整式的乘法与因式分解压轴题解析
中考数学 整式乘法与因式分解易错压轴解答题(含答案)
中考数学整式乘法与因式分解易错压轴解答题(含答案)一、整式乘法与因式分解易错压轴解答题1.阅读下列材料:对于多项式x2+x-2,如果我们把x=1代入此多项式,发现x2+x-2的值为0,这时可以确定多项式中有因式(x-1):同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x-2=(x-1)(x+2)又如:对于多项式2x2-3x-2,发现当x=2时,2x2-3x-2的值为0,则多项式2x2-3x-2有一个因式(x-2),我们可以设2x2-3x-2=(x-2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2-3x-2=(x-2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=________时,多项式6x2-x-5的值为0,所以多项式6x2-x-5有因式________ ,从而因式分解6x2-x-5=________.(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2x2+5x+3;②x3-7x+6(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x-2)3-(y-2)3-(x-y)3有因式________ ,________ ,________ ,所以分解因式(x-2)3-(y-2)3-(x-y)3= ________。
2.(1)若m2+n2=13,m+n=3,则mn=________ 。
(2)请仿照上述方法解答下列问题:若(a-b-2017)2+(2019-a+b)2=5,则代数式的值为________。
3.观察下列一组等式,然后解答后面的问题,,,(1)观察以上规律,请写出第个等式:________ 为正整数).(2)利用上面的规律,计算:(3)请利用上面的规律,比较与的大小.4.效学活动课上老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B 种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________,方法2:________;(2)观察图2,请你写出代数式:(a+b)2, a2+b2, ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=13,求ab的值;②已知(2019-a)2+(a-2018)2=5,求(2019-a)(a-2018)的值.5.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02, 12=42﹣22, 20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?6.一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:________.(2)图④中阴影部分的面积为________.观察图④请你写出(a+b)2、(a﹣b)2、ab 之间的等量关系是________.(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;①若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b的代数式表示)②若AB为任意值,且①中的S的值为定值,求a与b的关系.7.若x满足(5-x)(x-2)=2,求(x-5)2+(2-x)2的值;解:设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,所以(x-5)2+(2-x)2=(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5,请仿照上面的方法求解下面的问题(1)若x满足(9-x)(x-4)=4,求(9-x)2+(x-4)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=2,CF=4,长方形EMFD的面积是63,分别以MF、DF为边作正方形,求阴影部分的面积.8.阅读材料:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似例如计算:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i;(3+i)i=3i+i2=3i﹣1②若他们的实部和虚部分别相等,则称这两个复数相等若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.(1)填空:(3i﹣2)(3+i)=________;(1+2i)3(1﹣2i)3=________;(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)a的值;(3)已知(a+i)(b+i)=1﹣3i,求(a2+b2)(i2+i3+i4+…+i2019)的值.9.问题发现:小星发现把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得到等式:(a+2b)(a+b)=a2+3ab+2b2.(1)类比探究:如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,通过上面的启发,你能发现什么结论?请用等式表示出来.(2)结论应用:已知a+b+c=14,ab+bc+ac=26,求a2+b2+c2的值.(3)拓展延伸:如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=8,ab=14,请求出阴影部分的面积. 10.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式(a+b)n展开式的各项系数之和.(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).11.