 等号成立的条件为66b aa b=,即a=b=1时取等所以36a b +的最小值为9. 故选:D . 【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题12.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .⎫+∞⎪⎪⎝⎭D .⎫+∞⎪⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得3t <-或3t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.13.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.14.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.15.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】C【解析】【分析】利用基本不等式和充分,必要条件的判断方法判断.【详解】222x y x y ++≥Q 且224x y +≤ , 224222x y x y x y ++∴≤≤⇒+≤ ,等号成立的条件是x y =, 又2x y xy +≥Q ,0,0x y >>221xy xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤, 反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C本题考查基本不等式和充分非必要条件的判断,属于基础题型.16.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .12k > B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】【分析】 联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】 解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021k k k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<. 故选:D .【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.17.若实数x ,y 满足不等式组11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最小值是( )A .3B .32C .0D .3-【答案】D【解析】根据已知的约束条件画出满足约束条件的可行域,再由目标函数2z x y =+可得2y x z =-+,此时Z 为直线在y 轴上的截距,根据条件可求Z 的最小值.【详解】解:作出不等式组所表示的平面区域,如图所示得阴影部分的ABC ∆,由2z x y =+可得2y x z =-+,则z 为直线在y 轴上的截距把直线:2l y x =-向上平移到A 时,z 最小,此时由1y x y =⎧⎨=-⎩可得(1,1)A -- 此时3z =-,故选:D .【点睛】本题考查用图解法解决线性规划问题,分析题目的已知条件,找出目标函数中的z 的意义是关键,属于中档题.18.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数, 2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.19.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( )A .(1,1)-B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A【解析】【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可.【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0-当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A .【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.20.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( ) A .5B .455C .5D .25 【答案】C【解析】【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩, 由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离,所以AB=故选:C.【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.。
高考数学压轴专题最新备战高考《不等式》难题汇编含答案解析
【最新】《不等式》专题一、选择题1.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.2.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.3.若,x y满足约束条件360601x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则122yx⎛⎫⋅ ⎪⎝⎭的最小值为( )A.116B.18C.1 D.2【答案】A【解析】【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A-,(5,1)B,(3,3)C,因为1222yx x y-⎛⎫⋅=⎪⎝⎭,令z x y=-,当直线y x z=-经过A时,z取得最小值,所以z的最小值为min314z=--=-,则1222yx x y-⎛⎫⋅=⎪⎝⎭的最小值为41216-=.故选:A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.5.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( )A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.6.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B.|||b a < C .ln ln a b b a -<- D.|||b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的.故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.7.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即2()320f x x bx '=+>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为32()1f x x bx x =+++,所以2()32f x x bx '=++()g x 的定义域为R ,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 2a c b B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.8.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C.【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.9.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.10.已知ABC V 外接圆的半径2R =,且223sin 2AA =.则ABC V 周长的取值范围为( ) A .(23,4]B .(4,43]C .(43,423]+D .(423,63]+【答案】C 【解析】 【分析】 由223sin 2A A =及倍角公式可得23A π=,2sin 23a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】 由题意,232cos 112A A -=-,即3cos 1A A =-,可化为 333A π⎛⎫-= ⎪⎝⎭,即3sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=, 即23A π=,2sin 23a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.13.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1C .3-D 31【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当3m =时,等号成立. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.14.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.15.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.16.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.17.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.18.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.19.若0a >,0b >,23a b +=,则36a b +的最小值为( ) A .5B .6C .8D .9【答案】D【解析】【分析】 把36a b +看成(36a b +)×1的形式,把“1”换成()123a b +,整理后积为定值,然后用基本不等式求最小值.【详解】 ∵3613a b +=(36a b +)(a +2b ) =13(366b a a b +++12) ≥13=9 等号成立的条件为66b a a b =,即a=b=1时取等 所以36a b+的最小值为9. 故选:D .【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题20.已知,x y 满足约束条件24030220x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则目标函数22x y z -=的最大值为( ).A .128B .64C .164D .1128【答案】B【解析】【分析】画出可行域,再求解2x y -的最大值即可.【详解】不等式组表示的平面区域如下图阴影部分所示.设2x y μ=-,因为函数2x y =是增函数,所以μ取最大值时,z 取最大值.易知2x y μ=-在A 点处取得最大值.联立220,30x y x y +-=⎧⎨+-=⎩解得4,1.x y =⎧⎨=-⎩即(4,1)A -.所以max 42(1)6μ=-⨯-=,所以6max 264z ==.故选:B【点睛】本题考查线性规划,考查化归与转化思想以及数形结合思想.。
方程与不等式之二元二次方程组难题汇编及答案
方程与不等式之二元二次方程组难题汇编及答案一、选择题1.解方程组:22+2-0110x y x y ⎧=⎨-+=⎩【答案】:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】【分析】把(2)変形后代入(1)便可解得答案【详解】22+2-1010x y x y ⎧=⎪⎨-+=⎪⎩①② 由②得:x=y-1代入①得:12023y y =⎧⎪⎨=⎪⎩, 分别代入②得:12113x x =-⎧⎪⎨=-⎪⎩, 故原方程组的解为:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【点睛】此题考查高次方程,解题关键在于掌握运算法则2.解方程组:222321x y x xy y +=⎧⎨-+=⎩【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ 【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①② 由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.3.解方程组:22229024x y x xy y ⎧-=⎨-+=⎩【答案】113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ 【解析】【分析】将原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==,所以有3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==,然后解4个二元一次方程组就可以求出其值.【详解】原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==, 原方程组变为四个方程组为:3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==,解这四个方程组为:113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩. 故答案为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩.4.解方程组:【答案】,. 【解析】【分析】先由①得x=4+y ,将x=4+y 代入②,得到关于y 的一元二次方程,解出y 的值,再将y 的值代入x=4+y 求出x 的值即可.【详解】解:由①得:x =4+y ③,把③代入②得:(4+y )2-2y 2=(4+y )y ,解得:y 1=4,y 2=-2,代入③得:当y 1=4时,x 1=8,当y 2=-2时,x 2=2,所以原方程组的解为:,. 故答案为:,. 【点睛】本题考查了解高次方程.5.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.6.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩【答案】114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】 本题考查了高次方程组,将高次方程化为一次方程是解题的关键.7.如图,在平面直角坐标系中,直线l :沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.【答案】(1);(2);(3)(1,),(3,0).【解析】【分析】(1)设直线AB的解析式为y=kx+b,先求出直线与x轴、y轴交点坐标,根据沿x轴翻折,得到A、B的坐标,把A、B的坐标代入直线AB的解析式y=kx+b,即可求出直线AB的解析式;(2)设抛物线的顶点为P(h,0),得出抛物线解析式为:,根据DF∥x轴,得出F的坐标,把F的坐标代入直线AB 的解析式即可求出h的值,即可得到答案;(3)过M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,求出FN的值,根据三角形的面积公式求出△MNF和△AFH的面积,根据之间的等量关系即可求出k的值,设直线MN的解析式为:y=kx+b,把M、N(6,-4),代入得到方程组,求出方程组的解即可得到直线MN的解析式,解由方程和的解即可得出P、Q的坐标.【详解】(1)解:设直线AB的解析式为y=kx+b直线与x轴、y轴交点分别为(-2,0),(0,),沿x轴翻折,∵直线,直线AB与x轴交于同一点(-2,0)∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称∴B(0,),∴解得k=,b=,∴直线AB的解析式为.(2)解:设抛物线的顶点为Q(h,0),抛物线解析式为:∴D(0,).∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得 h1=3,h2=(舍去),∴抛物线的解析式为.(3)解:过M作MT⊥FH于T,∴Rt△MTF∽Rt△AGF.∴FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,则FN=AH+HF+AF)-FM=16-5k,∴S△MNF=(AH+HF+AF)-FM=16-5k,又∵S△MNF=S△AFH.∴=24,解得k==或k=2 (舍去),∴FM=6,FT=,MT=,GN=4,TG=,∴M(,))、N(6,-4),代入得:=k+b且-4=6k+b,解得:k=,b=4,∴y=x+4,联立y=x+4与y=,求得P(1,),Q(3,0).