压力容器无损检测
3.压力容器和无损检测
27 of 45
3.6 超声波检测 3.6.1超声波检测的原理、特点
原理:超声波是一种频率超过20kHz的机械振荡。利用这种声波能在 固体、液体和空气中传播,并在经过不同介质的界面时会发生反射的原 理检验金属材料中,包括焊接接头中的缺陷。
压力容器和无损检测
吴锦秋
高级工程师 注册一级建造师 注册安全工程师 无损检测RTⅡ、UTⅡ
目录 1.压力容器(承压类特种设备) 2.焊 接 3.无损检测
2 of 45
1、压力容器
英文:pressure vessel,是指盛装气体或者液体,承载一定压力的密闭设备。 常见的压力容器有:各类专用压缩机及制冷压缩机的辅机(冷却器、缓冲器
氮、氧、氢在钢中都是有害杂质,氧将降低钢的强度和塑性,使热脆加重,疲 劳强度下降,氢元素会引起氢脆,产生延迟裂纹和白点。
5 of 45
2 焊接
2.1 焊条电弧焊(手工电弧焊)
利用焊条与焊件之间的电弧热,将焊条及部分焊件熔化而形成焊缝的焊 接方法。焊接过程中焊条药皮熔化分解生成气体和熔渣,在气体和熔渣的 共同保护下,有效排除了周围空气对熔化金属的有害影响。
3.2 目测检测(外观检查)
目测检测是以目视观察和测量识别来确定材料或工件的表面状态 或清洁程度或装配关系,观察容器和部件的泄漏迹象具体方法和要 求没有统一标准。
23 of 45
3.3常用的无损检测方法
1.射线检测(RT) 四大 2.超声波检测(UT) 常规 3.磁粉检测(MT):主要用于铁磁性材料
,使工件达到结合的一种方法。 焊接接头常见的形式(4种)
14 of 45
《压力容器安全技术监察规程》无损检测
无损检测的常用方法
1. 超声检测
利用超声波在材料中传播时遇到 不同界面产生的反射和折射现象, 来检测材料内部和表面缺陷的一 种方法。
2. 射线检测
利用不同物质对射线的吸收和衰 减程度不同,通过观察穿透后的 射线强度来检测材料内部缺陷的 一种方法。
总结词
常见的无损检测方法包括超声检 测、射线检测、磁粉检测、涡流 检测等。
详细描述
随着科技的不断发展,无损检测技术正朝着智能化、高 精度、高效率的方向发展。新型的无损检测设备和技术 不断涌现,如激光超声检测、红外热成像检测等。同时 ,随着人工智能和机器学习技术的发展,无损检测技术 也将逐渐实现自动化和智能化。与其他先进技术的结合 也将成为未来的趋势,如将无损检测技术与数值模拟技 术、大数据分析技术等相结合,以提高检测精度和效率 ,更好地服务于工业生产和产品质量控制。
在压力容器使用过程中,定期进行无损检 测是预防事故发生的重要手段。通过无损 检测,可以及时发现容器内部的裂纹、腐 蚀等缺陷,避免因缺陷扩展导致的事故发 生。常见的无损检测方法包括超声波检测 、射线检测等。
案例三:压力容器维修过程中的无损检测应用
总结词
提高维修效率
详细描述
在压力容器维修过程中,无损检测技术可以 帮助维修人员快速定位缺陷位置,提高维修 效率。通过无损检测,可以确定需要维修的 部位和程度,避免盲目维修和过度维修的情 况发生。常见的无损检测方法包括超声波检 测、射线检测、涡流检测等。
压力容器维修过程中的无损检测
维修过程中无损检测
在压力容器的维修过程中,无损检测 技术同样发挥着重要的作用。它可以 检测出容器在维修过程中可能产生的 新的缺陷,例如焊接过程中产生的焊 接缺陷。
目的
通过无损检测,可以及时发现并处理 维修过程中产生的新缺陷,确保压力 容器的维修质量和安全性。
锅炉压力容器的无损检测
锅炉压力容器的无损检测锅炉压力容器是用于贮存和输送液体和气体的压力容器,其工作环境的高温、高压等特殊条件会导致容器内部出现裂纹、腐蚀等缺陷,从而危及安全。
因此,对锅炉压力容器进行无损检测具有非常重要的意义。
无损检测是一种不破坏材料及物体的安全检测方法,包括多种技术手段,如超声波检测、磁粉检测、液体渗透检测、射线检测等。
下面将分别介绍几种常用的无损检测方法。
1. 超声波检测超声波检测是利用超声波在物体中传播的物理特性,通过探头向被测物体发射超声波,并通过超声波的反射、折射等特性来检测物体内部的缺陷。
具有高效、非接触、高灵敏度等优点,常用于检测锅炉压力容器壁厚、裂纹、孔洞等缺陷。
2. 磁粉检测磁粉检测是一种利用铁磁性材料表面磁场变化来检测表面裂纹、焊缝缺陷等的非接触检测方法。
该方法可以检测出微小的表面缺陷,特别适合于检测焊缝、螺纹等部位的裂纹缺陷。
3. 液体渗透检测液体渗透检测是一种通过毛细作用来检测表面微小缺陷的方法。
其原理是将一种渗透液体涂布在被测物表面,待渗透液体充分渗入缺陷中后,再将其表面擦干,再涂上一种能发出荧光的显色剂,观察被测物表面是否出现荧光信号。
该方法适用于检测表面裂纹、气孔等缺陷。
4. 射线检测射线检测是利用X射线、γ射线等辐射性物质的特性,通过将辐射源置于被测物体一侧,辐射能量穿透被测物体后,利用存储器、观察器等设备对被测物体进行成像和分析的检测方法。
该方法可以检测出内部结构和成分的缺陷。
总之,无损检测是一种重要的工程技术手段,可以有效地检测锅炉压力容器内部的裂纹、缺陷等问题,保障设备安全运行。
各种无损检测技术有其各自的优缺点,需要根据不同的实际情况进行选择。
同时,无损检测的技术水平、设备质量等也是保障检测质量的重要因素。
压力容器无损检测
利用人工智能技术 进行远程数据分析 和诊断
利用虚拟现实技术 进行远程检测和操 作训练
1
2
3Leabharlann 4绿色环保检测技术
01
超声波检测:利用超声波对 02
射线检测:利用射线对压力
压力容器进行无损检测,减
容器进行无损检测,减少对
少对环境的影响
环境的影响
03
红外热成像检测:利用红外热 04
激光检测:利用激光对压力
