人教A版高中数学选修2-3课件:第二章 2.3.1 (共68张PPT)

合集下载

人教版高三数学选修2-3全册教学课件

人教版高三数学选修2-3全册教学课件

2.1 离散型随机变量及其分布 列
人教版高三数学选修2-3全册教学 课件
2.2 二项分布及其应用
人教版高三数学选修2-3全册教学 课件
探究与发现 服从二项分布的 随机变量取何值时概率最大
人教版高三数学选修2-3全册教 学课件目录
0002页 0090页 0167页 0211页 0276页 0360页 0445页 0487页 0560页 0589页 0660页 0731页
第一章 计数原理 探究与发现 子集的个数有多少 探究与发现 组合数的两个性质 探究与发现 “杨辉三角”中的一些秘密 复习参考题 2.1 离散型随机变量及其分布列 探究与发现 服从二项分布的随机变量取何值时概率最 2.4 正态分布 小结 第三章 统计案例 3.2 独立性检验的基本思想及其初步应用 小结
人教版高三数学选修2-3全册Fra bibliotek学 课件1.2 排列与组合
人教版高三数学选修2-3全册教学 课件
探究与发现 组合数的两个性 质
人教版高三数学选修2-3全册教学 课件
第一章 计数原理
人教版高三数学选修2-3全册教学 课件
1.1 分类加法计数原理与分步 乘法计数原理
人教版高三数学选修2-3全册教学 课件
探究与发现 子集的个数有多 少
人教版高三数学选修2-3全册教学 课件
1.3 二项式定理
人教版高三数学选修2-3全册教学 课件
探究与发现 “杨辉三角”中的 一些秘密
人教版高三数学选修2-3全册教学 课件
小结
人教版高三数学选修2-3全册教学 课件
复习参考题
人教版高三数学选修2-3全册教学 课件
第二章 随机变量及其分布
人教版高三数学选修2-3全册教学 课件

人教版高中数学选修2-3课件:2.3.1 离散型随机变量的均值

人教版高中数学选修2-3课件:2.3.1 离散型随机变量的均值

当堂自测
[答案] A
当堂自测
3.设随机变量X~B(3,0.2),则
E(2X+1)= ( )
A.0.6
B.1.2
C.2.2
D.3.2
[答案] C
[解析] ∵随机变量 X~B(3,0.2),∴E(X)=3×0.2=0.6,∴E(2X+1)=2E(X)+1 =2×0.6+1=2.2,故选C.
当堂自测
故选D. (2)设该学生在这次测验中选对的题数 为X,该学生在这次测验中成绩为Y,则 X~B(20,0.9),Y=5X.由二项分布的均值公
式得E(X)=20×0.9=18.由随机变量均值 的线性性质得E(Y)=E(5X)=5×18=90.
考点类析
考点三 利用随机变量均值的性质解决问题
[导入] 若X是随机变量,且Y=aX+b,其中a,b为常数,试分析随机变量Y的均值E(Y)和E(X) 的关系.
考点一 随机变量X均值定义的应用
ξ012345 P 2x 3x 7x 2x 3x x
[答案] C
考点类析
例2 袋中有4只红球、3只 黑球,现从袋中随机取出4 只球,设取到1只红球得2分, 取得1只黑球得1分,试求得 分X的均值.
X5678 P
考点类析
考点二 两点分布、二项分布的均值
例3 (1)设X~B(40,p),且E(X)=16,则p=
的均值. (2)随机变量的均值是常数,其值不随X的变化而变化.
预习探究
[探究] 随机地抛掷一枚骰子,怎样求向上的点数X的均值?
X123456 P
预习探究
知识点二 离散型随机变量均值的性质
若Y=aX+b(a,b为常数),则E(Y)=E(aX+b)=

人教A版高中数学选修2-3 第二章 2.2.3 二项分布 课件(共21张PPT)

人教A版高中数学选修2-3 第二章 2.2.3 二项分布 课件(共21张PPT)

2、二项分布
说说与两点分布的 在n次独立重复试验中,设事件A发生的区次别数和是联X系,且在每次试 验中事件A发生的概率是p,那么事件A恰好发生k次的概率是为
于是得到随机变量X的概率分布如下:(q=1-p)X Nhomakorabea0
1…
k