答:存在P的坐标是(1,),Q的坐标是(3,0).【点睛】本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组、解二元二次方程组,三角形相似的性质和判定,图形的旋转等知识点,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.8.22x -y -3x 10y ⎧=⎨++=⎩,①,② 【答案】x 1y -2=⎧⎨=⎩【解析】【分析】根据解二元二次方程组的步骤求解即可.【详解】解:由方程①得:()()x y x-y -3+⋅=,③由方程②得:x y -1+=,④联解③④得x-y=3,⑤联解④⑤得x 1y -2=⎧⎨=⎩ 所以原方程组的解为x 1y -2=⎧⎨=⎩ 【点睛】本题考查解二元二次方程组,解二元二次方程组的基本思想是先消元转化为一元二次方程,再降次转化为一元一次方程解之.9.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.10.解方程组:226021x xy y x y ⎧+-=⎨+=⎩ 【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩ ∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.11.解方程组:222221x y x xy y +=⎧⎨++=⎩【答案】1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【解析】【分析】由方程②得出x +y =1,或x +y =﹣1,进而解答即可.【详解】222221x y x xy y +=⎧⎨++=⎩①②,由②可得:x +y =1,或x +y =﹣1,所以可得方程组221x y x y +=⎧⎨+=⎩①③或221x y x y +=⎧⎨+=-⎩①④,解得:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩; 所以方程组的解为:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【点睛】本题考查了解二元二次方程组,关键是根据完全平方公式进行消元解答.12.解方程组: 222403260x y x xy x y ⎧-=⎨-+++=⎩. 【答案】1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩ 【解析】【分析】由①得:2x ﹣y =0,2x +y =0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】222403260x y x xy x y ⎧-=⎨-+++=⎩①②由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解, 所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.13.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩ 【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩ 【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①②, 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.14.2222340441x xy y x xy y ⎧--=⎨++=⎩【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:2222340441x xy y x xy y ⎧--=⎨++=⎩①②将①因式分解得:(4)()0x y x y -+=,∴40x y -=或0x y +=将②因式分解得:2(2)1x y +=∴21x y +=或21x y +=-∴原方程化为:4021x y x y -=⎧⎨+=⎩,4021x y x y -=⎧⎨+=-⎩,021x y x y +=⎧⎨+=⎩,021x y x y +=⎧⎨+=-⎩解这些方程组得:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ ∴原方程组的解为:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.15.解方程组:222920x xy y x y ⎧++=⎨--=⎩. 【答案】5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】先变形(1)得出x+y=1,x+y=-1,作出两个方程组,求出方程组的解即可.【详解】22291202x xy y x y ()()⎧++=⎨--=⎩, 由(1)得出x+y=3,x+y=-3,故有32x y I x y +=⎧⎨-=⎩或x+y=-3II x-y=2⎧⎨⎩解得:5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩原方程组的解是5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组和解高次方程组的应用,解此题的关键是能把高次方程组转化成二元一次方程组.16.如图在矩形ABCD 中,AB= n AD,点E 、F 分别在AB 、AD 上且不与顶点A 、B 、D 重合, AEF BCE ∠=∠, 圆O 过A 、E 、F 三点。
函数不等式解法2难题汇编
不等式解法2难题汇编一.选择题(共5小题)1.设函数f(x)的定义域是[﹣4,4],其图象如图,那么不等式的解集为()A.[﹣2,1] B.[﹣4,﹣2]∪[1,4]C.[﹣4,﹣π)∪[﹣2,0)∪[1,π)D.[﹣4,﹣π)∪(1,π)2.已知函数,则不等式f(1﹣x2)>f(2x)的解集是()A.B.C.D.3.已知f(x)的定义在(0,3)上的函数,f(x)的图象如图所示,那么不等式f(x)cosx <0的解集是()A.(0,1)∪(2,3)B.C.D.(0,1)∪(1,3)4.已知e是自然对数的底数,函数f(x)的定义域为R,2f(x)•2f′(x)>2,f(0)=8,则不等式>1的解集为()A.(﹣∞,0)B.(0,+∞)C.(1,+∞)D.(﹣∞,1)5.设函数f(x)=x3﹣3x2+(8﹣a)x﹣5﹣a,若存在唯一的正整数x0,使得f(x0)<0,则a的取值范围是()A.B.C.D.二.填空题(共15小题)6.定义:关于x的两个不等式f(x)<0和g(x)<0的解集分别为(a,b)和,则称这两个不等式为对偶不等式.如果不等式与不等式2x2+4xsin2θ+1<0为对偶不等式,且,则θ=.7.设函数,则实数a的取值范围是.8.若函数的定义域用D表示,则使f(x)>0对x∈D均成立的实数k的范围是.9.定义区间(c,d],[c,d),(c,d),[c,d]的长度均为d﹣c,其中d>c.则满足不等式的x构成的区间长度之和为.10.若函数则不等式的解集为.11.若对一切x>0恒成立,则a的取值范围是.12.已知函数f(x)=ax2+x﹣b(a,b均为正数),不等式f(x)≥0的解集记为P,集合Q={x|﹣2﹣t<x<﹣2+t},若对于任意正数t,P∩Q≠∅,则﹣的最大值是.13.f(x)=[x](x﹣[x]),[x]为x的整数部分,g(x)=x﹣1,当0≤x≤2012时,f(x)≤g(x)的解集为.14.∀x∈R,且x≠0.不等式恒成立,则实数a的取值范围是.15.已知数列{a n}中a1=1,a2=2,当整数n>1时,S n+1+S n﹣1=2(S n+S1)都成立,则S15=.16.已知函数,若,则实数a的取值范围是.17.设f(x)=x﹣4tanx+2,x∈[﹣1,1],则关于a的不等式f(a2﹣1)+f(1﹣a)>4的解集为.18.已知则f(f(x))>1的解集是.19.使得:C n1+2C n2+3C n3+…+nC n n<2006成立的最大正整数n的值为.20.已知常数a,b∈R,且不等式x﹣alnx+a﹣b<0解集为空集,则ab的最大值为.三.解答题(共6小题)21.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.22.若不等式5﹣x>7|x+1|与不等式ax2+bx﹣2>0同解,而|x﹣a|+|x﹣b|≤k的解集为空集,求实数k的取值范围.23.已知不等式2|x﹣3|+|x﹣4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.24.设函数f(x)=|x﹣a|﹣ax,其中a为大于零的常数.(1)解不等式:f(x)<0;(2)若0≤x≤2时,不等式f(x)≥﹣2恒成立,求实数a的取值范围.25.(1)解不等式:+2x≤5(2)解关于x的不等式:>(a∈R).26.设函数f(x)=e1﹣x+lnx﹣x2.(I)若f(x)的定义域为(,+∞),解不等式f(x)≥0;(Ⅱ)证明:f(x)在区间(0,)上有唯一极值点.不等式解法2难题汇编参考答案与试题解析一.选择题(共5小题)1.(2013•山东模拟)设函数f(x)的定义域是[﹣4,4],其图象如图,那么不等式的解集为()A.[﹣2,1] B.[﹣4,﹣2]∪[1,4]C.[﹣4,﹣π)∪[﹣2,0)∪[1,π)D.[﹣4,﹣π)∪(1,π)【分析】根据函数的图象可得,f(x)小于0时,x的范围;f(x)大于0时,x的范围,;且根据正弦函数图象可知,sinx大于0时,x∈(﹣4,﹣π)∪(0,π);当sinx小于0时,x∈(﹣π,0),则把所求的式子化为f(x)与sinx异号,即可求出不等式的解集.【解答】解:由函数图象可知:当f(x)<0时,﹣4<x<﹣2,1<x<4,或当f(x)>0时,﹣2<x<1;而sinx中的x∈[﹣4,4],当sinx>0时,x∈(﹣4,﹣π)∪(0,π);当sinx<0时,x∈(﹣π,0),∴≤0,转化化为:,或,结合图象得到x∈(﹣4,﹣π)∪[﹣2,0)∪[1,π),所以所求不等式的解集为(﹣4,﹣π)∪[﹣2,0)∪[1,π)故选C.2.(2011•天津校级模拟)已知函数,则不等式f(1﹣x2)>f(2x)的解集是()A.B.C.D.【分析】把原不等式化为①,或②,分别求出①的解集和②的解集,再取并集即得所求.【解答】解:函数,则由不等式f(1﹣x2)>f(2x)可得①,或②.解①得x>,解②得≥x>﹣1+或x<﹣1﹣.故原不等式的解集为,故选D.3.(2002•北京)已知f(x)的定义在(0,3)上的函数,f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是()A.(0,1)∪(2,3)B.C.D.(0,1)∪(1,3)【分析】根据函数的图象可得,f(x)小于0时,x大于0小于1;f(x)大于0时,x大于1小于3,;且根据余弦函数图象可知,cosx大于0时,x大于0小于;当cosx小于0时,x大于小于3,则把所求的式子化为f(x)与cosx异号,即可求出不等式的解集.【解答】解:由函数图象可知:当f(x)<0时,0<x<1;当f(x)>0时,1<x<3;而cosx中的x∈(0,3),当cosx>0时,x∈(0,);当cosx<0时,x∈(,3),则f(x)cosx<0,可化为:或即或,解得:<x<3或0<x<1,所以所求不等式的解集为:(0,1)∪(,3),故选C.4.已知e是自然对数的底数,函数f(x)的定义域为R,2f(x)•2f′(x)>2,f(0)=8,则不等式>1的解集为()A.(﹣∞,0)B.(0,+∞)C.(1,+∞)D.(﹣∞,1)【分析】由题意可得到f(x)+f′(x)>1,而令g(x)=e x[f(x)﹣1],从而可得到g′(x)>0,这便说明g(x)在R上为增函数,而可求得g(0)=7,从而便可得到g(x)>g(0),这样即可得出原不等式的解集.【解答】解:2f(x)•2f′(x)=2f(x)+f′(x)>2;∴f(x)+f′(x)>1;令g(x)=e x[f(x)﹣1],则g′(x)=e x[f(x)+f′(x)﹣1]>0;∴g(x)在R上为增函数;∵f(0)=8;∴g(0)=f(0)﹣1=7;由得,;∴g(x)>g(0);∴x>0;即原不等式的解集为(0,+∞).故选:B.5.(2016秋•唐山月考)设函数f(x)=x3﹣3x2+(8﹣a)x﹣5﹣a,若存在唯一的正整数x0,使得f(x0)<0,则a的取值范围是()A.B.C.D.【分析】设g(x)=x3﹣3x2+8x﹣5,h(x)=a(x+1),在同一个坐标系中画出它们的图象,结合图象找出满足条件的不等式组解之即可.【解答】解:设g(x)=x3﹣3x2+8x﹣5,h(x)=a(x+1),g'(x)=x2﹣6x+8=(x﹣2)(x﹣4),所以x>4或者x<2时函数递增,2<x<4时递减,并且g(1)=,g(2)=,g(3)=1,g(4)=,图象如图,函数h(x)经过(﹣1,0),要使存在唯一的正整数x0,使得f(x0)<0,即g(x)<h(x)有唯一正整数解,所以只要a>0并且即解得;故选:A.二.填空题(共15小题)6.(2014•怀化三模)定义:关于x的两个不等式f(x)<0和g(x)<0的解集分别为(a,b)和,则称这两个不等式为对偶不等式.如果不等式与不等式2x2+4xsin2θ+1<0为对偶不等式,且,则θ=.【分析】先设出不等式的对应方程两个根为a、b,推出不等式的对应方程两个根为a、b,利用韦达定理,求得关于θ的三角方程,根据θ的范围求解即可.【解答】解:不等式与不等式2x2+4xsin2θ+1<0为对偶不等式,设不等式的对应方程两个根为a、b,则不等式2x2+4xsin2θ+1<0对应方程两个根为:所以即:tan2θ=﹣因为,所以故答案为:7.(2015•海南模拟)设函数,则实数a的取值范围是﹣3<a<1.【分析】由于函数为分段函数,可分别讨论当a≥0和a<0两种情况,进而求出实数a的取值范围.【解答】解:函数f(x)为分段函数,当a≥0时,<1,得0≤a<1.当a<0时,<1,解得a>﹣3,即﹣3<a<0,故答案为:﹣3<a<1.8.(2013•浙江模拟)若函数的定义域用D表示,则使f(x)>0对x∈D均成立的实数k的范围是k>或k<或k=1.【分析】由f(x)>0对x∈D均成立,分子分母同时大于0或者小于0,分类讨论,可得结论.【解答】解:①k+1=0时,f(x)=>0等价于2x﹣10>0,x>5,不满足题意,舍去;②2k﹣1=0时,f(x)=>0等价于(3x2+7x﹣14)(3x﹣7)>0,解得x∈(,)∪(,+∞),不满足x≠,舍去;③k≠﹣1且k≠时,分子分母同号,可得(k+1)(2k﹣1)>0且判别式均小于0,可得k >或k<.④当系数对应成比例时,k=1时,f(x)=2>0,满足题意.故答案为:k>或k<或k=1.9.(2013•江苏模拟)定义区间(c,d],[c,d),(c,d),[c,d]的长度均为d﹣c,其中d >c.则满足不等式的x构成的区间长度之和为.【分析】将原不等式转化为一端为乘积,另一端为0,利用穿根法,计算即可求得不等式中的x构成的区间长度之和.【解答】解:依题意,得≥0,即≥0⇔≤0,由a1a2x2﹣2(a1+a2)x+3=0,得其两根为:x1,2=(其中△=4[(a1﹣)2+]),x3,x4=,或;不妨设a1≥a2,判断一下四个根的大小,得到:≤≤≤,所以解集为:[,]∪[,],区间长度=(﹣)+(﹣)=(﹣﹣)+=.10.(2009•北京)若函数则不等式的解集为[﹣3,1] .【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].11.(2010•扬州二模)若对一切x>0恒成立,则a的取值范围是(﹣∞,2] .【分析】转化为函数y=|x﹣a|与y=,通过函数的图象,即可求出a 的取值范围.【解答】解:转化为函数y=|x﹣a|与y=,由函数的图象,y=<,且x=2时y=0,可知a的取值范围是(﹣∞,2]故答案为:(﹣∞,2]12.(2016•盐城模拟)已知函数f(x)=ax2+x﹣b(a,b均为正数),不等式f(x)≥0的解集记为P,集合Q={x|﹣2﹣t<x<﹣2+t},若对于任意正数t,P∩Q≠∅,则﹣的最大值是.【分析】根据不等式解集对应的关系,得到﹣2∈P,然后利用基本不等式进行求解即可.【解答】解:∵不等式f(x)≥0的解集记为P,集合Q={x|﹣2﹣t<x<﹣2+t},若对于任意正数t,P∩Q≠∅,∴﹣2∈P,即f(﹣2)≥0,则4a﹣2﹣b≥0,即1≤2a﹣,又由题意知,﹣的最大值必是正数,则﹣=(﹣)×1=(﹣)×(2a﹣)≤2﹣﹣+=﹣2=﹣2=,即﹣的最大值是,故答案为:13.(2013•颍泉区校级二模)f(x)=[x](x﹣[x]),[x]为x的整数部分,g(x)=x﹣1,当0≤x≤2012时,f(x)≤g(x)的解集为[1,2012] .【分析】根据0≤x≤2012,分两种情况考虑:当0≤x<1时,[x]=0,可得出x﹣1小于0,进而确定出f(x)=0,g(x)小于0,进而得到此时f(x)大于g(x),不合题意;当1≤x ≤2012时,假设n≤x<n+1,则[x]=n,表示出f(x),利用作差法判断出f(x)﹣g(x)的符合为负,可得出不等式f(x)≤g(x)的解集.