演讲人
目录
01. 无损检测技术 02. 无损检测的应用 03. 无损检测的发展趋势
1
无损检测技术
超声波检测
原理:利用超声波在介质中的传播和反射特 性,检测缺陷和厚度
优点:灵敏度高,可检测微小缺陷,对工件 表面要求低
应用:广泛应用于金属、非金属、复合材料 等材料的检测
局限性:对缺陷的定性和定量分析有一定难 度,需要结合其他检测方法进行综合分析
03
02
优点:检测灵 敏度高,可检 测出微小缺陷
04
应用:广泛应用 于压力容器、管 道、轴承等设备 的无损检测
2
无损检测的应用
压力容器制造
压力容器制造过程中,无损检测技术用于检测材料 缺陷和焊接质量。
无损检测技术可以及时发现并纠正制造过程中的问 题,提高压力容器的质量和安全性。
无损检测技术在压力容器制造过程中应用广泛,包 括超声波检测、射线检测、磁粉检测等。
无损检测技术的应用可以降低压力容器制造成本, 提高生产效率。
压力容器维修
01
压力容器无 损检测在维 修中的应用
02
检测压力容 器的缺陷和
损伤
03
确定维修方 案和修复方
法
压力容器无损检测标准
压力容器无损检测标准压力容器是工业生产中常见的一种设备,其主要用途是存储或加工气体、液体或固体物质。
由于其特殊的使用环境和功能要求,压力容器的安全性显得尤为重要。
而无损检测作为一种重要的安全监测手段,在压力容器的制造、安装和使用过程中起着至关重要的作用。
本文将围绕压力容器无损检测标准展开讨论,以期为相关从业人员提供参考和指导。
首先,压力容器无损检测标准应当符合国家相关法律法规的规定,例如《压力容器安全技术监察条例》等。
在此基础上,还应结合压力容器的具体使用环境和条件,制定相应的无损检测标准,以确保其有效性和可操作性。
此外,还应考虑到无损检测技术的发展趋势和最新成果,不断更新和完善相关标准,以适应不断变化的市场需求和技术水平。
其次,压力容器无损检测标准应包括检测方法、设备要求、人员资质等方面的内容。
在检测方法方面,应根据压力容器的材质、结构和工作条件,选择合适的无损检测技术,如超声波检测、射线检测、磁粉检测等。
对于检测设备的要求,应明确设备的性能指标、精度要求和维护保养规定,以确保检测结果的准确性和可靠性。
同时,对从业人员的资质和培训也应有详细的规定,以确保其具备进行无损检测所需的专业知识和技能。
此外,压力容器无损检测标准还应包括检测报告的内容和格式要求。
检测报告是无损检测的最终成果,其准确性和完整性直接关系到压力容器的安全使用。
因此,检测报告应包括被检测压力容器的基本信息、检测方法和结果、存在的问题和建议等内容,并应按照统一的格式进行编制和保存,以便于后续的管理和查询。
总之,压力容器无损检测标准的制定和实施对于保障压力容器的安全运行至关重要。
相关部门和企业应高度重视无损检测标准的制定和执行,加强对从业人员的培训和管理,不断提升无损检测技术水平和管理水平,以确保压力容器的安全使用,保障人员和设备的安全。
在实际工作中,需要根据具体情况不断完善和调整无损检测标准,以适应市场需求和技术发展。
同时,还应加强对无损检测技术的研究和应用,推动无损检测技术的创新和发展,为压力容器的安全运行提供更加可靠的技术支持。
压力容器无损检测
第六节无损检测第七十八条无损检测人员应当按照相关技术规范进行考核,取得资格证书,方能承担与资格证书的种类和技术等级相对应的无损检测工作。
第七十九条压力容器的无损检测方法包括射线、超声、磁粉、渗透和涡流检测等。
压力容器制造单位应当根据 JB/T4730—2005《承压设备无损检测》标准和设计图样的规定制定无损检测工艺。
第八十条压力容器的焊接接头,应当先进行形状尺寸和外观质量的检查,合格后,才能进行无损检测。
有延迟裂纹倾向的材料应当至少在焊接完成 24 小时后进行无损检测;有再热裂纹倾向的材料应当在热处理后增加一次无损检测。
第八十一条压力容器对接焊接接头的无损检测比例,一般分为全部(100%)和局部(大于等于 20%)两种。
对碳钢和低合金钢制低温容器,局部无损检测的比例应当大于等于 50%。
第八十二条符合下列情况之一时,压力容器的对接接头,应当进行全部射线或超声检测:(一)图样和相关标准规定应当进行全部射线或超声检测的压力容器。
(二)第Ⅲ类压力容器。
(三)按分析设计标准制造的压力容器。
(四)采用气压试验的压力容器。
第八十三条压力容器焊接接头检测方法的选择要求如下:(一)压力容器壁厚小于等于38mm时,其对接接头应当采用射线检测或可记录的超声检测。
(二)压力容器壁厚大于 38mm(或小于等于 38mm,但大于20mm并且使用材料抗拉强度规定值下限大于等于 540MPa)时,其对接接头如采用射线检测,则每条焊缝还应当附加局部超声检测;如采用超声检测,每条焊缝还应当附加局部射线检测。
附加局部检测应当包括所有的丁字口焊缝,附加局部检测的比例为本规程第八十一条规定的原无损检测比例的 20%。
(三)可以采用衍射时差法超声检测(TOFD)代替射线检测。
(四)对有无损检测要求的角接接头、T形接头,确实不能进行射线或超声检测时,应当做 100%表面检测。
(五)有色金属制压力容器对接接头应当尽量采用 X射线检测。
第八十四条不进行全部无损检测的压力容器,其对接接头应当做局部无损检测,并且应当满足第八十一、八十三条的规定。
压力容器无损检测方法及执行标准
压力容器无损检测方法及执行标准常用的无损检测技术包括超声波探伤:利用超声波在物体中的传播特性来检测容器中的缺陷和裂纹,适用于金属、非金属和复合材料容器的检验。
X射线检测:利用X射线穿透物体的特性来检测容器内部的缺陷、裂纹和壳体的厚度等,适用于金属容器的检测。
磁粉探伤:利用磁性材料在磁场中的磁化特性来检测容器表面和内部的裂纹、缺陷和腐蚀,适用于金属容器的检验。