n
p
… Cn0 p0qn Cn1 p1qn1
Cnk pk qnk

Cnn pnq0
问题 上面这些试验有什么共同的特点?
——
③每次试验只有两种可能的结果:A或 A
创设情景
1、投掷一枚相同的硬币5次,每次正面向上的概率 为0.5。 2、某同学玩射击气球游戏,每次射击击破气球的概 率为0.7,现有气球10个。 3、某篮球队员罚球命中率为0.8,罚球6次。
问题 上面这些试验有什么共同的特点?
的抽取5个球,恰好抽出4个白球. (YES)
注:独立重复试验的实 际原型是有放回的抽样 试验
新知探究
投掷一枚图钉,设针尖向上的概率为p,则针 尖向下的概率为q=1-p.连续掷一枚图钉3次,恰 好出现1次针尖向上的概率是多少?那么恰好出 现0次、2次、3次的概率是多少?你能给出一个统 一的公式吗?
恰好命中k(0≤k ≤ 3)次的概率是多少?
1 0.43 0.936
因为 0.936 0.9 , 所以臭皮匠胜出的可能性较大
小结提高 概率
独立重复试验
引例 概念
数学思想 分类讨论•特殊到一般
二项分布
应用
作业
创新设计二项分布及课时精练二项分布
创设情景
1、投掷一枚相同的硬币5次,每次正面向上的概率 为0.5。 2、某同学玩射击气球游戏,每次射击击破气球的概 率为0.7,现有气球10个。 3、某篮球队员罚球命中率为0.8,罚球6次。

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

预习探究
[探究] 以下随机变量是离散型随机变
量的是
.
①某部手机一小时内收到短信的次数
ξ;
②电灯泡的寿命ξ; ③某超市一天中的顾客量ξ; ④将一颗骰子掷两次出现的点数之和
ξ.
⑤连续不断地射击,首次命中目标所需
要的射击次数ξ.
④将一颗骰子掷两次出现点数之和ξ的取
值为2,3,…,12,是离散型随机变量;
三维目标
3.情感、态度与价值观 使学生感悟数学与生活的和谐之美,学会合作探讨,体验成功,提 高学习数学的兴趣.
重点难点
[重点] (1)随机变量、离散型随机变量的意义; (2)离散型随机变量的分布列的概念.
[难点] (1)随机变量、离散型随机变量的意义; (2)求简单的离散型随机变量的分布列.
教学建议
例1 指出下列变量中,哪些是随机变量, 哪些不是随机变量,并说明理由. (1)任意掷一枚质地均匀的硬币5次,出 现正面向上的次数; (2)投一颗质地均匀的骰子出现的点数 (最上面的数字); (3)某个人的属相随年龄的变化; (4)在标准状况下,水在0℃时结冰.
(3)属相是出生时便确定的,不随年龄的变化 而变化,不是随机变量. (4)标准状况下,水在0℃时结冰是必然事件, 不是随机变量.
P
分别求出随机变量η1=2ξ1,η2=ξ2的分布列.
当ξ取-1与1时,η2=ξ2取相同的值,故η2的分布 列为 η2 0 1 4 9
考点类析
例2 指出下列随机变量是不是离散型 随机变量,并说明理由. (1)从10张已编好号码的卡片(从1号到 10号)中任取1张,被取出的卡片的号数; (2)一个袋中装有5个白球和5个黑球,从 中任取3个,其中所含白球的个数; (3)某林场树木最高达30 m,则此林场中 树木的高度; (4)某加工厂加工的某种铜管的外径与 规定的外径尺寸之差.

人教A版高中数学选修2-3全册课件

人教A版高中数学选修2-3全册课件
答案:D
题型二 分步乘法计数原理的应用
我校高一有音乐特长生 5 人,高二有 4 人,高 三有 6 人,现从这三个年级中的音乐特长生中各选 1 人作为 学生代表去参加我市好声音演唱会,共有多少种不同的选派 方法?
【思路探索】 由于本题是从三个年级各选 1 人,需分 步进行,用乘法原理求解.
【解】 欲选出学生代表,需分三步进行:第一步,从 高一年级学生中选 1 人,共 5 种不同的选法;第二步,从高 二年级学生中选 1 人,共有 4 种不同的选法;第三步,从高 三年级中选 1 人,共有 6 种不同的选法.根据分步乘法计数 原理可知,共有 5×4×6=120 种不同的选派方法.
相同的 5 盆菊花,其中 2 盆为白色,2 盆为黄色,1 盆为红
色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花
不相邻,黄色菊花也不相邻,则共有摆放方法( )
A.120 种
B.32 种
C.24 种
D.16 种
解析:由于红色菊花摆放在中间,白色菊花不相邻,黄 色菊花也不相邻,故可分两步:第一步,红色菊花放在 5 个 位置的正中间,2 盆白色菊花分别摆放在红色菊花的两侧, 有 8 种不同的摆法;第二步,黄色菊花摆放在余下的两个位 置,有 2 种不同的摆法,由分步乘法计数原理知,不同的摆 放方法有 8×2=16(种),故选 D.
2.完成一件事需要两个步骤,做第一步有 m 种不同的 方法,做第二步有 n 种不同的方法,那么完成这件事共有 N =____m_×_n____种不同的方法.
推广:完成一件事需要 n 个步骤,做第一步有 m1 种不同 的方法,做第二步有 m2 种不同的方法,…,做第 n 步有 mn 种不同的方法,那么完成这件事共有 N=_m_1×__m_2×__…_×_m_n_____ 种不同的方法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档