【解答】解:当0≤x<1时,[x]=0,x﹣1<0,∴f(x)=0,g(x)=x﹣1<0,即f(x)>g(x),不合题意;当1≤x≤2012时,假设n≤x<n+1,则[x]=n,∴f(x)=n(x﹣n),又g(x)=x﹣1,∴f(x)﹣g(x)=n(x﹣n)﹣x+1=(n﹣1)x﹣n2+1<(n﹣1)(n+1)﹣n2+1=0,∴不等式f(x)≤g(x)的解集为[1,2012].故答案为:[1,2012]14.(2012•洞口县校级模拟)∀x∈R,且x≠0.不等式恒成立,则实数a的取值范围是4<a<6.【分析】不等式对于一切非零实数x均成立,可以先求出的最小值,然后利用|a﹣5|+1小于这个最小值即可求解a的取值范围.【解答】解:当x>0时,;当x<0时,.从而恒成立,所以不等式对于一切非零实数x均成立,可转化为|a﹣5|+1<2,即|a﹣5|<1即﹣1<a﹣5<1所以4<a<6.故答案为:4<a<6.15.(2012•五华区校级模拟)已知数列{a n}中a1=1,a2=2,当整数n>1时,S n+1+S n﹣1=2(S n+S1)都成立,则S15=211.【分析】将n>1时,S n+1+S n﹣1=2(S n+S1)转化为:n>1时,a n+1﹣a n=2,利用等差数列的求和公式即可求得答案.【解答】解:∵数列{a n}中,当整数n>1时,S n+1+S n﹣1=2(S n+S1)都成立,⇔S n+1﹣S n=S n﹣S n﹣1+2⇔a n+1﹣a n=2(n>1).∴当n≥2时,{a n}是以2为首项,2为公差的等差数列.∴S15=14a2+×2+a1=14×2+×2+1=211.故答案为:211.16.(2012•盱眙县校级模拟)已知函数,若,则实数a的取值范围是.【分析】根据分段函数g(x)的解析式作出其图象,如图所示.再对x进行分类讨论:①当x>时,g(x)是增函数,若;②当x≤时,g(x)=,若,得出关于a的不等关系,最后综上①②所述,即可得出实数a的取值范围.【解答】解:根据函数g(x)的解析式作出其图象,如图所示.①当x>时,g(x)是增函数,若,则,解得:﹣1≤a<0或a≤≥1;②当x≤时,g(x)=,若,则,解得:﹣≤a≤﹣;综上①②所述,实数a的取值范围是故答案为:.17.(2012•铁东区校级模拟)设f(x)=x﹣4tanx+2,x∈[﹣1,1],则关于a的不等式f(a2﹣1)+f(1﹣a)>4的解集为{a|0<a<1} .【分析】令h(x)=x﹣4tanx,x∈[﹣1,1],不等式可化为h(a2﹣1)+h(1﹣a)>0.再由由h(x)=x﹣4tanx 是奇函数,定义域为[﹣1,1],不等式进一步化为h(a2﹣1)>h (a﹣1).解不等式组求得a的范围,即为所求.【解答】解:令h(x)=x﹣4tanx,x∈[﹣1,1],则f(x)=h(x)+2,关于a的不等式f (a2﹣1)+f(1﹣a)>4 即h(a2﹣1)+2+h(1﹣a)+2>4,即h(a2﹣1)+h(1﹣a)>0.再由h(x)=x﹣4tanx 是奇函数,定义域为[﹣1,1],可得不等式即h(a2﹣1)>﹣h(1﹣a)=h(a﹣1),即h(a2﹣1)>h(a﹣1).∴.解得0<a<1,故不等式的解集为{a|0<a<1},故答案为{a|0<a<1}.18.(2011•富阳市校级模拟)已知则f(f(x))>1的解集是.【分析】分两种情况考虑:当x大于等于0时,根据分段函数解析式可得f(x)=,化简所求不等式的左边,再根据也大于等于0,再根据f(x)=,可把所求不等式化为关于x 的一元一次不等式,求出不等式的解集与x大于等于0求出交集,即为原不等式的解集;当x 小于0时,根据分段函数解析式得出f (x )=x 2,而x 2大于0,再根据f (x )=,可把所求不等式化为关于x 的一元二次不等式,分解因式后,根据两数相乘积大于0,可得两因式同号,转化为两个不等式组,求出不等式组的解集,与x 小于0求出交集,即为原不等式的解集,综上,求出两解集的并集即可得到所求不等式的解集. 【解答】解:当x ≥0时,f (x )=, ∵≥0,∴f (f (x ))=f ()=, 所求不等式化为>1,解得x >4,此时原不等式的解集为(4,+∞);当x <0时,f (x )=x 2, ∵x 2>0,∴f (f (x ))=f (x 2)=,所求不等式可化为>1,即(x +)(x ﹣)>0,可化为或,解得:x >或x <﹣,此时原不等式的解集为(﹣∞,﹣),综上,原不等式的解集为.故答案为:19.(2006•杭州校级模拟)使得:C n 1+2C n 2+3C n 3+…+nC n n<2006成立的最大正整数n 的值为 8 .【分析】令不等式左边,即C n 1+2C n 2+3C n 3+…+nC n n=t ,根据C n m=C n n ﹣m,得到t=C n n ﹣1+2C n n﹣2+3C n n ﹣3+…+(n ﹣1)C n 1+nC n n ,两式相加根据组合数的公式可得2t=n ×2n +nC n n,进而得到此式子小于2006的2倍,验证即可得到最大正整数n 的值.【解答】解:由题意令t=C n 1+2C n 2+3C n 3+…+nC n n,则有t=C n n ﹣1+2C n n ﹣2+3C n n ﹣3+…+(n ﹣1)C n 1+nC n n ,则可得2t=n ×2n +nC n n,故n ×2n +nC n n<4012, 验证知,最大的n 是8 故答案为:8. 20.(2016秋•沧州月考)已知常数a ,b ∈R ,且不等式x ﹣alnx +a ﹣b <0解集为空集,则ab的最大值为e 3.【分析】由题意可得不等式x﹣alnx+a﹣b<0解集为空集,即任意正数x,x﹣alnx+a﹣b≥0恒成立,即x+a﹣b≥alnx恒成立,a>0是必然的,设曲线y=alnx的切线l与直线y=x+a﹣b 平行,求出切点,以及切线方程,可得x+a﹣b≥x+alna﹣a,ab≤a•a(2﹣lna),构造函数f (x)=x2(2﹣lnx),求出导数和单调区间,可得最大值,即可得到ab最大值.【解答】解:不等式x﹣alnx+a﹣b<0解集为空集,即任意正数x,x﹣alnx+a﹣b≥0恒成立,即x+a﹣b≥alnx恒成立,当题目条件成立时,a>0是必然的,设曲线y=alnx的切线l与直线y=x+a﹣b平行,由=1,解得x=a,切点为(a,alna),则可以求得直线l方程为y=x+alna﹣a.于是必有x+a﹣b≥x+alna﹣a,即b≤2a﹣alna,当ab取得最大值时,必然b>0,于是ab≤a•a(2﹣lna),构造函数f(x)=x2(2﹣lnx),导数f′(x)=3x﹣2xlnx,x>0,当x>e时,f′(x)<0,f(x)递减;当0<x<e时,f′(x)>0,f(x)递增.则x=e时,取得极大值,也为最大值f(e)=e3(2﹣lne)=(2﹣)e=e.故答案为:.三.解答题(共6小题)21.(2016•荆州模拟)已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.【分析】(1)由题设知:|x+1|+|x﹣2|>7,解此绝对值不等式求得函数f(x)的定义域.(2)由题意可得,不等式即|x+1|+|x﹣2|≥m+4,由于x∈R时,恒有|x+1|+|x﹣2|≥3,故m+4≤3,由此求得m的取值范围.【解答】解:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范围是(﹣∞,﹣1].22.(2014•甘肃二模)若不等式5﹣x>7|x+1|与不等式ax2+bx﹣2>0同解,而|x﹣a|+|x ﹣b|≤k的解集为空集,求实数k的取值范围.【分析】先将“不等式5﹣x>7|x+1|”转化为和两种情况求解,最后取并集,再由“与不等式ax2+bx﹣2>0同解”,利用韦达定理求得a,b,最后由“|x﹣a|+|x﹣b|≤k的解集为空集”求得“|x﹣a|+|x﹣b|”最小值即可.【解答】解:得或得﹣2<x<﹣1 (3分)综上不等式的解集为,又由已知与不等式ax2+bx﹣2>0同解,所以解得(7分)则|x﹣a|+|x﹣b|≥|x﹣a﹣x+b|=|b﹣a|=5,所以当|x﹣a|+|x﹣b|≤k的解为空集时,k<5.(10分)23.(2012•商丘三模)已知不等式2|x﹣3|+|x﹣4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.【分析】(Ⅰ)对于不等式2|x﹣3|+|x﹣4|<2,分x≥4、3<x<4、x≤3三种情况分别求出解集,再取并集,即得所求.(Ⅱ)化简f(x)的解析式,求出f(x)的最小值,要使不等式的解集不是空集,2a大于f(x)的最小值,由此求得a的取值范围.【解答】解:(Ⅰ)对于不等式2|x﹣3|+|x﹣4|<2,①若x≥4,则3x﹣10<2,x<4,∴舍去.②若3<x<4,则x﹣2<2,∴3<x<4.③若x≤3,则10﹣3x<2,∴<x≤3.综上,不等式的解集为.…(5分)(Ⅱ)设f(x)=2|x﹣3|+|x﹣4|,则f(x)=,∴f(x)≥1.要使不等式的解集不是空集,2a大于f(x)的最小值,故2a>1,∴,即a的取值范围(,+∞).…(10分)24.(2010•苏州模拟)设函数f(x)=|x﹣a|﹣ax,其中a为大于零的常数.(1)解不等式:f(x)<0;(2)若0≤x≤2时,不等式f(x)≥﹣2恒成立,求实数a的取值范围.【分析】(1)把f(x)的解析式代入到f(x)<0得到一个不等式,当x小于等于0时得到不等式不成立;当x大于0时,对不等式的两边分别平方,移项后利用平方差公式分解因式,分a大于1,a等于1,a大于0小于1三种情况分别求出不等式的解集即可;(2)把f(x)的解析式代入到f(x)≥﹣2得到一个不等式,当a小于1大于01时,由0≤x≤2,得到ax﹣2小于等于0,原不等式恒成立;当a大于1时,分两种情况去掉绝对值号,然后把x等于2分别代入到化简的不等式中,得到关于a的两个不等式,分别求出解集与a大于1求出交集即可得到实数a的范围,综上,把两种情况求出的a的范围求出并集即可得到所有满足题意的a的范围.【解答】解:(1)不等式即为|x﹣a|<ax,若x≤0,则ax≤0,故不等式不成立;若x>0,不等式化为(x﹣a)2<a2x2,即[(1+a)x﹣a][(1﹣a)x﹣a]<0,∴当a>1时,x或x(舍);当a=1时,x;当0<a<1时,.综上可得,当a>1时,不等式解集为{x|x>};当a=1时,不等式的解集为{x|x};当0<a<1时,不等式解集为{x|};(2)不等式即为|x﹣a|≥ax﹣2,若0<a≤1,则当0≤x≤2时有ax﹣2≤0,故不等式|x﹣a|≥ax﹣2恒成立.若a>1,则x﹣a≥ax﹣2或x﹣a≤2﹣ax对任意x∈[0,2]恒成立,即(1﹣a)x+2﹣a≥0或(1+a)x﹣a﹣2≤0对任意x∈[0,2]恒成立,所以(1﹣a)•2+2﹣a≥0或(1+a)•2﹣a﹣2≤0,解得a≤或a≤0,∴1.综上,实数a的取值范围为(0,].25.(2015秋•上海校级期中)(1)解不等式:+2x≤5(2)解关于x的不等式:>(a∈R).【分析】(1)由+2x≤5得,解之即可得到不等式:+2x ≤5的解集;(2)>(a∈R)⇒>0,通过对参数a分a<0、a=0、0<a<、a=、a>五类讨论,可分别求得不等式>的解集.【解答】解:(1)∵+2x≤5,∴,即,解得:1≤x≤2,∴不等式:+2x≤5的解集为[1,2].(2)由>(a∈R)得:﹣=>0.当a=0时,解得:x<2;当a≠0时,>0⇔>0.当a>0时,若﹣2=2,即a=时,解得:x≠2;若﹣2>2,即0<a<时,解得:x>﹣2或x<2;若﹣2<2,即a>时,解得:x<﹣2或x>2;当a<0时,解得:﹣2<x<2.综上所述,a<0时,不等式:>的解集为{x|﹣2<x<2};a=0时,不等式:>的解集为{x|x<2};0<a<时,不等式:>的解集为{x|x>﹣2或x<2};a=时,不等式:>的解集为{x|x≠2};a>时,不等式:>的解集为{x|<﹣2或x>2}.26.设函数f(x)=e1﹣x+lnx﹣x2.(I)若f(x)的定义域为(,+∞),解不等式f(x)≥0;(Ⅱ)证明:f(x)在区间(0,)上有唯一极值点.【分析】(Ⅰ)根据得到e+e x(lnx﹣x2)≥0,构造函数g(x)=lnx﹣x2,利用导数求出函数的最值,判断出函数f(x)的单调性,继而得到不等式的解集;(Ⅱ)先求导,再构造函数h(x)=e x(1﹣2x)﹣ex,求导,再构造函数t(x)=﹣2x2﹣4x+1=﹣2(x+1)2+3,判断出函数的单调性,求出函数的值域,即可判断函数h(x)的单调性,由函数的单调性证明结论.【解答】解:(Ⅰ)f(x)=e1﹣x+lnx﹣x2,∴e+e x(lnx﹣x2)≥0,设f(x)=0,解得x=1,设g(x)=lnx﹣x2,则g′(x)=,当g′(x)≥0时,解得0<x≤,函数g(x)单调递增,当g′(x)<0时,解得x>,函数g(x)单调递减,∴当x=时,g(x)有最大值,即g(x)max=g()=﹣ln2﹣<0,∴e x(lnx﹣x2)为减函数,∴f(x)≥0的解集为(,1](2)∵f′(x)=﹣e1﹣x+﹣2x=令f′(x)=0,即e x(1﹣2x)﹣ex=0,设h(x)=e x(1﹣2x)﹣ex,∴h′(x)=e x(﹣2x2﹣4x+1)﹣e,设t(x)=﹣2x2﹣4x+1=﹣2(x+1)2+3,∴t(x)在(0,)上单调递减,∴t()<t(x)<t(0),即﹣<t(x)<1,∴e x(﹣2x2﹣4x+1)﹣e<0,∴h′(x)<0,∴h(x)在(0,)上单调递减,∴f′(0)=1>0,f′()=(﹣e)<0,∴f′(x)在区间(0,)上有唯一解,∴f(x)在区间(0,)上有唯一极值点。
重难点2-3 利用函数性质解不等式5大题型(解析版)
重难点2-3 利用函数性质解不等式5大题型高中数学解不等式主要分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);另一类是利用函数的性质,尤其是函数的单调性进行运算。
利用函数性质解不等式一般情况以选择题形式出现,考查的角度较多,除了基础的函数性质,有时候还需要构造函数结合导数知识,考验学生的观察能力和运用条件能力,难度较大。
利用单调性、奇偶性解不等式原理 1、解()()f m f n <型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。
2、()f x 为奇函数,形如()()0f m f n +<的不等式的解法 第一步:将()f n 移到不等式的右边,得到()()>-f m f n ; 第二步:根据()f x 为奇函数,得到()()>-f m f n ;第三步:利用函数的单调性,去掉函数符号“f ”,列出不等式求解。
二、构造函数解不等式的技巧1、此类问题往往条件较零散,不易寻找入手点,所以处理这类问题要将条件与结论结合分析,在草稿上列出条件能够提供什么,也列出要得出结论需要什么,两者对接通常可以确定入手点;2、在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能具备乘除关系的函数,在构造时多进行试验与项的调整;3、此类问题处理的核心要素是单调性与零点,对称性和图象知识辅助手段,所以要能够确定构造函数的单调性,猜出函数的零点,那么问题便易于解决了。
三、利用函数性质解不等式的要点1、构函数:根据所解不等式的结构特征和已知条件构造相应的函数,把不等式看作一个函数的两个函数值大小比较问题;2、析性质:分析所构造函数的相关性质,主要包括函数定义域、单调性、奇偶性、周期性等;3、巧转化:根据函数的单调性,把函数值大小比较转化为某个单调区间内自变量大小比较;4、写解集:解关于自变量的不等式,写出解集。
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编及答案解析
把x=-y+2代入4x+5y=10得,-4y+8+5y=10,
解得,y=2,
∴x=0,
把x=0,y=2代入kx-(k-1)y=8,得k=-3.
故选A.
【点睛】
此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.
9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
8.若关于x,y的方程组 中x的值比y的相反数大2,则k是()
A.-3B.-2C.-1D.1
【答案】A
【解析】
【分析】
根据“x的值比y的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y的值,进而得出x的值,把x,y的值代入方程组中第二方程中求出k的值即可.
【详解】
∵x的值比y的相反数大2,
A. B. C. D.
【答案】A
【解析】
【分析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得: .
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
故由题意得方程组为:
,
故选择D.
【点睛】
本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.