已知A=2 a -7,B=a2- 4a+3,C= a2 +6a-28,其中.(1)求证:B-A>0,并指出A与B的大小关系;(2)阅读对B因式分解的方法:解:B=a2- 4a+3=a2- 4a+4-1=(a-2)2-1=(a-2+1)(a-2-1)=(a-1)(a-3).请完成下面的两个问题:①仿照上述方法分解因式:x2- 4x-96;②指出A与C哪个大?并说明你的理由.12.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题中用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=________.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【参考答案】***试卷处理标记,请不要删除一、整式乘法与因式分解易错压轴解答题1.(1)1;x-1;(x-1)(6x+5)(2)解:①2x2+5x+3=(x+1)(2x+3)②x3-7x+6=(x-1)(x-2)x+3)(3)x-2;y-2;x-y;(x-2)2-(解析:(1)1;x-1;(x-1)(6x+5)(2)解:①2x2+5x+3=(x+1)(2x+3)②x3-7x+6=(x-1)(x-2)x+3)(3)x-2;y-2;x-y;(x-2)2-(y-2)3-(x-y)3=3(x-2)(y-2)(x-y)【解析】【分析】(1)根据阅读材料可知当x=1时多项式6x2-x-5的值为0,从而可得到多项式6x2-x-5的一个因式为(x-1)即可将此多项式分解因式。
整式的乘法与因式分解单元测试卷附答案
整式的乘法与因式分解单元测试卷附答案一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012×+2011 , b=2O12x+2O12 f c=2012×+2013,那么a2+b2+c2-ab - be - ca 的值等于()A.0B. 1C. 2D. 3【答案】D【解析】【分析】首先把a2+b2+c2 - ab - be-ac两两结合为α2 - ab+b2 - bc+c2 - ac I利用提取公因式法因式分解,再把a、b、C代入求值即可•【详解】a z+b2+c z - ab - be - ac=a2 - ab+b2 - bc+c2 - ac= a(a-b)+b(b-c)+c(c-a)当a 二2012x+2011 , b = 2012x+2012 , C 二2012x+2013 时,a-b= -I I b-C=-I , c - a=2 ,式=(2012x+2011 ) X ( - 1 ) + ( 2012x+2012 ) X ( - 1 ) + ( 2012x+2013 ) ×2=-2012x - 2011 - 2012X - 2012+2012x×2+2013×2二3 .故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目•2.下列四个多项式,可能是2x2+mχ-3(m是整数)的因式的是A.x-2B. 2x+3C. x÷4D. 2×2-l【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m是整数,.∙.将2x2+mx-3分解因式:2x2÷mχ-3= (x-l) (2x+3)或2x2÷mx~3= (x+l) (2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键•3.己知m'-m-l=0,则计算:m4-m'-m + 2fr⅛结果为( )•A. 3B. -3C. 5D. -5【答案】A【解析】【分析】观察已知m2-m-l=0可转化为m2-m=l,再对m4-m3-m+2提取公因式因式分解的过程中将r∏2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.【详解】,.*m2-m-l=0 ,.,.m2-m=l ,Λ m4-m3-m+2=m2 (m2-m)-m+2=m2-m+2=l+2=3 ,故选A.【点睛】本题考查了因式分解的应用,解决本题的关键是将∏Λm作为一个整体岀现,逐次降低m 的次数.4.化简(2x)2的结果是( )A. X4B. 2x2C. 4x2D. 4尤【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幕相乘即可.【详解】(2x)2=22∙ X2 =4x2,故选C.【点睛]本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.5.如图,矩形的长、宽分别为a、b,周长为10,而积为6,则a2b+ab2的值为()baA. 60 B・ 30 C. 15 D・ 16【答案】B【解析】【分析】直接利用矩形周长和而积公式得出a+b, ab,进而利用提取公因式法分解因式得出答案.【详解】J边长分别为a、b的长方形的周长为10,而积6,Λ2 (a+b) =10, ab=6,则a+b=5»故ab2+a2b=ab (b+a )=6×5=30.故选:B.【点睛】此题主要考査了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.6.如果* + (m-2)x + 9是个完全平方式,那么m的值是()A. 8B. -4C. ±8D. 8 或-4【答案】D【解析】试题解析:Vx2+ (m-2 ) x+9是一个完全平方式,.,.(x±3 ) 2=×z±2(m-2)×+9 IΛ2(m-2)=±12 ,.°.m=8或-4 .故选D .7.若(.γ⅛∕σ)(旷8)中不含X的一次项,则也的值为( )A. 8B. -8C. 0D. 8 或-8【答案】B【解析】(jf-jiH-zz?) (x-8) =X3 -X2 + mx - 8.r2 +8x- Snl = X y- 9x2 + (m + 8)x 一8/7/由于不含一次项,m÷8=0,得m二-8.8.下列等式由左边向右边的变形中,属于因式分解的是()A、×2+5X— l=x(×+5) — 1 B. x?