液体渗透检验:利用液体在表面张力下进入缺陷的特性,检测容器表面的裂纹和缺陷,适用于金属、非金属和复合材料容器的检验。
红外热像检测:利用物体吸收和辐射红外辐射的特性,检测容器表面和内部的温度分布,从而检测局部区域的表面温度异常或腐蚀。
压力容器无损检测的主要标准GB/T 2970-2016《钢铁产品磁粉探伤检验》:该标准适用于对压力容器进行磁粉探伤检验。
GB/T 13298-2018《工业放射线检测》:该标准适用于对压力容器进行放射线检测。
GB/T 7233-2018《液体渗透检验技术要求》:该标准适用于对压力容器进行液体渗透检验。
GB/T 19802-2015《压力容器无损检测用仪器设备校准规范》:该标准规定了压力容器无损检测用仪器设备的校准方法和标准。
JB/T 4730-2017《压力容器检验与验收标准》:该标准规定了压力容器检验和验收的各项要求,其中包括无损检测的要求和标准。
ASME BPVC Section V-2019《Nondestructive Examination》:该标准是美国机械工程师协会制定的无损检测标准,适用于各种类型的压力容器。
通过无损检测技术,可以及时发现容器内部的缺陷和问题,避免安全事故的发生,保障压力容器的安全可靠运行。
同时,需要结合实际情况,选用适当的无损检测方法和仪器设备,以满足检测要求。
在进行无损检测时,必须按照相应的规范和标准进行操作,以确保检测结果的准确性和可靠性。
创芯检测是一家电子元器件专业检测机构,目前主要提供电容、电阻、连接器、MCU、CPLD、FPGA、DSP等集成电路检测服务。
压力容器无损检测
浅谈压力容器的无损检测[摘要]:随着科技的不断进步、经济的不断发展,对产品的质量和产品的安全状况以及使用的性能都提出了很高的要求。
由于无损检测不但检查的灵敏度高,而且还具有不损伤材料不破坏试件等许多优点,因此,此检查方法得到越来越广泛的应用[关键词]:压力容器无损检测发展趋向一、无损检测的应用特点1.1 无损检测需和破坏性检测互相配合在检查时不损坏工件、材料或者结构是无损检测与其它检查方法相比最大的优点。
因此,在通过无损检测后合格的产品,其运行效果都非常良好。
但是,无损检测技术并不是非常的完善,其本身在某方面也具有一定的局限性,无损检测技术并不是对所有需要检测的项目和指标都适合,对于某些试验则只能采用破坏性检测的方法,不能使用无损检测方法,所以说目前无损检测方法在某些方面还不能完全取代破坏性检测。
因此,对某些特殊的工件、材料甚至机械设备的检验,必须先进行无损检测,然后进行破坏性检测,将得到的两种结果进行比较、互相结合,才能做出更加准确的评定。
1.2 正确选用无损检测的时机在进行无损检测时必须根据无损检测的目的正确选则采用无损检测实施的最佳时机,这样才能更好、更准确的检测其性能。
1.3 选用恰当无损检测方法由于无损检测有其自身的特点,在具体的某些应用中还具有很大的局限性,不能适用于所有工件和材料。
为了使检测结果具有更高的可靠性,在使用无损检测前必须依据被检测物体的形状、材质、结构等特点进行全面的分析,然后再结合无损检测方法和其它检测方法的特点综合选最佳的检测方法。
在利用无损检测方法时还要充分的认识到一点,无损检测的目的是保证产品可靠性和安全性,使产品可靠运行。
1.4 综合的应用无损检测方法任何一种无损检测的方法自身都有优点和缺点,不可能是万能的,因此,在对某些特殊产品运用无损检测时,不能只采用单一的无损检测方法,而是多种检测方法配合使用,这样做的目的在于可以利用各种无损检测方法特点,更深入的检测出工件的缺陷。
压力容器无损检测指导书
压力容器无损检测指导书1.目的该作业指导书是为指导检验员进行在对承压类特种设备进行无损探伤而制订,其目的是规范检验检测工作过程,提高检验工作质量,及时消除隐患,防止事故发生。
2. 适用范围本作业指导书适用于压力容器、锅炉、压力管道等承压设备的无损检测。
3.职责3.1检验员a.从事压力容器定期检验工作的检验人员,必须严格按照核准的检验范围从事检验工作。
b.负责按本程序要求准备和实施现场检验,填写检验检测原始记录,出具检验报告;c.对检验检测原始记录的真实性和检验结论的准确性负主要责任。
3.2检验责任师负责核对检验检测原始记录和审核检验报告,对检验结论的准确性负次要责任。
4.工作依据《特种设备安全监察条例》国务院令第373号《压力容器定期检验规则》TSGR7001-2004《压力容器安全技术监察规程》质技监局锅发[1999]154号GB150-2011《钢制压力容器》GB151-1999《钢制管壳式换热器》GB20801-2006《压力管道规范工业管道》GB50273《工业锅炉安装工程施工及验收规范》GB 4792《放射卫生防护基本标准》JB4710-2005《钢制塔式容器》JB4731-2005《钢制卧式容器》JB4730-2005《压力容器无损检测》5. 检测项目及质量要求(1)锅炉无损检测:锅炉受热面管子及其本体管道焊缝的射线探伤,应在外观检查合格后进行,并符合下列规定:1 抽检焊接接头数量应符合下列规定:1)蒸汽锅炉额定工作压力小于 3.8MPa 的管道,其外径小于或等于159mm 时,安装工地为10%;外径大于159mm,壁厚大于或等于20mm 时,每条焊缝应进行100%探伤;2)热水锅炉额定出水温度小于120℃,管子外径大于159mm,探伤比例应不小于焊接接头数25%。
管子外径小于159mm,可不探伤;锅炉额定出水温度大于或等于焊接接头数120℃,管子外径小于或等于159mm,探伤比例不应小于焊接接头数2%;管子外径大于159mm,应为100%探伤;3)有机热载体炉辐射段探伤接头数比例不应低于10%,对流段不应低于5%。