(完整版)不等式超难题
不等式超难题1。
原创上海2011高考模2(苏州市五市三区2013届高三期中考试试题第14题)已知0,,>c b a ,则bcab c b a 2222+++的最小值为 。
解析1:22222222222141422+255555==2225a b b c a b b c a b c ab bc ab bc ab bc ⋅+⋅++++≥+++()()。
解法2:22222()1()=22a ca b c b b a c ab bc b b++++++,设=,=a c x y b b ,222=(>0)2a b c t t ab bc +++。
则满足等式221=2x y t x y+++的x ,y 存在,去分母后配方得: 2225()()=124t x y t t -+--,故25104t -≥,解得255t ≥. 2。
(盐城2013届高三期初考第13题) 常数,a b 和正变量,x y 满足=16ab ,21+=2a b x y ,若+2x y 的最小值为64,则b a = . 答案:64解析:()2222232=++2=+4++24+2=8=32=4=2,==.8a b ay bx ay bx x y a b a b ab x y x y x y a b a b ⎛⎫⋅≥⋅⋅ ⎪⎝⎭当且仅当,即时,“”成立 3。
(盐城2013届高三期初考第14题)已知函数()()()222221,0,(4)3,0k x k a x f x x a a x a x ⎧+-≥⎪=⎨+-+-<⎪⎩,其中a R ∈. 若对任意的非零实数1x ,存在唯一的非零实数2x ()21x x ≠,使得()()21f x f x =成立,则k 的取值范围是 .答案:(,0][8,)-∞+∞解析:意即函数在=0x 处函数值相等,在y 轴左侧单调。
222402(1)=3a a k a a -⎧-≥--⎪⎨⎪⎩,分离变量转化为求值域问题. 4.已知函数f (x )=|x 2-2|,若f (a )≥f (b ),且0≤a ≤b ,则满足条件的点(a ,b )所围成区域的面积为________.答案:错误!【解析】 由错误!⇒错误! 显然b ≥a >错误!时不可能,所以错误!或错误!即错误!或错误!不等式表示的平面区域如图阴影部分所示,其面积为S =错误!·π·22=错误!。
初中数学方程与不等式之不等式与不等式组难题汇编附答案
初中数学方程与不等式之不等式与不等式组难题汇编附答案一、选择题1.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1 【答案】B【解析】【分析】 根据不等式的性质,逐一判定即可得出答案.【详解】解:A 、a >b ,c=0时,ac 2=bc 2,故A 错误;B 、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B 正确;C 、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C 错误;D 、不等式两边同时加或减同一个整式,不等号的方向不变,故D 错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.2.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣12B .x >﹣12C .x <12D .x >12 【答案】A【解析】【分析】 根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集.【详解】 解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =,∴0m n +<,解不等式()m n x n m >-+, ∴n m x m n-<+,∴3132n m n n x m n n n --<==-++; 故选:A.【点睛】 本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.3.已知方程组31331x y m x y m+=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1【答案】C【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y m x y m +=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.4.已知a >b ,则下列不等式中,正确的是( )A .-3a >-3bB .3a ->3b -C .3-a >3-bD .a-3>b-3【答案】D【解析】【分析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解.A.a >b ,-3a <-3b ,故A 错误;B.a >b ,3a -<3b - ,故B 错误; C.a >b ,3-a <3-b ,故C 错误; D. a >b ,a -3>b -3,故D 正确;故答案为:D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键.5.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤【答案】A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】 3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为( ) A .1k >B .1k <C .1k ³D .1k ≤【答案】C【解析】【分析】首先将不等式组中的不等式的解集分别求出,根据题意得出关于k 的不等式,求出该不等式的解集即可.【详解】 解不等式组29611x x x k +>+⎧⎨-<⎩可得:21x x k <⎧⎨<+⎩, ∵该不等式组的解集为:2x <,∴12k +≥,∴1k ≥,故选:C.【点睛】本题主要考查了解一元一次不等式组的运用,熟练掌握相关方法是解题关键.7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.8.下列命题中逆命题是真命题的是( )A .若a > 0,b > 0,则a·b > 0B .对顶角相等C .内错角相等,两直线平行D .所有的直角都相等 【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.9.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.此题考查不等式的性质,熟记性质定理并运用解题是关键.10.若关于x的不等式组521x ax-⎧⎨-<⎩…的整数解只有3个,则a的取值范围是()A.6≤a<7 B.5≤a<6 C.4<a≤5D.5<a≤6【答案】B【解析】【分析】根据解不等式可得,2<x≤a,然后根据题意只有3个整数解,可得a的范围.【详解】解不等式x﹣a≤0,得:x≤a,解不等式5﹣2x<1,得:x>2,则不等式组的解集为2<x≤a.∵不等式组的整数解只有3个,∴5≤a<6.故选:B.【点睛】本题主要考查不等式的解法,根据题意得出a的取值范围是解题的关键.11.不等式组10235xx+≤⎧⎨+<⎩的解集在数轴上表示为()A .B .C .D .【答案】C【解析】【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235xx+≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C本题考核知识点:解不等式组.解题关键点:解不等式.12.不等式组14112x x -≤⎧⎪⎨+<⎪⎩解集在数轴上表示正确的是( ) A . B .C .D .【答案】C【解析】【分析】分别解出两个一元一次不等式,再把得到的解根据原则(大于向右,小于向左,包括端点用实心,不包括端点用空心)分别在数轴上表示出来,再取两个解相交部分即可得到这个不等式组的解集. 【详解】解:对不等式14x -≤移项,即可得到不等式14x -≤的解集为3x ≥-,对不等式112x +<,先去分母得到12x +<,即解集为1x <, 把这两个解集在数轴上画出来,再取公共部分, 即:31x -≤<,解集在数轴上表示应为C.故选C.【点睛】本题主要考查了数轴和一元一次不等组及其解法,先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较即得到答案.13.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】此题可先根据一元一次不等式组解出x的取值范围,再根据不等式组1132xa x-⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a的取值范围.【详解】解:由不等式113x-≤,可得:x≤4,由不等式a﹣x<2,可得:x>a﹣2,由以上可得不等式组的解集为:a﹣2<x≤4,因为不等式组1132xa x-⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a﹣2<1,解得:2≤a<3,故选C.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a的不等式是解答本题的关键.14.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.15.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】 213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.17.若关于x 的不等式x <a 恰有2个正整数解,则a 的取值范围为( )A .2<a ≤3B .2≤a <3C .0<a <3D .0<a ≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a 的取值范围【详解】由于x<a 恰有2个正整数解,即为1和2,故2<a ≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a 的不等式是解题的关键18.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.19.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.20.若关于x 的不等式组无解,且关于y 的分式方程有非正整数解,则符合条件的所有整数k 的值之和为( )A .﹣7B .﹣12C .﹣20D .﹣34【答案】B【解析】【分析】先根据不等式组无解解出k 的取值范围,再解分式方程得y =,根据方程有解和非正整数解进行综合考虑k 的取值,最后把这几个数相加即可.【详解】 ∵不等式组无解, ∴10+2k >2+k ,解得k >﹣8. 解分式方程,两边同时乘(y +3),得ky﹣6=2(y+3)﹣4y,解得y=.因为分式方程有解,∴≠﹣3,即k+2≠﹣4,解得k≠﹣6.又∵分式方程的解是非正整数解,∴k+2=﹣1,﹣2,﹣3,﹣6,﹣12.解得k=﹣3,﹣4,﹣5,﹣8,﹣14.又∵k>﹣8,∴k=﹣3,﹣4,﹣5.则﹣3﹣4﹣5=﹣12.故选:B.【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意义,以及分式方程有解的情况.。
高考数学压轴专题新备战高考《不等式》难题汇编
【最新】高考数学《不等式》练习题一、选择题1.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.2.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1)C .D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y,0x>,则2||4 ||1PMx PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P作PN垂直准线于N,交y轴于Q,则11PF PN PQ-=-=,设(),P x y,0x>,则()()22222224||||44||1x y x xPM PPMxF xQP x x-+-+====+≥-,当4xx=,即2x=时等号成立.故选:D.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.3.已知,x y满足约束条件2302340x yx yy-+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny=+-的最大值为1(其中0,0m n>>),则112m n+的最小值为()A.3 B.1 C.2 D.32【答案】D【解析】【分析】画出可行域,根据目标函数z的最大值求得,m n的关系式23m n+=,再利用基本不等式求得112m n+的最小值.【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.4.设变量,x y 满足约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5【答案】D 【解析】 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】根据约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z =5x +y 可化为y =-5x +z ,即表示斜率为-5,截距为z 的动直线,由图可知,当直线5z x y =+过点()1,0A 时,纵截距最大,即z 最大,由211x y x y +=⎧⎨+=⎩得A (1,0)∴目标函数z =5x +y 的最小值为z =5 故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B .|||a b b a < C .ln ln a b b a -<- D .|||a b b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1a b e b a e ==-,可排除A 、D 项;取11,49a b ==711812a b b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的. 故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.6.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A.5B.455C.5D.25【答案】C【解析】【分析】作出不等式组所表示的平面区域,标出点A的位置,利用图形可观察出使得AB最小时点B的位置,利用两点间的距离公式可求得AB的最小值.【详解】作出不等式组260yx yx y≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立260x yx y-=⎧⎨+-=⎩,解得22xy=⎧⎨=⎩,由图知AB的最小值即为()4,3A、()2,2B两点间的距离,所以AB()()2242325-+-=故选:C.【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.7.对于函数()f x,若12,x x满足()()()1212f x f x f x x+=+,则称12,x x为函数()f x的一对“线性对称点”.若实数a与b和+a b与c为函数()3xf x=的两对“线性对称点”,则c 的最大值为()A.3log4B.3log41+C.43D.3log41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥ 故34a b +≥(当且仅当a b =时取等号).又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.8.已知函数24,0()(2)1,0x x f x xx x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A 【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A 【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.13.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.14.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( ) ABCD.【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.15.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b > 【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.16.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) AB .5C .3D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2252d ⎛⎫==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.17.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). A 5B .3C .23 D .22【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---2()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b+-的最下值为2故答案选D考点:基本不等式.18.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.19.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】 解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥20.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( ) A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4] 【答案】B【解析】【分析】 作出可行域,1y x +表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值.【详解】 作出可行域,如图阴影部分(含边界),1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x +表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.。
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案解析