—4+3x=(x+2)(χ-2)+3xC. (x+2)(x-2)=×2-4D. ×2-9=(×+3)(x-3)【答案】D【解析】【分析】根据因式分解的左义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误:B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、χ2-9=(x+3)(χ-3),属于因式分解.故选D.【点睹】此题主要考查因式分解的左义:把一个多项式化为几个整式的积的形式,这种变形叫做把 这个多项式因式分解・9. 有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的而积数拯如图 所示.右边场地为长方形,长为2(a+b)f 则宽为()【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】 宽为:(/ + ab + ab + b 2^÷2(a + b) = (a + by ÷2(a + b)= 故选:C【点睛】考核知识点:整式除法与而积•掌握整式除法法则是关键・10・观察下列两个多项式相乘的运算过程:7 ...................... 、 7 ...................... 、τ - - * ----- :∙ i τ - - * --- ;• B(x∣⅛∣)(x ^]) = X 2∣⅛∣χ 呵 (X 囱)(X 固)二 X 2∣⅛]x 珂根据你发现的规律,若(x+α) (x+b) =X 2-7X +12,则α, b 的值可能分别是()A. -3, rB. -3,4C. 3, -4D. 3, 4【答案】A【解析】【分析】a +b = —7根据题意可得规律为< ,, ,再逐一判断即可.ab = ∖2【详解】a+b = —7根据题意得,a z b 的值只要满足< f , 即可,ab = ↑2A. -3+ ( -4 ) =-7 I -3× ( -4 ) =12» 符合题意;B. -3+4=l f -3 ×4-12.不符合题意:C. 3+ (-4 ) =-1,3× ( -4 ) =-12,不符合题意; 2(α∣Λ)B. 1 c ∙扣+ b) D ・ a+bAe 2D.3+4=7z3×4=12,不符合题意.故答案选A.【点睛]本题考查了多项式乘多项式,解题的关键是根据题意找岀规律・二.八年级数学整式的乘法与因式分解填空题压轴题(难)11・如图,有一张边长为X的正方形ABCD纸板,在它的一个角上切去一个边长为y的正方形AEFG,剩下图形的面积是32,过点F作FH丄DC,垂足为H.将长方形GFHD切下,与长方形EBCH重新拼成一个长方形,若拼成的长方形的较长的一边长为&则正方形ABCD 的面积是・A G【答案】36.【解析】【分析】根据题意列岀√-Γ =32,x + y = 8,求岀×-y=4,解方程组得到X的值即可得到答案.【详解】由题意得:x2-y2=32,x+y = 8,∙* √-y2=(χ+y)(χ-y).•∙X e y—4♦x = 6 y = 2'*・•.正方形ABCD而积为√ = 36,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.如果关于X的二次三项式χ2-4x + m在实数范用内不能因式分解,那么加的值可以是_________ •(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m应是3或-5:若用完全平方公式分解,m 应是4,若用提公因式法分解,m的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为X2-4Λ+5.不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.如果9×2-axy+4y2是完全平方式,则a的值是 _______ .【答案】+12【解析】【分析】根据完全平方式得出-axy= ±2×3x2y,求出即可.【详解】解:9×2-axy+4y2= ( 3×±2y ) 2即-axy= + 2×3x2y所以a=±12【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a2-2ab+b2和a2+2ab+62是本题的易错点.14.已知x、y 为正偶数,且X2y +xy>2 =96,则x2 + y2= __________________ .【答案】40【解析】【分析】根据x2y + xy2 =96可知xy(x+y)=96,由x、y是正偶数可知xy24 , x+y24,进而可知96可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x、y的值,根据x、y的值求得答案即可.【详解】,.* x2y + xy2 =96 ,.,.xy(×+y)=96 ,VX X y 为正偶数,xy≥4 , x+y>4 ,/. 96=2 ×2×2×2×2×3=6× 16=8 × 12=4 × 24当xy(×+y)=4×24 时,无解,当xy(×+y)=6×16 时,无解,当×y(×+y)=8 × 12 时,x+y=8 , ×y=12 f解得:x=2 f y=6,或x=6 , y=2 ,.,.x2+y2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.15.若a,b互为相反数,则a2 - b2= _________ .【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】Ta , b互为相反数,Λ a+b=O rΛa2 - b2= ( a÷b ) ( a - b ) =0 ,故答案为0 .【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.若(2χ-3) x+5=l,则X 的值为 _______________ .【答案】2或1或-5【解析】⑴当2×-3=l时,x=2,此时(4-3)2+5=l,等式成立;⑵当2×-3=-l时,x=l,此时(2-3)1's=l.等式成立:⑶当×+5=0时,x=-5,此时(-10-3)° =1,等式成立.综上所述,X的值为:2 , 1或-5.故答案为2 f 1或-5.17.因式分解:a3 - 2a2b+ab2= ______ ・【答案】a(a-b)2.