压力容器无损检测RT
压力容器无损检测1、主题内容与适用范围本标准规定了射线检测、超声检测、磁粉检测、渗透检测和涡流检测五种无检测方法及缺陷等级评定。
本标准所述各种无损检测方法,适用于金属材料制压力容器的原材料、零部件和焊缝。
一般要求:射线、超声、磁粉、渗透、涡流、铁磁性材料制成应使用无损检测规程。
检测程度及结果应正确、完整并有相应责任人员签名认可。
检测记录、报告等保存期不得少于7年,若用户需要可转交用户保管。
凡从事压力容器及零部件检测的人员,都必须经过技术培训,并按照劳动部文件“锅炉压力容器无损检测人员资格考核规则”进行考核鉴定。
凡从事压力容器及零部件无损检测工作的人员,除具有良好的身体素质外,视力必须满足下列要求:不得低于1.0,并一年检查一次。
射线评片人员应能辨别距离400mm远的一组高为0.5mm、间距为0.5mm的印刷字母。
无损检测责任工程师,无损检测高级或中级的资格者担任。
第二篇焊缝射线透照检测5、一般要求5.1检测范围本章规定了在焊缝透照检测过程中,为获得合格透照底片所必须遵循的程序和要求。
本章适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制压力容器焊缝及钢管对接环缝的射线透照检测。
5.2防护5.2.1X射线和Y射线对人体有不良影响,应尽量避免射线的直接照射和散射线的影响。
5.2.2从事射线检测的人员应备有剂量仪或其它剂量测试设备,以测定工作环境的射线照射量和个人受到的累计剂量。
Y射线检测听任中,每次都应测定工作场所和Y射线源容器附近的射线剂量,以便了解射源位置,免受意外照射。
5.2.3在现场进行射线检测时应设置安全线。
安全线上应有明显警告标志,夜间应设红灯。
5.2.4检测人员每年允许接受的最大射线照射量为5×10-2Sv,非检测人员每年允许接受的最大剂量为5×10-2Sv。
5.3检测人员应符合4.3条的有关规定。
5.4射线透照等效系数材料的射线透照等效系数见表5-1。
将此系数乘以待检容器材料的厚度,即能得到相当于多少厚度钢的吸收效果。
锅炉压力容器的无损检测
锅炉压力容器的无损检测
锅炉压力容器的无损检测是指利用各种无损检测方法来对锅炉压力容器的材料及焊缝
进行检测、评估和监控的技术手段。
锅炉压力容器的无损检测是确保锅炉安全运行的重要
手段,可以帮助发现材料缺陷、焊接缺陷、裂纹、腐蚀、疲劳等问题,提前采取相应的修
复措施,减少事故风险,确保设备的安全可靠性。
无损检测方法主要包括超声波检测、射线检测、磁粉检测、液体渗透检测等。
这些方
法各有特点,可以相互补充,提高检测的准确性和可靠性。
超声波检测是最常用的无损检测方法之一,通过在被检测物体表面或内部传递超声波
来检测材料的缺陷。
超声波可以穿透材料,对材料进行快速、准确的检测,可以检测到较
小的缺陷,如裂纹、疏松、变形等。
在锅炉压力容器的检测中,超声波可以用于测量厚度、检测焊缝、评估材料的损伤程度等。
磁粉检测是利用涂有磁粉的液体或粉末将其引入被检测物体的表面,通过观察磁粉在
被检测物体表面形成的磁粉堆积来检测材料的缺陷。
磁粉检测可以检测到表面和近表面的
裂纹、变形等缺陷。
在锅炉压力容器的检测中,磁粉检测可以用于检测焊缝的质量、评估
材料的表面缺陷。
锅炉压力容器的无损检测需要具备一定的安全措施,保护工作人员的安全。
无损检测
需要经过专业培训和认证,由具备资质的人员进行操作和解读结果,以保证检测的准确性
和可靠性。
浅析压力容器的无损检测
、
压力容器无损检测方法
压力容器 指 的是盛 装气体 或者液体 ,承 载一定压 力的密 闭设备 ,是 一种可能 引起 爆 炸或 中毒等 危害性 较大事故 的特种设 备,如 果一旦发 生爆炸或 者泄漏 ,往 往还会 并发火 灾、 中毒 、污染环 境等灾难 性事故 ,所 以对 于压力容器 的安全 要求往往要 比一般 的设备 高的多 。无损检测 技术作为应 用于压 力容器 检验 中的主要技术 ,具有非破 坏性 、全 面性 以及全程性等特点 ,无损 的检测方法有很多 , 其 中主要 包括超 声波检测 、射线检测 、渗透 检测 以及 磁粉检 测等 。每 一个方法都 有 自身 的优 点、缺 点以及适用 的应 用范 围,因此 , 技术人 员在对检 测方法进行 选择 的时候,一 定要结合具体情况来进行合理选择 。 1 . 1超声波检测方法 采用超 声波进 行检测方 法对压力 容器进 行检验 的时候 ,采用 的超 声波频 率一般控 制是控制在 0 . 5 加 { z 一 5 M H z 之 间 , 由于 超 声 波 的穿透 能力较 强,灵敏度 也较高 ,能够实现 在材 料中 以一定速度和 方 向进行传 播,如 果 被检 仪器 内部存 在缺 陷,超声波就 会 出现 反 射 的情况 ,如果在检验 的过程 中,出现 了这 种 反射现象 ,那 么就说 明压力容 易 内部结 构 存在着 一定 的缺 陷 ,应 及时予 以科 学处理 。 这种 检测方法 主要应用 于焊缝缺 陷检测 、锻 件缺 陷检测 以及 铸件缺 陷检测几个 方面 ,超 声波 检测方法 的优点是 穿透能 力较 强;灵 敏 度较 高,整套 检测设备 轻便 ,操作 安全 ,易 于 实现 自动化检 验 。这 种检测方法 的缺 点在 于 ,其应用 范围有 限,不能够对 复杂的工件 进 行检验 工作 ,非直观 检验结 构的判断难 度 也 比较高 ,需要有一 定经验 的工作人员来 实 施具 体的操 作和 判断。 1 . 2射 线检测 方法。 目前 ,射 线检测方 法 已经 成为 了压 力容 器检 验中的一种 有效方法之一,检验过程中, 射 线穿透工 件会形成 一定程度 的阻力 ,如果 被 检物质存 在缺 陷,构成缺 陷的物质 的阻力 系 数与工件 基本物质 的阻力系 数将会 出现 不 同,射线 的强度也会 出现 明显 的差异 。这 种 情况 下,放在工件 后面 的 x光感光胶片的感 光 程度也 会出现不 同程度 的变化 ,胶 片处理 过后 ,存 在缺陷 的部分与正 常的部分将 会 出 现 黑度不 同的影像 ,检验人 员可 以根据 黑度 的不 同,来判断工件 中所存在 缺陷 的相 关信 息。射线检 测方法主 要应用 于压力容器 制造