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案解析一、选择题1.下面几对数值是方程组233,22x y x y +=⎧⎨-=-⎩的解的是( )A .1,x y =⎧⎨=⎩B .1,2x y =⎧⎨=⎩C .0,1x y =⎧⎨=⎩D .2,1x y =⎧⎨=⎩【答案】C 【解析】 【分析】利用代入法解方程组即可得到答案. 【详解】23322x y x y +=⎧⎨-=-⎩①②, 由②得:x=2y-2③,将③代入①得:2(2y-2)+3y=3, 解得y=1,将y=1代入③,得x=0, ∴原方程组的解是01x y =⎧⎨=⎩, 故选:C. 【点睛】此题考查二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x尺,长木为y尺,依题意得4.5112x yy x-=⎧⎪⎨-=⎪⎩,故选B.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.4243y xx y+=⎧⎨=⎩B.4243x yx y+=⎧⎨=⎩C.421134x yx y-=⎧⎪⎨=⎪⎩D.4234x yx y+=⎧⎨=⎩【答案】D【解析】【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可.【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.5.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2 ∴c=-2,a=4,b=5 ∴a+b+c=7. 故答案为:A. 【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.6.若方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,则a 的值为( )A .0B .7C .7-D .8【答案】B 【解析】 【分析】先利用加减消元法解方程组得到37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a 的方程,然后解一元一次方程即可得解. 【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①②②-①×3得,38a y +=- ①+②×5得,378a x -=∴方程组的解为:37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,即3x y -=∴373388a a -+⎛⎫--= ⎪⎝⎭ ∴7a =. 故选:B 【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.7.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C 【解析】 【分析】首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可. 【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底, ∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =, ∴可列方程组为:1204020x y y x+=⎧⎨=⎩,故选:C. 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.8.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k 是( )A .-3B .-2C .-1D .1【答案】A 【解析】 【分析】根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可. 【详解】∵x 的值比y 的相反数大2, ∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10, 解得,y=2, ∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3. 故选A. 【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.9.方程组的解为,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4【答案】C 【解析】 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解. 【详解】 根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5 故被遮盖的两个数分别为5和1.【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.10.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩【答案】C 【解析】 【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】 由题意可得,{x y 302200x 100y+=⨯=,故答案为C 【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.11.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1C .﹣5D .5【答案】A 【解析】 【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A .本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.12.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】 ①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y代入方程组,求出a 的值,即可做出判断;③将x =y 代入322x a y a =+⎧⎨=--⎩求出x 、y 的值,从而依据x =y 得出答案;④由y≤1得出关于a 的不等式,解之可得. 【详解】解:关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩.①∵12x y ≥, ∴a +3≥−a−1, 解得a≥−2,故①正确;②将x =y 代入322x a y a =+⎧⎨=--⎩,得:4353x a ⎧=⎪⎪⎨⎪=-⎪⎩,即当x =y 时,a =53-,此结论正确; ③当a =−1时,20x y =⎧⎨=⎩,满足x +y =2,此结论正确;④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误;故选:C .本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.13.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a=.故选:A.【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.14.二元一次方程3x+y=7的正整数解有()组.A.0 B.1 C.2 D.无数【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.15.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B【解析】【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【详解】设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=4043x-,∵x、y均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B.【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.16.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A.-2 B.2 C.-1 D.1【答案】C【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】把21xy=-⎧⎨=⎩代入方程得:-2m+1=3,解得:m=-1,故选:C.17.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km/h B.750 km/h C.765 km/h D.780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x千米/时,风速为y千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x千米/时,风速为y千米/时,由题意得,12()9360 13()9360x yx y+=⎧⎨-=⎩,解得,75030x y =⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时, 故选B . 【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.18.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A 【解析】 【分析】 【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得:2010x y x z y z =+⎧⎨-=++⎩解得z=5答:被移动石头的重量为5克. 故选A . 【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.19.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( ) A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A 【解析】 【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.20.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( ) A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A【解析】【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可.【详解】 ∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩, ∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩, 故选:A .【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.。
新初中数学方程与不等式之分式方程难题汇编及解析(2)
新初中数学方程与不等式之分式方程难题汇编及解析(2)一、选择题1.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4 【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4故选D .【点睛】 本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是( )A .30155113x x -=⎛⎫+ ⎪⎝⎭B .30155113x x -=⎛⎫- ⎪⎝⎭C .15305113x x -=⎛⎫+ ⎪⎝⎭D .15305113x x -=⎛⎫- ⎪⎝⎭【答案】A【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.3.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.下列说法中正确的是()A.顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3)D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A【解析】【分析】 根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=, ∵关于x 的分式方程的解为非负数,∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误;故选:A .【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.5.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5B .-5C .3D .-3 【答案】A【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A.6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x-=C.800800401.25x x-=D.800800401.25x x-=【答案】C【解析】【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒,∵小进比小俊少用了40秒,方程是800800401.25x x-=,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.7.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x公里,根据题意列出的方程正确的是()A.60(125%)6060x x⨯+-=B.6060(125%)60x x⨯+-=C.606060(125%)x x-=+D.606060(125%)x x-=+【答案】D【解析】【分析】设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,根据题意即可列出分式方程.【详解】解:设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,依题意得:606060(125%)x x-=+.故选:D.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行列方程.8.如果关于x的不等式(a+1)x>2的解集为x<-1,则a的值是().A.a=3 B.a≤-3 C.a=-3 D.a>3【解析】【分析】根据不等式的解集得出关于a的方程,解方程即可.【详解】解:因为关于x的不等式(a+1)x>2的解集为x<-1,所以a+1<0,即a<-1,且21a+=-1,解得:a=-3.经检验a=-3是原方程的根故选:C.【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.9.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.11.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B、32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C、3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A .240120420x x -=- B .240120420x x -=+ C .120240420x x -=- D .120240420x x -=+ 【答案】D【解析】【分析】设第一次买了x 本资料,则第二次买了(x +20)本资料,由等量关系第二次比第一次优惠了4列出方程即可解答.【详解】 解:设第一次买了x 本资料,则第二次买了(x +20)本资料,根据题意可得:120240420x x -=+ 故选:D【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,设出未知数,找到等量关系是解题的关键.13.春节期间嘉嘉去距家10千米的电影院看电影,计划骑自行车和坐公交车两种方式,已知汽车的速度是骑车速度的2倍,若坐公交车可以从家晚15分钟出发恰好赶上公交车,结果与骑自行车同时到达,设骑车学生的速度为x 千米/小时,则所列方程正确的是( ) A .1010152x x -= B .1010152x x -= C .1010124x x -= D .1010124x x -= 【答案】C【解析】【分析】设骑车的速度为x 千米/小时,则坐公交车的速度为2x 千米/小时,根据“汽车所用时间-坐公交车所用时间15=分钟”列出方程即可得.【详解】设骑车的速度为x 千米/小时,则坐公交车的速度为2x 千米/小时,∴所列方程正确的是:1010124x x -=, 故选:C .【点睛】此题考查由实际问题列分式方程,根据题意找到题目蕴含的相等关系是列方程的关键.14.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( )A .3个B .4个C .5个D .6个【答案】B【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得: 12121(150%)x x -=+, 解得:4x =;经检验,4x =是原分式方程的解.∴那么采用新工艺前每小时加工的零件数为4个;故选:B .【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.15.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B【解析】【分析】解关于y 的不等式组,结合解集无解,确定a 的范围,再由分式方程有负数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求所有符合条件的值之和即可.【详解】由关于y 的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.16.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.17.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3 D.m<3且m≠2【答案】D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】21m x -+=1, 解得:x=m ﹣3,∵关于x 的分式方程21m x -+=1的解是负数, ∴m ﹣3<0,解得:m <3,当x=m ﹣3=﹣1时,方程无解,则m≠2,故m 的取值范围是:m <3且m≠2,故选D .【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.18.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ).A .17B .18C .22D .25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:32212203y y y a --⎧+>⎪⎪⎨-⎪⎪⎩„, 不等式组整理得:1y y a >-⎧⎨⎩„, 由不等式组至少有四个整数解,得到-1<y ≤a ,解得:a ≥3,即整数a =3,4,5,6,…,2-322a x x=--, 去分母得:2(x -2)-3=-a ,解得:x =72a -, ∵72a -≥0,且72a -≠2, ∴a ≤7,且a ≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为4,5,6,7,之和为22. 故选:C .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x=- B .60048040x x =+ C .60048040x x =+ D .60048040x x =- 【答案】B【解析】【分析】 由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可.【详解】解:设原计划每天生产x 台机器,根据题意得:48060040x x =+. 故选B .【点睛】读懂题意,用含x 的代数式表达出原来生产480台机器所需时间为480x 天和现在生产600台机器所需时间为60040x +天是解答本题的关键. 20.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<<B .2k >-且1k ≠-C .2k >-D .2k <且1k ≠ 【答案】B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x-=--Q , 21x k x +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠,1k ∴≠-,0x Q >,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.。
初中数学方程与不等式之二元二次方程组难题汇编及答案
初中数学方程与不等式之二元二次方程组难题汇编及答案一、选择题1.解方程组:2220449x xy x xy y ⎧+=⎪⎨++=⎪⎩ 【答案】123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ 【解析】【分析】由第一个等式可得x (x+y )=0,从而讨论可①x=0,②x≠0,(x+y )=0,这两种情况下结合第二个等式(x+2y )2=9可得出x 和y 的值.【详解】∵x(x+y)=0,①当x=0时,(x+2y)2 =9,解得:y 1=32 ,y 2 =−32; ②当x≠0,x+y=0时,∵x+2y=±3, 解得:33x y =-=⎧⎨⎩ 或33x y ==-⎧⎨⎩. 综上可得,原方程组的解是123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ . 【点睛】此题考查二元二次方程组,解题关键在于掌握运算法则.2.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩. 【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④ 由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.3.如图,已知抛物线y =ax 2+bx+1经过A (﹣1,0),B (1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l 1:y =k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1•k 2=﹣1.解决问题:①若直线y =2x ﹣1与直线y =mx+2互相垂直,则m 的值是____;②抛物线上是否存在点P ,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A ,B 重合),求点M 到直线AB 的距离的最大值.【答案】(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(35. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩,解得1xy=-⎧⎨=⎩(舍),614xy=⎧⎨=-⎩,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h55.点M 到直线AB. 【点睛】 本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键4.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解. 【答案】22-23x y =⎧⎨=⎩ 【解析】【分析】 先将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩ 中求出m 、n 的值,然后再求方程组的另一组解.【详解】解:将1132x y =⎧⎨=-⎩代入方程组22x y m x y n ⎧+=⎨+=⎩中得:131m n =⎧⎨=⎩ , 则方程组变形为:22131x y x y ⎧+=⎨+=⎩, 由x+y=1得:x=1-y ,将x=1-y 代入方程x 2+y 2=13中可得:y 2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-23x y =⎧⎨=⎩ . 【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m 和n 的值是解题的关键.5.解方程组2210260x y x x y -+=⎧⎨--+=⎩ 【答案】1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩. 【解析】【分析】由(1)得21y x =+,代入到(2)中整理为关于x 的一元二次方程,求出x 的值,并分别求出对应的y 值即可.