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a ( a2 - 2ab+b2)=a ( a - b ) 2 ,故答案为a(a-b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.因式分解:mn ( n - m ) - n ( m - n ) = ___________ .【答案】n(n-m)(m + ∖)【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+l),故答案为n(n-m)(m+l).19.分解因式:x2-l=—.【答案】(x+l) (X-I).【解析】试题解析:x2-l= (x+l) (X-I).考点:因式分解-运用公式法.2 . 220.已知"+b = 8, a1lr =4» 贝1J-_ -Clb= _______________ ・2【答案】28或36.【解析】【分析】【详解】解:T a2b2=4,∙∙∙ ab=±2.①、"∣a+b二8, ab=2 时,-_ - ab = +- 2ab = —- 2×2=28:2 2 2②、"∣ a+b=8> ab=・ 2 H寸, —————ab= --- 2ab = —- 2× ( - 2) =36:2 2 2故答案为28或36.【点睛】本题考查完全平方公式:分类讨论.。
第十四章 整式的乘法与因式分解复习题--解答题(含解析)
人教版八年级上14章整式的乘除与分解因式复习题(解答题)一.解答题1.(2018秋•雨花区校级月考)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,则(a,b)=c.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m⋅3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=;(5,1)=;(3,27)=.(2)计算(5,2)+(5,7)=,并说明理由.(3)利用“雅对”定义证明:(2n,3n)=(2,3),对于任意自然数n都成立.2.(2018春•苏州期中)规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.3.(2018春•开福区校级期中)阅读材料:n个相同的因数a相乘,可记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).根据以上材料,解决下列问题:(1)计算以下各对数的值:log24=,log216=,log264=;(2)根据(1)中的计算结果,写出log24,log216,log264满足的关系式;(3)根据(2)中的关系式及4,16,64满足的关系式猜想一般性结论:log a M+log a N=(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则说明(3)中一般性结论的正确性.4.(2018春•苏州期中)若33×9m+4÷272m﹣1的值为729,求m的值.5.(2018春•利津县期末)若x m=16,x n=128,求x2m﹣n的值.6.(2018秋•安溪县期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)7.(2018秋•松北区校级期中)(1)计算:﹣82018×(﹣0.125)2018(2)已知a m=6,a n=2,求a2m+3n的值.8.(2018•安庆一模)特殊两位数乘法的速算﹣﹣如果两个两位数的十位数字相同,个位数字相加为10,那么能立即说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.如:47×43=2021,61×69=4209.(1)请你直接写出83×87的值;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.(3)99991×99999=.9.(2017秋•武昌区期末)如图,某小区有一块长为4a米(a>1),宽为(4a﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a+1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A型绿化方案,对正中间的长方形采用B型绿化方案.(1)用含a的代数式表示采用A型绿化方案的四个正方形边长是米,B型绿化方案的长方形的另一边长是米.(2)请你判断使用A型,B型绿化方案的面积哪个少?并说明理由.(3)若使用A型,B型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多元,求a的值.10.(2018春•三原县期末)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.(1)该长方形ABCD的面积是多少平方米?(2)若E为AB边的中点,DF=BC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?11.(2018秋•开福区校级月考)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.12.(2018秋•海安县期中)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,求p、q的值;13.(2018秋•宜宾县期中)小明在计算一个多项式乘﹣2x2+x﹣1时,因看错运算符号,变成了加上﹣2x2+x﹣1,得到的结果为4x2﹣2x﹣1,那么正确的计算结果为多少?14.(2018秋•德惠市校级月考)已知(x+a)(x2﹣x+c)的乘积中不含x2和x项,求a,c的值.15.(2018秋•临清市校级月考)计算:(1)(3a+b2)(b2﹣3a)(2)(m﹣2n)216.(2018秋•龙凤区校级月考)利用乘法公式计算:(1)5002﹣499×501.(2)50×4917.(2018秋•武邑县校级月考)化简:(2x+3y)2﹣2(2x+3y)(2x﹣3y)+(2x﹣3y)218.(2018秋•襄汾县期中)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.19.