压力容器安全技术监察规程无损检测
• 另外有八种压力容器应尊循本规程旳总则、设计、制造、 旳要求。
• (二)压力容器范围旳界定
本规程合用旳压力容器,其范围涉及压力容器 本体和安全附件。 1 压力容器本体界定在下述范围内: (1)压力容器与外部管道或装置焊接连接旳第一道 环向接头旳坡口面、螺纹连接旳第一种螺纹接头 端面、法兰连接旳第一种法兰密封面、专用连接 件或者管件连接旳第一种密封面; (2)压力容器开孔部分旳承压盖及其紧固件; (3)非受压元件与压力容器旳连接焊缝。
(2)有色金属制压力容器对接接头应该优先采用X射线检测 ;
(3)管座角焊缝、管子管板焊接接头、异种钢焊接接头、 具有再热裂纹倾向或者延迟裂纹倾向旳焊接接头应该进行 表面检测;
(4)铁磁性材料制压力容器焊接接头旳表面检测应该优先 采用磁粉检测。
2、无损检测百分比
1) 基本百分比要求
压力容器对接接头旳无损检测百分比 一般分为全部(100%)和局部(不小于或 者等于20%)两种。碳钢和低合金钢制 低温容器,局部无损检测旳百分比应 该不小于或者等于50%。
(五)无损检测旳实施时机
(1)压力容器旳焊接接头应该经过形状、尺寸及外 观检验,合格后再进行无损检测;
(2)拼接封头应该在成形后进行无损检测,假如成 形前已经进行无损检测,则成形后还应该对圆弧 过渡区到直边段再进行无损检测;
(3)有延迟裂纹倾向旳材料应该至少在焊接完毕二 十四小时后进行无损检测,有再热裂纹倾向旳材 料应该在热处理后增长一次无损检测;
二、本规程旳合用范围:
压力容器焊缝无损检测标准
压力容器焊缝无损检测标准
压力容器是一种用于承受内部或外部压力的封闭容器,通常用于工业生产中的
化工、石油、制药等领域。
焊缝是压力容器中最容易出现问题的部分,因此对焊缝进行无损检测是非常重要的。
无损检测是指在不破坏被检测物体的情况下,通过各种物理、化学、声波等方法来检测材料内部的缺陷、裂纹等问题。
在进行压力容器焊缝无损检测时,需要严格按照相关标准进行操作,以确保检
测结果的准确性和可靠性。
以下是压力容器焊缝无损检测的一些标准要求:
1. 人员资质要求,进行焊缝无损检测的人员需要具备相关的资质证书,包括无
损检测人员资格证书、焊接工程师证书等。
只有经过专业培训并取得相应资质的人员才能进行焊缝无损检测工作。
2. 检测设备要求,无损检测设备需要经过定期的校准和检验,确保其检测结果
的准确性。
同时,操作人员需要熟练掌握各种检测设备的使用方法,确保设备的正常运行和准确检测。
3. 检测方法要求,常见的焊缝无损检测方法包括超声波检测、射线检测、涡流
检测等。
根据实际情况选择合适的检测方法,并严格按照标准要求进行操作,以确保检测结果的准确性。
4. 检测报告要求,对于每次焊缝无损检测,都需要及时编制检测报告,并在报
告中详细记录检测过程、结果和结论。
检测报告需要经过相关部门的审核和归档,以备日后查阅和追溯。
总之,压力容器焊缝无损检测是一项非常重要的工作,对于确保压力容器的安
全运行至关重要。
严格按照相关标准要求进行操作,确保检测人员资质、设备状态、检测方法和报告编制等各个环节的严格执行,才能够保证焊缝无损检测的准确性和可靠性,为压力容器的安全运行提供有力保障。
压力容器无损检测的方法及术语
压力容器无损检测的方法及术语压力容器无损检测是指通过对压力容器进行非破坏性检测,通过对容器的内部或表面进行检测,以评估容器的可用性和安全性。
常用的方法包括超声波检测、磁粉检测、液体渗透检测、射线检测等。
下面将对这些方法及相关术语进行详细介绍。
1. 超声波检测超声波无损检测是利用超声波在材料中传播时的声波反射和传播速度变化来评估材料的内部结构和缺陷的一个方法。
常用的设备包括超声波探头、接收器和仪器。
术语如下:- 强度:超声波在媒质内传播的强度。
- 衰减:超声波在媒质内逐渐减弱的过程。
- 干扰回声:超声波发射器回声和接收器回声之间的干扰。
- 回声:超声波遇到表面、界面或缺陷时发生的信号。
2. 磁粉检测磁粉检测是指利用磁场和铁磁性材料之间的相互作用来检测材料表面和近表面的缺陷。
常用的设备有磁力计、磁粉涂层和照明设备。
术语如下:- 磁化:将物体暂时磁化或增加其磁化度。
- 磁粉:用来检测磁场变化的细粉末,根据其磁场性质不同可以分为干粉和湿粉。
- 缺陷:表面或近表面存在的不良部分或裂纹。
3. 液体渗透检测液体渗透检测是指将液体渗透剂应用于待测材料的表面,通过液体在缺陷表面形成的渗透物进行检测的方法。
常用的设备包括渗透剂、清洗剂和开发剂。
术语如下:- 渗透剂:涂覆在表面上,能渗透到缺陷中的液体。
- 渗透物:在缺陷中由渗透剂形成的可见液滴或渗透剂染色的物质。
- 清洗剂:用来清洗材料表面的溶剂或清洁剂。
4. 射线检测射线检测是利用射线(如X射线、伽马射线)通过材料,观察和记录射线经过材料时与其相互作用的方法。
常用的设备有射线源、探测器和曝光设备。
术语如下:- 驻点:射线从射线源到探测器过程中的位置。
- 记录:通过将探测器记录的信号转化为影像或图像来显示射线与材料交互的结果。
- 曝光:将光敏材料(如胶片或成像器件)暴露于射线下以获取影像的过程。