【详解】解: ()()221012602x y x x y ⎧-+=⎪⎨--+=⎪⎩, 由(1),得21y x =+(3),把(3)代入(2),整理,得2540x x -+=,解这个方程,得121,4x x ==,把11x =代入(3),得13y =,把24x =代入(3),得29y =,所以原方程组的解是1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩.. 【点睛】本题考查了二元二次方程组的解法,用代入消元法消去一个未知数,转化为解一元二次方程是解题关键.6.如图,在平面直角坐标系中,直线l :沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧).(1)求直线AB 的解析式;(2)若线段DF ∥x 轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F 作FH ⊥x 轴于点G ,与直线l 交于点H ,在抛物线上是否存在P 、Q 两点(点P 在点Q 的上方),PQ 与AF 交于点M ,与FH 交于点N ,使得直线PQ 既平分△AFH 的周长,又平分△AFH 面积,如果存在,求出P 、Q 的坐标,若不存在,请说明理由.【答案】(1);(2);(3)(1,),(3,0).【解析】【分析】(1)设直线AB的解析式为y=kx+b,先求出直线与x轴、y轴交点坐标,根据沿x轴翻折,得到A、B的坐标,把A、B的坐标代入直线AB的解析式y=kx+b,即可求出直线AB的解析式;(2)设抛物线的顶点为P(h,0),得出抛物线解析式为:,根据DF∥x轴,得出F的坐标,把F的坐标代入直线AB 的解析式即可求出h的值,即可得到答案;(3)过M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,求出FN的值,根据三角形的面积公式求出△MNF和△AFH的面积,根据之间的等量关系即可求出k的值,设直线MN的解析式为:y=kx+b,把M、N(6,-4),代入得到方程组,求出方程组的解即可得到直线MN的解析式,解由方程和的解即可得出P、Q的坐标.【详解】(1)解:设直线AB的解析式为y=kx+b直线与x轴、y轴交点分别为(-2,0),(0,),沿x轴翻折,∵直线,直线AB与x轴交于同一点(-2,0)∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称∴B(0,),∴解得k=,b=,∴直线AB的解析式为.(2)解:设抛物线的顶点为Q(h,0),抛物线解析式为:∴D(0,).∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得 h1=3,h2=(舍去),∴抛物线的解析式为.(3)解:过M作MT⊥FH于T,∴Rt△MTF∽Rt△AGF.∴FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,则FN=AH+HF+AF)-FM=16-5k,∴S△MNF=(AH+HF+AF)-FM=16-5k,又∵S△MNF=S△AFH.∴=24,解得k==或k=2 (舍去),∴FM=6,FT=,MT=,GN=4,TG=,∴M (,))、N (6,-4),代入得:=k+b 且-4=6k+b , 解得:k=,b=4, ∴y =x+4, 联立y =x+4与y =,求得P (1, ),Q (3,0).答:存在P 的坐标是(1, ),Q 的坐标是(3,0).【点睛】本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组、解二元二次方程组,三角形相似的性质和判定,图形的旋转等知识点,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.7.解方程组:222570x y x y x +=⎧⎨-++=⎩. 【答案】1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩ 【解析】【分析】用代入法即可解答,把①化为y=-2x+5,代入②得x 2-(-2x+5)2+x+7=0即可.【详解】由①得25y x =-+.③把③代入②,得22(25)70x x x --+++=. 整理后,得2760x x -+=.解得11x =,26x =.由11x =,得1253y =-+=.由26x =,得21257y =-+=-.所以,原方程组的解是1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩.8.如图,要建一个面积为45 m 2的长方形养鸡场(分为两片),养鸡场的一边靠着一面长为14m 的墙,另几条边用总长为22 m 的竹篱笆围成,每片养鸡场的前面各开一个宽l m 的门.求这个养鸡场的长与宽.【答案】这个养鸡场的长为9m ,宽为5 m.【解析】试题分析:设鸡场的长为x m ,宽为y m ,根据鸡场的面积和周长列出两个等量关系,解方程组即可,注意鸡场的长小于围墙的长.解:设鸡场的长为xm ,宽为ym ,由题意可得:322245x y xy +-=⎧⎨=⎩,且x <14,解得y =3或5; 当y =3时,x =15;∵x <14,∴不合题意,舍去;当y =5时,x =9,经检验符合题意.答:这个养鸡场的长为9m ,宽为5m.9.解方程:22310x y x y ⎧-=-⎨++=⎩【答案】12x y =⎧⎨=-⎩【解析】【分析】本题可用代入消元法进行求解,即把方程2写成x=-1-y ,代入方程1,得到一个关于y 的一元二次方程,求出y 值,进而求x .【详解】解:()()2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)把(3)代入(1):22(1)3y y ---=-∴2y =-∴1x =原方程组的解是12x y =⎧⎨=-⎩【点睛】本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.10.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或 44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.11.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0, x +y =0或x−2y =0,原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.12.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2,所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.13.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩. 【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①② 由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.14.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩ 【解析】【分析】 把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①② , 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.15.222102520x y x xy y +-=⎧⎨-+=⎩【答案】111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】首先将二元二次方程进行因式分解,然后组成两个新的二元二次方程,求解即可.【详解】222102520x y x xy y +-=⎧⎨-+=⎩①② 将②因式分解,得()()220x y x y --=∴方程组可化为两个新方程组:21020x y x y +-=⎧⎨-=⎩,21020x y x y +-=⎧⎨-=⎩∴方程组的解为:111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.16.解方程组:224490x xy y x y ⎧++=⎨+=⎩ 【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①② 方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.17.解方程组:222,{230.x y x xy y -=--=【答案】1111x y =⎧⎨=-⎩2231x y =⎧⎨=⎩【解析】【分析】【详解】x 2-2xy-3y 2="0"(x-y)2-4y 2=0又因:x-y=2代入上式4-4y 2=0y=1或y=-1再将y=1、y=-1分别代入x-y=2则 x=1、x=3∴1111x y =⎧⎨=-⎩2231x y =⎧⎨=⎩18.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】解:222603x y y mx ⎧+-=⎨=+⎩①②把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±,当1m =时,解得21x y =-⎧⎨=⎩ 当1m =-时,解得21x y =⎧⎨=⎩ 【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.19.△ABC 中,BC >AC ,CD 平分∠ACB 交于AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交于CD 于H ,(1)如图1,若∠EFC=∠A,求证:CE•CD=CH•BC;(2)如图2,若BH平分∠ABC,CE=CF,BF=3,AE=2,求EF的长;(3)如图3,若CE≠CF,∠CEF=∠B,∠ACB=60°,CH=5,CE=43,求ACBC的值.【答案】(1)见解析;(2)26 ; (3)5 7 .【解析】【分析】(1)只要证明△ECH∽△BCD,可得ECBC=CHCD,即可推出CE•CD=CH•BC;(2)如图2中,连接AH.只要证明△AEH∽△HFB,可得AEHF=EHFB,推出FH2=6,推出HE=HF=6,即可解决问题.(3)只要证明△ECF∽△BCA,求出CF即可解决问题.【详解】(1)证明:如图1中,∵∠EFC+∠FEC+∠ECF=180°,∠A+∠B+∠ACB=180°,又∵∠EFC=∠A,∠ECF=∠ACB,∴∠CEF=∠B,∵∠ECH=∠DCB,∴△ECH∽△BCD,∴EC CH BC CD,∴CE•CD=CH•BC.(2)解:如图2中,连接AH.∵BH、CH都是△ABC的角平分线,∴AH是△ABC的角平分线,∴∠BHC=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠BAC)=90°+12BAC=90°+∠HAE,∵CE=CF,∠HCE=∠HCF,∴CH⊥EF,HF=HE,∴∠CHF=90°,∵∠BHC=∠BHF+∠CHF=∠BHF+90°,∴∠HAE=∠BHF,∵∠CFE=∠CEF,∴∠AEH=∠BFH,∴△AEH∽△HFB,∴AE EH HF FB=,∴FH2=6,∴HE=HF=6,∴EF=26.(3)解:如图3中,作HM⊥AC于M,HN⊥BC于N.设HF=x,FN=y.∵∠HCM=∠HCN=30°,HC=5,∴HM=HN=52,53,∵3∴3322213EM HM+∵S△HCF:S△HCE=FH:EH=FC:EC,∴x13(53):3,又∵x2=y2+(52)2,解得5333∴203∵∠CEF=∠B,∠ECF=∠ACB,∴△ECF∽△BCA,∴EC CF BC AC=,∴203743AC CFBC EC===57.【点睛】本题考查三角形综合题、相似三角形的判定和性质、角平分线的性质、二元二次方程组等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考压轴题.20.解方程组:222220,21,x xy y x xy y ⎧--=⎨++=⎩【答案】1123;13x y ⎧=⎪⎪⎨⎪=⎪⎩222313x y ⎧=-⎪⎪⎨⎪=-⎪⎩【解析】【分析】先对方程①②分解因式转化为两个一元一次方程,然后联立,组成4个二元一次方程组,解之即可.【详解】2222x 2y 0x 2y 1xy xy ⎧--=⎨++=⎩①②, 由①得 (x+y )(x-2y )=0,∴x+y=0或x-2y=0,由②得 (x+y )2=1,∴x+y=1或x+y=-1,所以原方程组化为01x y x y +=⎧⎨+=⎩或01x y x y +=⎧⎨+=-⎩或201x y x y -=⎧⎨+=⎩或201x y x y -=⎧⎨+=-⎩, 所以原方程组的解为121222x x 3311y y 33⎧⎧==-⎪⎪⎪⎪⎨⎨⎪⎪==-⎪⎪⎩⎩. 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.。
高考数学压轴专题专题备战高考《不等式》难题汇编含答案解析
【最新】《不等式》专题一、选择题1.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.2.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .3.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.4.已知实数x ,y 满足不等式||2x y +≥,则22x y +最小值为( )A .2B .4C .22D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,2x y +≥ (2)当0y <时,2x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2222211d -==+,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.5.已知x、y满足约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y=+,则实数z的最小值为()A 2B.25C.12D.2【答案】C【解析】【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y+的最小值,进而可得出实数z的最小值.【详解】作出不等式组122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min212x y+==⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.6.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A 73B 35C 33D .32【答案】B 【解析】 【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C AB ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1BB =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B -=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B . 【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.7.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.8.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+…,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-…,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-…,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.若实数x ,y ,对任意实数m ,满足()()222122211x y m x y m x y m ⎧-≤-⎪⎪+≥+⎨⎪-+-≤⎪⎩,则由不等式组确定的可行域的面积是( )A.1 4πB.12πC.πD.32π【答案】A【解析】【分析】画出约束条件的可行域,然后求解可行域的面积.【详解】实数x,y,对任意实数m,满足2221222(1)()1x y mx y mx y m--⎧⎪++⎨⎪-+-⎩………的可行域如图:可行域是扇形,14个圆,面积为:211144ππ⨯⨯=.故选:A.【点睛】本题考查线性规划的应用,考查数形结合以及计算能力,意在考查学生对这些知识的理解掌握水平.11.函数log(3)1ay x=-+(0a>且1a≠)的图像恒过定点A,若点A在直线10mx ny+-=上,其中·0m n>,则41m n+的最小值为()A.16 B.24 C.50 D.25【答案】D【解析】【分析】由题A(4,1),点A在直线上得4m+n=1,用1的变换构造出可以用基本不等式求最值的形式求最值.【详解】令x﹣3=1,解得x=4,y=1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.13.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.14.若实数x ,y 满足不等式组11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最小值是( )A .3B .32C .0D .3-【答案】D 【解析】 【分析】根据已知的约束条件画出满足约束条件的可行域,再由目标函数2z x y =+可得2y x z =-+,此时Z 为直线在y 轴上的截距,根据条件可求Z 的最小值.【详解】解:作出不等式组所表示的平面区域,如图所示得阴影部分的ABC ∆, 由2z x y =+可得2y x z =-+,则z 为直线在y 轴上的截距把直线:2l y x =-向上平移到A 时,z 最小,此时由1y xy =⎧⎨=-⎩可得(1,1)A --此时3z =-,故选:D .【点睛】本题考查用图解法解决线性规划问题,分析题目的已知条件,找出目标函数中的z 的意义是关键,属于中档题.15.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.16.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.17.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3 C.2 D .2【答案】D【解析】【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.18.已知,a b 都是正实数,则222a b a b a b +++的最大值是( ) A.23- B.3- C.1 D .43【答案】A【解析】【分析】设2,2m a b n a b =+=+,将222a b a b a b +++,转化为2222233a b n m a b a b m n +=--++,利用基本不等式求解.【详解】设2,2m a b n a b =+=+, 所以22,33m n n m a b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n m m n =时取等号. 所以222a b a b a b +++的最大值是2-. 故选:A【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.19.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1 【答案】C【解析】【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞当43a --≤≤ 时,()21f x -#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤-所以a 的最大值为2-.故选:C.【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.20.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( )A .14-B .1 C.D1【答案】D【解析】【分析】2()sin (2)sin 2m f x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2m y mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2m y mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当m =. 故选:D【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.。
方程与不等式之二元二次方程组难题汇编含答案
所以原方程组的解为:
x1 y1
2 4
,
x2 y2
3
.
6
【点睛】
本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.
xy 2x y 1
12.
yz
2z
3
y
8
zx 4z 3x 8
【答案】
x y z
2 3 1
或
x ①得:
y1
0 2
,
y2 3
分别代入②得:
x1
x2
1 1
3
,
故原方程组的解为:
x1 y1
1 ,
0
x2 y2
1 3
2 3
【点睛】
此题考查高次方程,解题关键在于掌握运算法则
2.解方程组
x
x2
y
y2
x
8
y
0
.
【答案】
xy11
2 2
,
x2 y2
2
,
2
x3 y3
解题的关键.
x2 2xy 3y2 3 14.解方程组:
x y 1
【答案】
x y
1.5 0.5
【解析】
【分析】
把方程组的第一个方程分解因式求出
x
3y
3
,再解方程组解
x x
y 1 3y 3