(2018秋•德惠市校级月考)已知a+b=2,a2+b2=10,求:(1)ab的值.(2)a﹣b的值.20.(2018春•福田区校级期末)乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n﹣p)(2m﹣n+p)21.(2018春•常熟市期末)(1)如图1,阴影部分的面积是.(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.(2018秋•思明区校级期中)如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.23.(2018秋•路南区期中)已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab 之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.24.(2018春•大田县期中)乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.25.(2018春•杏花岭区校级期中)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均剪成四个小长方形,然后拼成如图乙所示的一个大正方形.(1)你认为图乙中的阴影部分的正方形的边长=;(2)请用两种不同的方法求图乙中阴影部分的面积:方法一:方法二:(3)观察图乙,请你写出下列代数式之间的等量关系:(m+n)2、(m﹣n)2、mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=7,求a﹣b的值.26.(2018春•埇桥区期末)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.27.(2018春•沧县期末)请给4x2+1添上一个单项式,使新得到的多项式能运用完全平方公式分解因式.请写出两种情况,并对其分别进行因式分解.28.(2018春•宿豫区期中)把下列各式因式分解:(1)a4﹣1(2)(x+2)(x+4)+x2﹣429.(2017秋•前郭县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.30.(2018春•郓城县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.31.(2018春•诸城市期末)因式分解:(1)x2y﹣2xy2+y3(2)4ax2﹣48ax+128a;(3)(x2+16y2)2﹣64x2y232.(2018春•雨城区校级期中)分解因式:(1)a2(a﹣b)+b2(b﹣a)(2)a2﹣4ab+4b2﹣2a+4b33.(2018春•市中区期末)先阅读下面的村料,再分解因式.要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得am+an+bm+bn=a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)中又有公困式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b),因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2=a(b﹣c)﹣b(b﹣c)(请你完成分解因式下面的过程)=(2)m2﹣mn+mx﹣nx;(3)x2y2﹣2x2y﹣4y+8,34.(2018春•揭阳期末)甲、乙两个同学分解因式x2﹣4x+m+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.35.(2018春•迁安市期末)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.36.(2018春•滦县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)我们把这种因式分解的方法称为“换元法”,请据此回答下列问题;(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果:.(2)请模仿上面的方法尝试对多项式(m2﹣2m)(m2﹣2m+2)+1进行因式分解.37.(2018春•山亭区期末)解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.38.(2018春•常熟市期末)将下列各式分解因式(1)3x(a﹣b)﹣9y(b﹣a);(2)a2﹣4a﹣12;(3)81x4﹣72x2y2+16y4人教版八年级上14章整式的乘除与分解因式复习题(解答题)参考答案与试题解析一.解答题1.(2018秋•雨花区校级月考)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,则(a,b)=c.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m⋅3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=2;(5,1)=0;(3,27)=3.(2)计算(5,2)+(5,7)=(5,14),并说明理由.(3)利用“雅对”定义证明:(2n,3n)=(2,3),对于任意自然数n都成立.【分析】(1)根据上述规定即可得到结论;(2)设(5,2)=x,(5,7)=y,根据同底数幂的乘法法则即可求解;(3)设(2n,3n)=x,于是得到(2n)x=3n,即(2x)n=3n根据“雅对”定义即可得到结论.【解答】解:(1)∵22=4,∴(2,4)=2;∵50=1,∴(5,1)=0;∵33=27,∴(3,27)=3;故答案为:2,0,3;(2)设(5,2)=x,(5,7)=y,则5x=2,5y=7,∴5x+y=5x•5y=14,∴(5,14)=x+y,∴(5,2)+(5,7)=(5,14),故答案为:(5,14);(3)设(2n,3n)=x,则(2n)x=3n,即(2x)n=3n所以2x=3,即(2,3)=x,所以(2n,3n)=(2,3).2.