除了上述常用的无损检测方法和术语外,还有其他一些与压力容器无损检测相关的常用术语,如下:- 缺陷评估:对检测到的缺陷进行评估和分类。
浅析压力容器的无损检测
浅析压力容器的无损检测摘要:当前无损检测已在工业设备检测中得到了广泛的应用,本文作者从实际工作出发对压力容器的无损检测做出了全面的阐述。
关键词:压力容器无损检测方法一、压力容器无损检测方法压力容器指的是盛装气体或者液体,承载一定压力的密闭设备,是一种可能引起爆炸或中毒等危害性较大事故的特种设备,如果一旦发生爆炸或者泄漏,往往还会并发火灾、中毒、污染环境等灾难性事故,所以对于压力容器的安全要求往往要比一般的设备高的多。
无损检测技术作为应用于压力容器检验中的主要技术,具有非破坏性、全面性以及全程性等特点,无损的检测方法有很多,其中主要包括超声波检测、射线检测、渗透检测以及磁粉检测等。
每一个方法都有自身的优点、缺点以及适用的应用范围,因此,技术人员在对检测方法进行选择的时候,一定要结合具体情况来进行合理选择。
1.1超声波检测方法采用超声波进行检测方法对压力容器进行检验的时候,采用的超声波频率一般控制是控制在0.5mhz-5mhz之间,由于超声波的穿透能力较强,灵敏度也较高,能够实现在材料中以一定速度和方向进行传播,如果被检仪器内部存在缺陷,超声波就会出现反射的情况,如果在检验的过程中,出现了这种反射现象,那么就说明压力容易内部结构存在着一定的缺陷,应及时予以科学处理。
这种检测方法主要应用于焊缝缺陷检测、锻件缺陷检测以及铸件缺陷检测几个方面,超声波检测方法的优点是穿透能力较强;灵敏度较高,整套检测设备轻便,操作安全,易于实现自动化检验。
这种检测方法的缺点在于,其应用范围有限,不能够对复杂的工件进行检验工作,非直观检验结构的判断难度也比较高,需要有一定经验的工作人员来实施具体的操作和判断。
1.2射线检测方法。
目前,射线检测方法已经成为了压力容器检验中的一种有效方法之一,检验过程中,射线穿透工件会形成一定程度的阻力,如果被检物质存在缺陷,构成缺陷的物质的阻力系数与工件基本物质的阻力系数将会出现不同,射线的强度也会出现明显的差异。
压力容器何时进行无损检测以及无损检测方法的选择
压力容器何时进行无损检测以及无损检测方法的选择压力容器是经常用于储存或运输气体、液体或粉末等物质的设备。
由于容器内部承受高压力,一旦发生泄漏或破裂,可能会造成严重事故,因此对压力容器进行无损检测是非常重要的。
1.定期检测:根据相关法规和标准,压力容器需要定期进行无损检测。
一般情况下,这个时间间隔在一至五年之间,具体的时间间隔取决于容器的使用情况和制造材料。
例如,在工业领域中使用的压力容器通常需要更频繁的检测。
2.定期维护:如果在容器的定期维护期间发现有任何疑似损坏或泄漏迹象,是需要立即进行无损检测的。
这些维护检查可以包括外观检查、振动检测、温度检测等。
3.特殊情况:有些特殊情况下,也需要对压力容器进行无损检测。
例如,在容器发生严重事故或受到外部损坏的情况下,需要及时检测容器的完整性和安全性。
此外,在容器发生重大维修或更换部件后,也需要进行无损检测。
在进行无损检测时,可以采用多种方法,具体选择哪种方法取决于容器的类型、尺寸和制造材料等因素。
1.超声波检测:超声波检测可以用于检测压力容器壁内的缺陷,能够探测到微小的裂纹、孔洞等问题。
通过测量超声波在材料中的传播速度和反射情况,可以确定容器壁的状况。
2.磁粉检测:磁粉检测主要用于检测压力容器表面的疲劳裂纹或焊缝的问题。
通过在容器表面覆盖一层磁粉,可以观察到磁粉在裂纹或缺陷处的积聚情况,从而确定容器的完整性。
3.射线检测:射线检测是一种广泛使用的无损检测方法,适用于各种类型的压力容器。
通过使用X射线或伽马射线,可以观察到容器内部的缺陷、裂纹等问题。
4.红外热像检测:红外热像检测主要用于检测容器表面的温度分布情况。
如果在容器表面发现异常的高温区域,可能表明容器存在泄漏或其他问题。
总之,无损检测对于压力容器的安全运行至关重要。
无论是定期检测还是特殊情况下的检测,选择合适的无损检测方法非常重要,以确保容器的完整性和安全性。
同时,无损检测也应按照相关法规和标准进行,并由经过培训和有经验的专业人员进行执行。
容规国标对检测比例的规定
新《容规》的规定1. 无损检测规定压力容器设计单位应当根据本规程、本规程引用标准和JB/T4730的规定在设计图样上规定所选择的无损检测方法、比例、质量规定及其合格级别等。
2.钢板超声检测2.1 检测规定厚度大于或者等于12mm的碳素钢和低合金钢钢板(不涉及多层压力容器的层板)用于制造压力容器壳体时,凡符合下列条件之一的,应当逐张进行超声检测:(1) 盛装介质毒性限度为极度、高度危害的;(2) 在湿H2S腐蚀环境中使用的;(3) 设计压力大于或者等于10MPa的;(4) 本规程引用标准中规定逐张进行超声检测的。
2.2 检测合格标准钢板超声检测应当按JB/T 4730 《承压设备无损检测》的规定进行,用于本规程2.5.1第(1)项至第(3)项的钢板,合格等级不低于Ⅱ级,用于本规程2.5.1第(4)项的钢板,合格等级应当符合本规程引用标准的规定。
3.接管与壳体之间接头设计钢制压力容器的接管(凸缘)与壳体之间的接头设计以及夹套压力容器的接头设计,可参照本规程引用标准进行。
有下列情况之一的,应当采用全焊透结构:(1)介质为易爆或者介质毒性为极度危害和高度危害的压力容器;(2)规定气压实验或者气液组合压力实验的压力容器;(3)第Ⅲ类压力容器;(4)低温压力容器;(5)进行疲劳分析的压力容器;(6)直接受火焰加热的压力容器;(7)设计图样规定的压力容器。