即可.
【详解】
由 x2 2xy 3y2 3 得: x yx 3y 3 ,
x y 1,
试题分析:根据题意,设甲每天做 x 个零件,乙每天做 y 个零件,然后根据根据题目中的 两种工作方式列出方程组,解答即可. 试题解析:设甲每天做 x 个零件,乙每天做 y 个零件.
新初中数学方程与不等式之分式方程难题汇编附解析(2)
新初中数学方程与不等式之分式方程难题汇编附解析(2)一、选择题1.分式方程22111x x x -=--,解的情况是( ) A .x =1B .x =2C .x =﹣1D .无解【答案】D【解析】【分析】观察式子确定最简公分母为(x+1)(x ﹣1),再进一步求解可得.【详解】方程两边同乘以(x+1)(x ﹣1),得:x (x+1)﹣(x 2﹣1)=2,解方程得:x =﹣1,检验:把x =﹣1代入x+1=0,所以x =﹣1不是方程的解.故选:D .【点睛】此题考查分式方程的解,掌握运算法则是解题关键2.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x=- B .60045025x x =- C .60045025x x =+ D .60045025x x =+ 【答案】C【解析】【分析】 原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个,∴60045025x x=+, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意是列方程的关键.3.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是A .5B .-5C .3D .-3【答案】A【解析】 把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A.4.若关于x 的分式方程2x x -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1B .0C .5D .6 【答案】A【解析】【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可.【详解】解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩, 解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3, 将分式方程的两边同时乘以x ﹣2,得x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数,∴m +5是2的倍数,∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3,∵x ≠2, ∴52m +≠2,∴m ≠﹣1,∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1,故选:A .【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.5.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.6.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x公里,根据题意列出的方程正确的是()A.60(125%)6060x x⨯+-=B.6060(125%)60x x⨯+-=C.606060(125%)x x-=+D.606060(125%)x x-=+【答案】D【解析】【分析】设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,根据题意即可列出分式方程.【详解】解:设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,依题意得:606060(125%)x x-=+.故选:D.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行列方程.7.若关于x的分式方程233x mx x-=--有增根,则m的值是()A.1-B.1 C.2 D.3【答案】B【解析】【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可.【详解】去分母得:x-2=m,∴x=2+m∵分式方程233x mx x-=--有增根,∴x-3=0,∴x= 3,∴2+m=3,所以m=1,故选:B.【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.8.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 【答案】A【解析】【分析】【详解】 甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,120100x x 10=-. 故选A.9.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩…有解,则所有符合条件的整数a 的个数为( ) A .1B .2C .3D .4【答案】B【解析】【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2.【详解】 解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数,∴1a +>0,即a>-1,又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y的不等式组21142y a yy a->-⎧⎪⎨+⎪⎩…有解,∴a-1<y≤8-2a,即a-1<8-2a,解得:a<3,综上所述,a的取值范围是-1<a<3,且a≠1,则符合题意的整数a的值有0、2,有2个,故选:B.【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.10.春节期间嘉嘉去距家10千米的电影院看电影,计划骑自行车和坐公交车两种方式,已知汽车的速度是骑车速度的2倍,若坐公交车可以从家晚15分钟出发恰好赶上公交车,结果与骑自行车同时到达,设骑车学生的速度为x千米/小时,则所列方程正确的是()A.1010152x x-=B.1010152x x-=C.1010124x x-=D.1010124x x-=【答案】C【解析】【分析】设骑车的速度为x千米/小时,则坐公交车的速度为2x千米/小时,根据“汽车所用时间-坐公交车所用时间15=分钟”列出方程即可得.【详解】设骑车的速度为x千米/小时,则坐公交车的速度为2x千米/小时,∴所列方程正确的是:1010124x x-=,故选:C.【点睛】此题考查由实际问题列分式方程,根据题意找到题目蕴含的相等关系是列方程的关键.11.八年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.300300201.2x x-=B.300300201.260x x=-C.300300201.260x x x-=+D.3002030060 1.2x x-=【答案】D【解析】【分析】原计划每小时植树x棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x棵,原计划植300棵树可用时300x小时,实际用了3001.2x小时,根据关键语句“结果提前20分钟完成任务”可得方程.【详解】设原计划每小时植树x棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x棵,由题意得:3002030060 1.2x x-=,故选:D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.12.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x天,则可列方程为().A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯++【答案】A【解析】【分析】设规定时间为x天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x天,则慢马的时间为(x+1)天,快马的时间是(x-3)天,∵快马的速度是慢马的2倍,∴900900213 x x⨯=+-,故选:A.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.13.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是()A.111103020+=--+x x xB.111103020+=++-x x xC.111103020-=++-x x xD.111102030+=-+-x x x【答案】B【解析】【分析】设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x.【详解】设规定时间为x天,则甲队单独一天完成这项工程的110 +x,乙队单独一天完成这项工程的130x+,甲、乙两队合作一天完成这项工程的120 x-.则111103020+=++-x x x.故选B.【点睛】此题考查分式方程,解题关键在于由实际问题抽象出分式方程.14.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )A.30x=456x+B.30x=456x-C.306x-=45xD.306x+=45x【答案】A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等可得30x=456x+.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.16.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213x x ⨯=+- 故选A .【点睛】 本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.17.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】 解分式方程26344ax x x -+=---得:x=43a -, 因为分式方程的解为正数, 所以43a ->0且43a-≠4, 解得:a <3且a≠2, 解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7, ∵不等式组有解,∴a+7>1,解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C .【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.18.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.19.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.20.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1>B .a 1<C .a 1<且a 2≠-D .a 1>且a 2≠ 【答案】D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.。
高考数学压轴专题(易错题)备战高考《不等式》难题汇编及答案
【最新】《不等式》专题(1) 一、选择题1.已知,x y满足33025010x yx yx y-+≥⎧⎪+≥⎨⎪+-≤⎩,则36yzx-=-的最小值为()A.157B.913C.17D.313【答案】D【解析】【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.2.若实数,x y满足不等式组2,36,0,x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩则3x y+的最小值等于()A.4B.5C.6D.7【答案】A 【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x y x y +-=⎧⎨-=⎩得(1,1)A ,由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小, 所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.3.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >>又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()11111120f a c f b b +∴=+≥+≥=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为4.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.5.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值.A .2B .3C .4D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.6.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .2D .1【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.7.已知函数())2log f x x =,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值.【详解】0,x x x x ≥-=所以定义域为R ,因为()2log f x =,所以()f x 为减函数 因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=, 所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.8.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.9.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1)C .D .4【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4C .6D .7【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.13.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.14.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟„,则x y y +的取值范围是( )A .12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】 作出不等式121x y x +⎧⎨-⎩剟„表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-„,问题得解. 【详解】将题中可行域表示如下图,整理得:x y y+1xy =+ 易知yk x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,yk x=取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1, 故31k -≤<-,则113x y -<-„, 故203x y y +<„. 故选B 【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.15.若两个正实数x ,y 满足142x y +=,且不等式2m 4y x m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)- B .(,2)(1,)-∞-+∞U C .()2,1-D .(,1)(2,)-∞-+∞U【答案】D 【解析】 【分析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围. 【详解】 若不等式24y x m m +<-有解,即2()4min ym m x ->+即可, 142x y +=Q,1212x y∴+=, 则121221112121124422482y y x y x x x y y x ⎛⎫⎛⎫+=++=+++≥+=+=+⨯=+= ⎪ ⎪⎝⎭⎝⎭,当且仅当28x y y x=,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min yx +=, 则由22m m ->得220m m -->,即()()120m m +->, 得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞, 故选D . 【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键.16.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( )A B C D .【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B-++=++27tan 36tan B B =+.又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan B B +≥=,当且仅当tan B =时取等号,∴min11127tan tan tan A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.17.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.18.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2 D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.19.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( ) A .(1,1)- B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A【解析】 【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可. 【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0- 当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A . 【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.20.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则4y x -的最大值为( )A .72-B .52-C .32-D .1-【答案】D 【解析】 【分析】画出平面区域,结合目标函数的几何意义,求解即可. 【详解】该不等式组表示的平面区域,如下图所示4y x-表示该平面区域中的点(),x y 与(0,4)A 确定直线的斜率 由斜率的性质得出,当区域内的点为线段AB 上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D 【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式解法2难题汇编一.选择题(共5小题)1.设函数f(x)的定义域是[﹣4,4],其图象如图,那么不等式的解集为()A.[﹣2,1] B.[﹣4,﹣2]∪[1,4]C.[﹣4,﹣π)∪[﹣2,0)∪[1,π)D.[﹣4,﹣π)∪(1,π)2.已知函数,则不等式f(1﹣x2)>f(2x)的解集是()A.B.C.D.3.已知f(x)的定义在(0,3)上的函数,f(x)的图象如图所示,那么不等式f(x)cosx <0的解集是()A.(0,1)∪(2,3)B.C.D.(0,1)∪(1,3)4.已知e是自然对数的底数,函数f(x)的定义域为R,2f(x)•2f′(x)>2,f(0)=8,则不等式>1的解集为()A.(﹣∞,0)B.(0,+∞)C.(1,+∞)D.(﹣∞,1)5.设函数f(x)=x3﹣3x2+(8﹣a)x﹣5﹣a,若存在唯一的正整数x0,使得f(x0)<0,则a的取值范围是()A.B.C.D.二.填空题(共15小题)6.定义:关于x的两个不等式f(x)<0和g(x)<0的解集分别为(a,b)和,则称这两个不等式为对偶不等式.如果不等式与不等式2x2+4xsin2θ+1<0为对偶不等式,且,则θ=.7.设函数,则实数a的取值范围是.8.若函数的定义域用D表示,则使f(x)>0对x∈D均成立的实数k的范围是.9.定义区间(c,d],[c,d),(c,d),[c,d]的长度均为d﹣c,其中d>c.则满足不等式的x构成的区间长度之和为.10.若函数则不等式的解集为.11.若对一切x>0恒成立,则a的取值范围是.12.已知函数f(x)=ax2+x﹣b(a,b均为正数),不等式f(x)≥0的解集记为P,集合Q={x|﹣2﹣t<x<﹣2+t},若对于任意正数t,P∩Q≠∅,则﹣的最大值是.13.f(x)=[x](x﹣[x]),[x]为x的整数部分,g(x)=x﹣1,当0≤x≤2012时,f(x)≤g(x)的解集为.14.∀x∈R,且x≠0.不等式恒成立,则实数a的取值范围是.15.已知数列{a n}中a1=1,a2=2,当整数n>1时,S n+1+S n﹣1=2(S n+S1)都成立,则S15=.16.已知函数,若,则实数a的取值范围是.17.设f(x)=x﹣4tanx+2,x∈[﹣1,1],则关于a的不等式f(a2﹣1)+f(1﹣a)>4的解集为.18.已知则f(f(x))>1的解集是.19.使得:C n1+2C n2+3C n3+…+nC n n<2006成立的最大正整数n的值为.20.