4.焊接返修焊接返修(涉及母材缺陷补焊)的规定如下:(1)应当分析缺陷产生的因素,提出相应的返修方案;(2)返修应当按本规程4.2.1进行焊接工艺评估或者具有通过评估合格的焊接工艺规程(WPS)支持,施焊时应当有详尽的返修记录;(3)焊缝同一部位的返修次数不宜超过2次,如超过2次,返修前应当通过制造单位技术负责人批准,并且将返修的次数、部位、返修情况记入压力容器质量证明文献;(4)规定焊后消除应力热解决的压力容器,一般应当在热解决前焊接返修,如在热解决后进行焊接返修,应当根据补焊深度拟定是否需要进行消除应力解决;(5)有特殊耐腐蚀规定的压力容器或者受压元件,返修部位仍需保证不低于原有的耐腐蚀性能;(6)返修部位应当按照原规定通过检测合格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于球形储罐在现场露天安装焊接,工作条件较差,易出现表面裂纹,因此对重要部位的焊缝,其表面应进行磁粉渗透检测。GB 12337规定,符合下列条件的部位应按图样规定的方法,进行表面检测,即①嵌人式接管与球壳连接的对接接头表面。②焊补处的表面。③工卡具拆除处的焊迹表面和缺陷修磨处的表面。④支柱与球壳连接处的角焊缝表面。⑤凡进行100 %射线或超声检测的球罐上公称直径<φ250mm的接管与长颈法兰、接管与接管对接接头表面。
检测标准按JB 4730进行,射线照相的质量要求应不低于AB级。对100%检测的对接接头,检测结果不低于Ⅱ级为合格;对局部检测的对接接头,检测结果不低于Ⅲ级为合格。对于100 %超声检测的对接接头,I级为合格;局部检测的对接接头,不低于Ⅱ级为合格。
射线检测使用的探伤设备包括X射线探伤机和γ射线探伤机,一般X射线探伤机适用于厚度<50mm的钢板,75Se γ源检测厚度范围为10~40mm,192lrγ源检测厚度范围为20~100mm,60Coγ源检测厚度范围为40~200mm。由于球形储罐结构的特点,射线探伤特别适合采用γ源,将γ源放在球罐的中心,一次透照即可完成所有焊缝的检测,效率很高。
超声检测方法适用于母材厚度>8mm,全焊透熔化焊对接焊缝内部缺陷的检测。采用的仪器为A型脉冲反射式超声波探伤仪,仪器的工作频率范围为1~5MHz。采用的探头一般为2~5MHz频率的K值探头,利用一次反射法在焊缝的单面双侧对整个焊接接头进行检测。当母材厚度>46mm时,采用双面双侧的直射波检测。对于要求比较高的焊缝,根据实际需要也可将焊缝余高磨平,直接在焊缝上进行检测。检测区域的宽度是焊缝本身加上焊缝两侧各相当于母材厚度30%的一段区域,而且最小为10mm。
球形容器的结构由球壳和支座两部分组成,球壳由许多块球瓣组焊而成,球瓣的拼接方式一般有足球式分瓣和橙皮式分瓣两种。国内建造的球形储罐大部分为橙皮式分瓣,通常将球面比照地球分为五部分,即赤道带、南温带、北温带、南极板(即底版)和北极板(即顶板)。支座的形式主要有支柱和裙座两类,一般小型球形容器采用裙座式,>50m3的球罐采用赤道正切支柱式。由于球形储罐的几何尺很大,再加上运输的限制,其制造过程为先在压力容器制造厂压好球瓣,预焊好支柱,然后运输到现场进行总体组装,因此采用的无损检测方法必须适于现场操作。 球形储罐在使用过程中,内部易受介质的影响,外部易受大气环境的影响,某些情况下可产生应力腐蚀开裂;球罐支柱的角焊缝是应力集中最大的部位,也是在用检验的重点。本文根据球形储罐制造、安装和使用的特点,综述了在不同阶段采用的无损检测技术的特点。
对于新投入使用的球形储罐,如使用标准抗拉强度下限值σb≥540MPa的材料制造,投用la后应当开罐进行全面检验;否则,最长可到投用3a后开罐进行全面检验。球罐的年度检查内容包括使用单位压力容器安全管理情况检查、球罐本体及运行状况检查和安全附件检查等。检查方法以宏观检查为主,必要时进行测厚和腐蚀介质含量测定。如球罐焊缝内已存在超标焊接缺陷,可采用声发射监测的方法来识别这些缺陷是否为活性;如需确定某些高应力集中部位是否存在疲劳损伤,可采用磁记忆检测方法;如需检查球罐外表面是否有疲劳裂纹或应力腐蚀裂纹产生,可采用表面裂纹电磁检测的方法。
声发射检测一般采用多通道声发射仪,探头阵列采用三角时差定位的方式对球形储罐进行整体实时监测,声发射探头之间的间距一般为3~5m。比如,最常见的400m3球罐需采用18个通道,1 000m3球罐需采用26个通道。
由于新安装球罐的水压试验第一次加载,球壳焊接和组装产生的残余应力得到逐步释放,因此声发射信号很丰富,声发射定位源会较均匀地分散在球壳的各个部位,但在人孔、支柱角焊缝、错边、热处理不均匀和有缺陷开裂的部位等由于应力集中较大,易出现声发射定位源集团。一般为了区分残余应力释放和缺陷开裂引起的声发射信号源,根据金属材料具有的KAISER效应的特性,采用从试验压力降压到设计压力然后第二次升压至试验压力的方法,残余应力释放部位第二次升压时几乎无声发射信号产生,缺陷开裂部位在第二次升压时一般会重复出现声发射定位源信号。声发射检测技术可以确定活性缺陷的具*置,但要确定声发射源内具体存在什么性质的缺陷,目前还需要采用常规无损检测方法进行复验。
鉴于球形容器的上述特点,目前国内外主要采用球形储罐来储存各种气体和液化气体,在石油、化工、冶金和城市燃气供应等方面得到广泛使用。最常见的为石化厂的石油液化气和液态乙烯等烯烃球罐,城市供气的大型天然气和煤气球罐,化肥厂的液球罐,炼钢厂的氧气、氮气和氩气球罐等;最常用公称容积为50,120,200,400,1 000,2 000,5 000,8 000和10 000 m3等;国内常用的材料为20R,16MnR,15MnVR和15MnVNR钢,也有许多从日本进口球罐采用的材料为SPV36,壁厚一般在20~50mm,30mm左右的最多。根据2003年的统计,我国拥有容积≥50m3的球罐5 800多台[2]。