已知常数a,b∈R,且不等式x﹣alnx+a﹣b<0解集为空集,则ab的最大值为.三.解答题(共6小题)21.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.22.若不等式5﹣x>7|x+1|与不等式ax2+bx﹣2>0同解,而|x﹣a|+|x﹣b|≤k的解集为空集,求实数k的取值范围.23.已知不等式2|x﹣3|+|x﹣4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.24.设函数f(x)=|x﹣a|﹣ax,其中a为大于零的常数.(1)解不等式:f(x)<0;(2)若0≤x≤2时,不等式f(x)≥﹣2恒成立,求实数a的取值范围.25.(1)解不等式:+2x≤5(2)解关于x的不等式:>(a∈R).26.设函数f(x)=e1﹣x+lnx﹣x2.(I)若f(x)的定义域为(,+∞),解不等式f(x)≥0;(Ⅱ)证明:f(x)在区间(0,)上有唯一极值点.不等式解法2难题汇编参考答案与试题解析一.选择题(共5小题)1.(2013•山东模拟)设函数f(x)的定义域是[﹣4,4],其图象如图,那么不等式的解集为()A.[﹣2,1] B.[﹣4,﹣2]∪[1,4]C.[﹣4,﹣π)∪[﹣2,0)∪[1,π)D.[﹣4,﹣π)∪(1,π)【分析】根据函数的图象可得,f(x)小于0时,x的范围;f(x)大于0时,x的范围,;且根据正弦函数图象可知,sinx大于0时,x∈(﹣4,﹣π)∪(0,π);当sinx小于0时,x∈(﹣π,0),则把所求的式子化为f(x)与sinx异号,即可求出不等式的解集.【解答】解:由函数图象可知:当f(x)<0时,﹣4<x<﹣2,1<x<4,或当f(x)>0时,﹣2<x<1;而sinx中的x∈[﹣4,4],当sinx>0时,x∈(﹣4,﹣π)∪(0,π);当sinx<0时,x∈(﹣π,0),∴≤0,转化化为:,或,结合图象得到x∈(﹣4,﹣π)∪[﹣2,0)∪[1,π),所以所求不等式的解集为(﹣4,﹣π)∪[﹣2,0)∪[1,π)故选C.2.(2011•天津校级模拟)已知函数,则不等式f(1﹣x2)>f(2x)的解集是()A.B.C.D.【分析】把原不等式化为①,或②,分别求出①的解集和②的解集,再取并集即得所求.【解答】解:函数,则由不等式f(1﹣x2)>f(2x)可得①,或②.解①得x>,解②得≥x>﹣1+或x<﹣1﹣.故原不等式的解集为,故选D.3.(2002•北京)已知f(x)的定义在(0,3)上的函数,f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是()A.(0,1)∪(2,3)B.C.D.(0,1)∪(1,3)【分析】根据函数的图象可得,f(x)小于0时,x大于0小于1;f(x)大于0时,x大于1小于3,;且根据余弦函数图象可知,cosx大于0时,x大于0小于;当cosx小于0时,x大于小于3,则把所求的式子化为f(x)与cosx异号,即可求出不等式的解集.【解答】解:由函数图象可知:当f(x)<0时,0<x<1;当f(x)>0时,1<x<3;而cosx中的x∈(0,3),当cosx>0时,x∈(0,);当cosx<0时,x∈(,3),则f(x)cosx<0,可化为:或即或,解得:<x<3或0<x<1,所以所求不等式的解集为:(0,1)∪(,3),故选C.4.已知e是自然对数的底数,函数f(x)的定义域为R,2f(x)•2f′(x)>2,f(0)=8,则不等式>1的解集为()A.(﹣∞,0)B.(0,+∞)C.(1,+∞)D.(﹣∞,1)【分析】由题意可得到f(x)+f′(x)>1,而令g(x)=e x[f(x)﹣1],从而可得到g′(x)>0,这便说明g(x)在R上为增函数,而可求得g(0)=7,从而便可得到g(x)>g(0),这样即可得出原不等式的解集.【解答】解:2f(x)•2f′(x)=2f(x)+f′(x)>2;∴f(x)+f′(x)>1;令g(x)=e x[f(x)﹣1],则g′(x)=e x[f(x)+f′(x)﹣1]>0;∴g(x)在R上为增函数;∵f(0)=8;∴g(0)=f(0)﹣1=7;由得,;∴g(x)>g(0);∴x>0;即原不等式的解集为(0,+∞).故选:B.5.(2016秋•唐山月考)设函数f(x)=x3﹣3x2+(8﹣a)x﹣5﹣a,若存在唯一的正整数x0,使得f(x0)<0,则a的取值范围是()A.B.C.D.【分析】设g(x)=x3﹣3x2+8x﹣5,h(x)=a(x+1),在同一个坐标系中画出它们的图象,结合图象找出满足条件的不等式组解之即可.【解答】解:设g(x)=x3﹣3x2+8x﹣5,h(x)=a(x+1),g'(x)=x2﹣6x+8=(x﹣2)(x﹣4),所以x>4或者x<2时函数递增,2<x<4时递减,并且g(1)=,g(2)=,g(3)=1,g(4)=,图象如图,函数h(x)经过(﹣1,0),要使存在唯一的正整数x0,使得f(x0)<0,即g(x)<h(x)有唯一正整数解,所以只要a>0并且即解得;故选:A.二.填空题(共15小题)6.(2014•怀化三模)定义:关于x的两个不等式f(x)<0和g(x)<0的解集分别为(a,b)和,则称这两个不等式为对偶不等式.如果不等式与不等式2x2+4xsin2θ+1<0为对偶不等式,且,则θ=.【分析】先设出不等式的对应方程两个根为a、b,推出不等式的对应方程两个根为a、b,利用韦达定理,求得关于θ的三角方程,根据θ的范围求解即可.【解答】解:不等式与不等式2x2+4xsin2θ+1<0为对偶不等式,设不等式的对应方程两个根为a、b,则不等式2x2+4xsin2θ+1<0对应方程两个根为:所以即:tan2θ=﹣因为,所以故答案为:7.(2015•海南模拟)设函数,则实数a的取值范围是﹣3<a<1.【分析】由于函数为分段函数,可分别讨论当a≥0和a<0两种情况,进而求出实数a的取值范围.【解答】解:函数f(x)为分段函数,当a≥0时,<1,得0≤a<1.当a<0时,<1,解得a>﹣3,即﹣3<a<0,故答案为:﹣3<a<1.8.(2013•浙江模拟)若函数的定义域用D表示,则使f(x)>0对x∈D均成立的实数k的范围是k>或k<或k=1.【分析】由f(x)>0对x∈D均成立,分子分母同时大于0或者小于0,分类讨论,可得结论.【解答】解:①k+1=0时,f(x)=>0等价于2x﹣10>0,x>5,不满足题意,舍去;②2k﹣1=0时,f(x)=>0等价于(3x2+7x﹣14)(3x﹣7)>0,解得x∈(,)∪(,+∞),不满足x≠,舍去;③k≠﹣1且k≠时,分子分母同号,可得(k+1)(2k﹣1)>0且判别式均小于0,可得k >或k<.④当系数对应成比例时,k=1时,f(x)=2>0,满足题意.故答案为:k>或k<或k=1.9.(2013•江苏模拟)定义区间(c,d],[c,d),(c,d),[c,d]的长度均为d﹣c,其中d >c.则满足不等式的x构成的区间长度之和为.【分析】将原不等式转化为一端为乘积,另一端为0,利用穿根法,计算即可求得不等式中的x构成的区间长度之和.【解答】解:依题意,得≥0,即≥0⇔≤0,由a1a2x2﹣2(a1+a2)x+3=0,得其两根为:x1,2=(其中△=4[(a1﹣)2+]),x3,x4=,或;不妨设a1≥a2,判断一下四个根的大小,得到:≤≤≤,所以解集为:[,]∪[,],区间长度=(﹣)+(﹣)=(﹣﹣)+=.10.(2009•北京)若函数则不等式的解集为[﹣3,1] .【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].11.(2010•扬州二模)若对一切x>0恒成立,则a的取值范围是(﹣∞,2] .【分析】转化为函数y=|x﹣a|与y=,通过函数的图象,即可求出a 的取值范围.【解答】解:转化为函数y=|x﹣a|与y=,由函数的图象,y=<,且x=2时y=0,可知a的取值范围是(﹣∞,2]故答案为:(﹣∞,2]12.(2016•盐城模拟)已知函数f(x)=ax2+x﹣b(a,b均为正数),不等式f(x)≥0的解集记为P,集合Q={x|﹣2﹣t<x<﹣2+t},若对于任意正数t,P∩Q≠∅,则﹣的最大值是.【分析】根据不等式解集对应的关系,得到﹣2∈P,然后利用基本不等式进行求解即可.【解答】解:∵不等式f(x)≥0的解集记为P,集合Q={x|﹣2﹣t<x<﹣2+t},若对于任意正数t,P∩Q≠∅,∴﹣2∈P,即f(﹣2)≥0,则4a﹣2﹣b≥0,即1≤2a﹣,又由题意知,﹣的最大值必是正数,则﹣=(﹣)×1=(﹣)×(2a﹣)≤2﹣﹣+=﹣2=﹣2=,即﹣的最大值是,故答案为:13.(2013•颍泉区校级二模)f(x)=[x](x﹣[x]),[x]为x的整数部分,g(x)=x﹣1,当0≤x≤2012时,f(x)≤g(x)的解集为[1,2012] .【分析】根据0≤x≤2012,分两种情况考虑:当0≤x<1时,[x]=0,可得出x﹣1小于0,进而确定出f(x)=0,g(x)小于0,进而得到此时f(x)大于g(x),不合题意;当1≤x ≤2012时,假设n≤x<n+1,则[x]=n,表示出f(x),利用作差法判断出f(x)﹣g(x)的符合为负,可得出不等式f(x)≤g(x)的解集.【解答】解:当0≤x<1时,[x]=0,x﹣1<0,∴f(x)=0,g(x)=x﹣1<0,即f(x)>g(x),不合题意;当1≤x≤2012时,假设n≤x<n+1,则[x]=n,∴f(x)=n(x﹣n),又g(x)=x﹣1,∴f(x)﹣g(x)=n(x﹣n)﹣x+1=(n﹣1)x﹣n2+1<(n﹣1)(n+1)﹣n2+1=0,∴不等式f(x)≤g(x)的解集为[1,2012].故答案为:[1,2012]14.(2012•洞口县校级模拟)∀x∈R,且x≠0.不等式恒成立,则实数a的取值范围是4<a<6.【分析】不等式对于一切非零实数x均成立,可以先求出的最小值,然后利用|a﹣5|+1小于这个最小值即可求解a的取值范围.【解答】解:当x>0时,;当x<0时,.从而恒成立,所以不等式对于一切非零实数x均成立,可转化为|a﹣5|+1<2,即|a﹣5|<1即﹣1<a﹣5<1所以4<a<6.故答案为:4<a<6.15.(2012•五华区校级模拟)已知数列{a n}中a1=1,a2=2,当整数n>1时,S n+1+S n﹣1=2(S n+S1)都成立,则S15=211.【分析】将n>1时,S n+1+S n﹣1=2(S n+S1)转化为:n>1时,a n+1﹣a n=2,利用等差数列的求和公式即可求得答案.【解答】解:∵数列{a n}中,当整数n>1时,S n+1+S n﹣1=2(S n+S1)都成立,⇔S n+1﹣S n=S n﹣S n﹣1+2⇔a n+1﹣a n=2(n>1).∴当n≥2时,{a n}是以2为首项,2为公差的等差数列.∴S15=14a2+×2+a1=14×2+×2+1=211.故答案为:211.16.(2012•盱眙县校级模拟)已知函数,若,则实数a的取值范围是.【分析】根据分段函数g(x)的解析式作出其图象,如图所示.再对x进行分类讨论:①当x>时,g(x)是增函数,若;②当x≤时,g(x)=,若,得出关于a的不等关系,最后综上①②所述,即可得出实数a的取值范围.【解答】解:根据函数g(x)的解析式作出其图象,如图所示.①当x>时,g(x)是增函数,若,则,解得:﹣1≤a<0或a≤≥1;②当x≤时,g(x)=,若,则,解得:﹣≤a≤﹣;综上①②所述,实数a的取值范围是故答案为:.17.(2012•铁东区校级模拟)设f(x)=x﹣4tanx+2,x∈[﹣1,1],则关于a的不等式f(a2﹣1)+f(1﹣a)>4的解集为{a|0<a<1} .【分析】令h(x)=x﹣4tanx,x∈[﹣1,1],不等式可化为h(a2﹣1)+h(1﹣a)>0.再由由h(x)=x﹣4tanx 是奇函数,定义域为[﹣1,1],不等式进一步化为h(a2﹣1)>h (a﹣1).解不等式组求得a的范围,即为所求.【解答】解:令h(x)=x﹣4tanx,x∈[﹣1,1],则f(x)=h(x)+2,关于a的不等式f (a2﹣1)+f(1﹣a)>4 即h(a2﹣1)+2+h(1﹣a)+2>4,即h(a2﹣1)+h(1﹣a)>0.再由h(x)=x﹣4tanx 是奇函数,定义域为[﹣1,1],可得不等式即h(a2﹣1)>﹣h(1﹣a)=h(a﹣1),即h(a2﹣1)>h(a﹣1).∴.解得0<a<1,故不等式的解集为{a|0<a<1},故答案为{a|0<a<1}.18.(2011•富阳市校级模拟)已知则f(f(x))>1的解集是.【分析】分两种情况考虑:当x大于等于0时,根据分段函数解析式可得f(x)=,化简所求不等式的左边,再根据也大于等于0,再根据f(x)=,可把所求不等式化为关于x 的一元一次不等式,求出不等式的解集与x大于等于0求出交集,即为原不等式的解集;当x 小于0时,根据分段函数解析式得出f (x )=x 2,而x 2大于0,再根据f (x )=,可把所求不等式化为关于x 的一元二次不等式,分解因式后,根据两数相乘积大于0,可得两因式同号,转化为两个不等式组,求出不等式组的解集,与x 小于0求出交集,即为原不等式的解集,综上,求出两解集的并集即可得到所求不等式的解集. 【解答】解:当x ≥0时,f (x )=, ∵≥0,∴f (f (x ))=f ()=, 所求不等式化为>1,解得x >4,此时原不等式的解集为(4,+∞);当x <0时,f (x )=x 2, ∵x 2>0,∴f (f (x ))=f (x 2)=,所求不等式可化为>1,即(x +)(x ﹣)>0,可化为或,解得:x >或x <﹣,此时原不等式的解集为(﹣∞,﹣),综上,原不等式的解集为.故答案为:19.(2006•杭州校级模拟)使得:C n 1+2C n 2+3C n 3+…+nC n n<2006成立的最大正整数n 的值为 8 .【分析】令不等式左边,即C n 1+2C n 2+3C n 3+…+nC n n=t ,根据C n m=C n n ﹣m,得到t=C n n ﹣1+2C n n﹣2+3C n n ﹣3+…+(n ﹣1)C n 1+nC n n ,两式相加根据组合数的公式可得2t=n ×2n +nC n n,进而得到此式子小于2006的2倍,验证即可得到最大正整数n 的值.【解答】解:由题意令t=C n 1+2C n 2+3C n 3+…+nC n n,则有t=C n n ﹣1+2C n n ﹣2+3C n n ﹣3+…+(n ﹣1)C n 1+nC n n ,则可得2t=n ×2n +nC n n,故n ×2n +nC n n<4012, 验证知,最大的n 是8 故答案为:8. 20.(2016秋•沧州月考)已知常数a ,b ∈R ,且不等式x ﹣alnx +a ﹣b <0解集为空集,则ab的最大值为e 3.【分析】由题意可得不等式x﹣alnx+a﹣b<0解集为空集,即任意正数x,x﹣alnx+a﹣b≥0恒成立,即x+a﹣b≥alnx恒成立,a>0是必然的,设曲线y=alnx的切线l与直线y=x+a﹣b 平行,求出切点,以及切线方程,可得x+a﹣b≥x+alna﹣a,ab≤a•a(2﹣lna),构造函数f (x)=x2(2﹣lnx),求出导数和单调区间,可得最大值,即可得到ab最大值.【解答】解:不等式x﹣alnx+a﹣b<0解集为空集,即任意正数x,x﹣alnx+a﹣b≥0恒成立,即x+a﹣b≥alnx恒成立,当题目条件成立时,a>0是必然的,设曲线y=alnx的切线l与直线y=x+a﹣b平行,由=1,解得x=a,切点为(a,alna),则可以求得直线l方程为y=x+alna﹣a.于是必有x+a﹣b≥x+alna﹣a,即b≤2a﹣alna,当ab取得最大值时,必然b>0,于是ab≤a•a(2﹣lna),构造函数f(x)=x2(2﹣lnx),导数f′(x)=3x﹣2xlnx,x>0,当x>e时,f′(x)<0,f(x)递减;当0<x<e时,f′(x)>0,f(x)递增.则x=e时,取得极大值,也为最大值f(e)=e3(2﹣lne)=(2﹣)e=e.故答案为:.三.解答题(共6小题)21.(2016•荆州模拟)已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.【分析】(1)由题设知:|x+1|+|x﹣2|>7,解此绝对值不等式求得函数f(x)的定义域.(2)由题意可得,不等式即|x+1|+|x﹣2|≥m+4,由于x∈R时,恒有|x+1|+|x﹣2|≥3,故m+4≤3,由此求得m的取值范围.【解答】解:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范围是(﹣∞,﹣1].22.(2014•甘肃二模)若不等式5﹣x>7|x+1|与不等式ax2+bx﹣2>0同解,而|x﹣a|+|x ﹣b|≤k的解集为空集,求实数k的取值范围.【分析】先将“不等式5﹣x>7|x+1|”转化为和两种情况求解,最后取并集,再由“与不等式ax2+bx﹣2>0同解”,利用韦达定理求得a,b,最后由“|x﹣a|+|x﹣b|≤k的解集为空集”求得“|x﹣a|+|x﹣b|”最小值即可.【解答】解:得或得﹣2<x<﹣1 (3分)综上不等式的解集为,又由已知与不等式ax2+bx﹣2>0同解,所以解得(7分)则|x﹣a|+|x﹣b|≥|x﹣a﹣x+b|=|b﹣a|=5,所以当|x﹣a|+|x﹣b|≤k的解为空集时,k<5.(10分)23.(2012•商丘三模)已知不等式2|x﹣3|+|x﹣4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.【分析】(Ⅰ)对于不等式2|x﹣3|+|x﹣4|<2,分x≥4、3<x<4、x≤3三种情况分别求出解集,再取并集,即得所求.(Ⅱ)化简f(x)的解析式,求出f(x)的最小值,要使不等式的解集不是空集,2a大于f(x)的最小值,由此求得a的取值范围.【解答】解:(Ⅰ)对于不等式2|x﹣3|+|x﹣4|<2,①若x≥4,则3x﹣10<2,x<4,∴舍去.②若3<x<4,则x﹣2<2,∴3<x<4.③若x≤3,则10﹣3x<2,∴<x≤3.综上,不等式的解集为.…(5分)(Ⅱ)设f(x)=2|x﹣3|+|x﹣4|,则f(x)=,∴f(x)≥1.要使不等式的解集不是空集,2a大于f(x)的最小值,故2a>1,∴,即a的取值范围(,+∞).…(10分)24.(2010•苏州模拟)设函数f(x)=|x﹣a|﹣ax,其中a为大于零的常数.(1)解不等式:f(x)<0;(2)若0≤x≤2时,不等式f(x)≥﹣2恒成立,求实数a的取值范围.【分析】(1)把f(x)的解析式代入到f(x)<0得到一个不等式,当x小于等于0时得到不等式不成立;当x大于0时,对不等式的两边分别平方,移项后利用平方差公式分解因式,分a大于1,a等于1,a大于0小于1三种情况分别求出不等式的解集即可;(2)把f(x)的解析式代入到f(x)≥﹣2得到一个不等式,当a小于1大于01时,由0≤x≤2,得到ax﹣2小于等于0,原不等式恒成立;当a大于1时,分两种情况去掉绝对值号,然后把x等于2分别代入到化简的不等式中,得到关于a的两个不等式,分别求出解集与a大于1求出交集即可得到实数a的范围,综上,把两种情况求出的a的范围求出并集即可得到所有满足题意的a的范围.【解答】解:(1)不等式即为|x﹣a|<ax,若x≤0,则ax≤0,故不等式不成立;若x>0,不等式化为(x﹣a)2<a2x2,即[(1+a)x﹣a][(1﹣a)x﹣a]<0,∴当a>1时,x或x(舍);当a=1时,x;当0<a<1时,.综上可得,当a>1时,不等式解集为{x|x>};当a=1时,不等式的解集为{x|x};当0<a<1时,不等式解集为{x|};(2)不等式即为|x﹣a|≥ax﹣2,若0<a≤1,则当0≤x≤2时有ax﹣2≤0,故不等式|x﹣a|≥ax﹣2恒成立.若a>1,则x﹣a≥ax﹣2或x﹣a≤2﹣ax对任意x∈[0,2]恒成立,即(1﹣a)x+2﹣a≥0或(1+a)x﹣a﹣2≤0对任意x∈[0,2]恒成立,所以(1﹣a)•2+2﹣a≥0或(1+a)•2﹣a﹣2≤0,解得a≤或a≤0,∴1.综上,实数a的取值范围为(0,].25.(2015秋•上海校级期中)(1)解不等式:+2x≤5(2)解关于x的不等式:>(a∈R).【分析】(1)由+2x≤5得,解之即可得到不等式:+2x ≤5的解集;(2)>(a∈R)⇒>0,通过对参数a分a<0、a=0、0<a<、a=、a>五类讨论,可分别求得不等式>的解集.【解答】解:(1)∵+2x≤5,∴,即,解得:1≤x≤2,∴不等式:+2x≤5的解集为[1,2].(2)由>(a∈R)得:﹣=>0.当a=0时,解得:x<2;当a≠0时,>0⇔>0.当a>0时,若﹣2=2,即a=时,解得:x≠2;若﹣2>2,即0<a<时,解得:x>﹣2或x<2;若﹣2<2,即a>时,解得:x<﹣2或x>2;当a<0时,解得:﹣2<x<2.综上所述,a<0时,不等式:>的解集为{x|﹣2<x<2};a=0时,不等式:>的解集为{x|x<2};0<a<时,不等式:>的解集为{x|x>﹣2或x<2};a=时,不等式:>的解集为{x|x≠2};a>时,不等式:>的解集为{x|<﹣2或x>2}.26.设函数f(x)=e1﹣x+lnx﹣x2.(I)若f(x)的定义域为(,+∞),解不等式f(x)≥0;(Ⅱ)证明:f(x)在区间(0,)上有唯一极值点.【分析】(Ⅰ)根据得到e+e x(lnx﹣x2)≥0,构造函数g(x)=lnx﹣x2,利用导数求出函数的最值,判断出函数f(x)的单调性,继而得到不等式的解集;(Ⅱ)先求导,再构造函数h(x)=e x(1﹣2x)﹣ex,求导,再构造函数t(x)=﹣2x2﹣4x+1=﹣2(x+1)2+3,判断出函数的单调性,求出函数的值域,即可判断函数h(x)的单调性,由函数的单调性证明结论.【解答】解:(Ⅰ)f(x)=e1﹣x+lnx﹣x2,∴e+e x(lnx﹣x2)≥0,设f(x)=0,解得x=1,设g(x)=lnx﹣x2,则g′(x)=,当g′(x)≥0时,解得0<x≤,函数g(x)单调递增,当g′(x)<0时,解得x>,函数g(x)单调递减,∴当x=时,g(x)有最大值,即g(x)max=g()=﹣ln2﹣<0,∴e x(lnx﹣x2)为减函数,∴f(x)≥0的解集为(,1](2)∵f′(x)=﹣e1﹣x+﹣2x=令f′(x)=0,即e x(1﹣2x)﹣ex=0,设h(x)=e x(1﹣2x)﹣ex,∴h′(x)=e x(﹣2x2﹣4x+1)﹣e,设t(x)=﹣2x2﹣4x+1=﹣2(x+1)2+3,∴t(x)在(0,)上单调递减,∴t()<t(x)<t(0),即﹣<t(x)<1,∴e x(﹣2x2﹣4x+1)﹣e<0,∴h′(x)<0,∴h(x)在(0,)上单调递减,∴f′(0)=1>0,f′()=(﹣e)<0,∴f′(x)在区间(0,)上有唯一解,∴f(x)在区间(0,)上有唯一极值点。