钢板超声检测选用纵波直探头,6~20mm厚的钢板需选用晶片面积≮150mm2的5MHz双晶直探头,检测用试块为台阶标准试块;20~250mm厚的钢板需选用的直径为Ф14~25mm的圆晶片,或面积≮200mm2的方晶片2.5MHz单晶直探头,检测用试块为φ5mm平底孔标准试块。钢板的超声检测按JB 4730的规定,热轧、正火状态供货的钢板质量等级应不低于Ⅲ级,调质状态供货的钢板质量等级应不低于Ⅱ级。
磁粉或渗透检测前应打磨受检表面至露出金属光泽,并应使焊缝与母材平滑过渡。检测标准按JB4730进行,检测结果I级合格。
2.3耐压试验的声发射检测
球形储罐在制造完成后,最终都要以水或空气为介质进行耐压试验,以考核和确认其安全质量。对一些特殊要求的球形储罐,在水压试验时还需同时进行声发射监测,以检测球形储罐在耐压试验过程中可能出现的缺陷开裂、裂纹萌生与扩展,并对耐压试验过程中球罐的结构完整性进行评价。
对球壳用钢板进行超声检测的主要目的是发现板材在冶炼和轧制过程中产生的白点、裂纹和分层等缺陷。并非所有球壳用钢板都需超声检测,GB12337-1998《钢制球形储罐》规定,凡符合一定条件的球壳用钢板,必需逐张进行超声检测,即①厚度≥30mm的20R和16MnR钢板。②厚度≥25mm的15MnVR和15MnVNR钢板。③厚度≥20mm的16MnDR和09Mn2VDR钢板。④调质状态供货的钢板。⑤上下极板和与支柱连接的赤道板。
目前在用球罐全面检验一般采用常规无损检测方法和声发射检测方法两种模式。常规无损检测方法的模式为,对内外表面焊缝和焊疤部位进行100 %磁粉或渗透检测,对接焊缝内部进行20%~100%超声检测,对超声检测发现的内部超标缺陷进行射线检测以确定缺陷的性质,并为返修确定具体部位;这种检测方法一般用于焊缝内部无已知超标缺陷或超标缺陷很少的球罐,但这种检测方法所需的检验时间相对较长。采用声发射检测方法的模式为,球罐停用后首先进行水压试验和声发射检测,然后对声发射检测指定的活性源部位进行表面检测和超声检测复验,并适当扩大表面检测的比例到20 %以上,对超声检测发现的内部超标缺陷进行射线检测照相以确定缺陷的性质,并为返修确定具体部位;这种检测方法一般用于已知焊缝内部存在或可能存在大量超标缺陷的球罐,声发射检测可以从大量超标缺陷中识别出活性缺陷进行返修;对于无超标缺陷的球罐,采用此种模式,也可大大缩减开罐检验的时间,减少停产损失。然而,值得提醒的是,对于一些较小的表面裂纹,耐压试验过程中可能不产生声 发射定位源信号,因此,声发射检测有时不能发现小的表面裂纹。
钢板在切割好后,球壳板周边<100mm内应进行100%超声检测,检测工艺与上述要求相同。对于标准抗拉强度下限值σb>540MPa的钢材,气割坡口表面应进行磁粉或渗透检测。另外,还要对人孔、接管和支柱焊缝的表面进行磁粉或渗透检测。
2球形储罐安装过程中采用的无损检测技术
球形储罐在现场的组装方法主要有散装法和球带组装法等。散装法是在安装基础上安妥支柱,然后将单块或多块组焊好的球瓣进行吊装;球带组装法是先将球瓣在平台上按不同的球带分别组装,并完成纵缝的焊接,然后再将球带组装成整球,焊接环缝。与压力容器制造车间相比,球罐的现场组装采用手工焊,环境条件较差,且焊缝为全位置焊接,容易出现错边、气孔、夹渣、未熔合、未焊透和裂纹等焊接缺陷,因此采用无损检测对焊接质量的控制十分重要。通常对焊缝内部的缺陷采用射线或超声检测方法,对焊缝的表面缺陷采用磁粉或渗透检测方法。
2.1射线与超声检测
GB 12337标准第8.6.4.1规定,凡符合下列条件之一的球壳对接接头,应按图样规定的检测方法,进行100%的射线或超声检测,即①厚度δs>30mm的碳素钢和16MnR钢制球罐。②厚度δs>25mm的15MnVR和15MnVNR钢制球罐。③材料标准抗拉强度下限值σb>540MPa的钢制球罐。④进行气压试验的球罐。⑤图样注明盛装易燃和毒性为极度危害或高度危害物料的球罐。⑥图样规定须进行100%检测的球罐。
压力容器无损检测--球形储罐的无损检测技术 压力容器按几何形状分类,有球形容器、圆筒形容器、锥形容器和组合形容器等四大类。与其它形状的压力容器相比,球形容器由于其几何形状的中心对称性,因此受力最均匀,在相同的壁厚条件下,球形容器的承载能力最高,反之,在同样的内压条件下,球形容器所需要的壁厚最薄;在相同的容积条件下,球形容器的表面积最小;此,在储存相同压力和体积物料的条件下,采用球形容器最节约钢材,而且占地面积最小[1]。
3 在用球பைடு நூலகம்储罐检验采用的无损检测技术
为了确保压力容器安全运行,世界各国对压力容器均采用运行期间内的定期检验制度。压力容器在用检验分不停止运行的外部检验和停止运行后的内外部全面检验。外部检验的周期一般为1~2a(年),内外部全面检验的周期一般为5~lOa。我国政府有关规程规定[5.6],压力容器外部检验的周期为1a,内外部全面检验的周期最长为6a。
在用球罐的开罐全面检验周期一般为6a,但对安全状况等级为1级或2级的球罐,在实测介质对材料腐蚀速率每年低于O.lmm或者内部有热喷涂金属(铝粉或者不锈钢粉)涂层,并通过1~2次全面检验确认腐蚀轻微者,开罐全面检验周期最长可以延长至12a。球罐的开罐全面检验的重点是在运行过程中受介质、载荷、温度和环境等因素的影响而产生的腐蚀、冲蚀、应力腐蚀开裂、疲劳开裂和材料劣化等缺陷,因此除宏观检查外,还应包括磁粉检测、渗透检测、超声检测、射线检测和声发射检测等无损检测方法。由于球罐的检测在其安装使用的现场进行,受检测条件的限制,因此,采用的无损检测方法为适用于现场应用的技术,采用的无损检测仪器均为适用于现场检测的便携式仪器。