(2018春•苏州期中)规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.【分析】(1)直接利用已知a*b=2a×2b,将原式变形得出答案;(2)直接利用已知得出等式求出答案.【解答】解:(1)∵a*b=2a×2b,∴2*3=22×23=4×8=32;(2)∵2*(x+1)=16,∴22×2x+1=24,则2+x+1=4,解得:x=1.3.(2018春•开福区校级期中)阅读材料:n个相同的因数a相乘,可记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).根据以上材料,解决下列问题:(1)计算以下各对数的值:log24=2,log216=4,log264=6;(2)根据(1)中的计算结果,写出log24,log216,log264满足的关系式;(3)根据(2)中的关系式及4,16,64满足的关系式猜想一般性结论:log a M+log a N=log a MN(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则说明(3)中一般性结论的正确性.【分析】(1)根据a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b (即log a b=n),进而得出答案;(2)利用(1)中所求进而得出答案;(3)利用(2)中所求规律进而得出答案;(4)利用发现的规律进而分析得出答案.【解答】解:(1)log24=2,log216=4,log264=6;故答案为:2,4,6;(2)由(1)得:log2 4+log2 16=log2 64;(3)由(2)得:log a M+log a N=log a MN;故答案为:log a MN;(4)记log a M=m,log a N=n,则M=a m,N=a n,所以MN=a m•a n=a m+n,所以log a MN=log a a m+n=m+n,所以log a M+log a N=log a MN.4.(2018春•苏州期中)若33×9m+4÷272m﹣1的值为729,求m的值.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.5.(2018春•利津县期末)若x m=16,x n=128,求x2m﹣n的值.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵x m=16,x n=128,∴x2m﹣n=(x m)2÷x n=162÷128=2.6.(2018秋•安溪县期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=3,(﹣2,4)=2,(﹣2,﹣8)=3;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算.【解答】解:(1)53=125,(5,125)=3,(﹣2)2=4,(﹣2,4)=2,(﹣2)3=﹣8,(﹣2,﹣8)=3,故答案为:3;2;3;(2)设(4,5)=x,(4,6)=y,(4,30)=z,则4x=5,4y=6,4z=30,4x×4y=4x+y=30,∴x+y=z,即(4,5)+(4,6)=(4,30).7.(2018秋•松北区校级期中)(1)计算:﹣82018×(﹣0.125)2018(2)已知a m=6,a n=2,求a2m+3n的值.【分析】(1)直接利用积的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则将原式变形得出答案.【解答】解:(1)﹣82018×(﹣0.125)2018=﹣(8×0.125)2018=﹣1;(2)∵a m=6,a n=2,∴a2m+3n=(a m)2×(a n)3=36×8=288.8.(2018•安庆一模)特殊两位数乘法的速算﹣﹣如果两个两位数的十位数字相同,个位数字相加为10,那么能立即说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.如:47×43=2021,61×69=4209.(1)请你直接写出83×87的值;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.(3)99991×99999=9999000009.【分析】(1)根据“前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积”进行计算;(2)这两个两位数的十位数字为x(x>3),个位数字分别为y和z,则由题知y+z=10,利用多项式乘多项式的计算法则解答;(3)利用1×9=9,91×99=909,991×999=99009…找出规律解答.【解答】解:(1)83和87满足题中的条件,即十位数都是8,8>3,且个位数字分别是3和7,之和为10,那么它们的乘积是一个4位数,前两位数字是8和9的乘积,后两位数字就是3和7的乘积,因而,答案为:7221;(2)这两个两位数的十位数字为x(x>3),个位数字分别为y和z,则由题知y+z=10,因而有:(10x+y)(10x+z)=100x2+10xz+10xy+yz=100x2+10x(y+z)+yz=100x2+100x+yz=100x(x+1)+yz得证;(3)1×9=991×99=909991×999=99009…99991×99999=9999000009.故答案是:9999000009.9.(2017秋•武昌区期末)如图,某小区有一块长为4a米(a>1),宽为(4a﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a+1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A型绿化方案,对正中间的长方形采用B型绿化方案.(1)用含a的代数式表示采用A型绿化方案的四个正方形边长是(a﹣)米,B 型绿化方案的长方形的另一边长是(2a﹣1)米.(2)请你判断使用A型,B型绿化方案的面积哪个少?并说明理由.(3)若使用A型,B型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多元,求a的值.【分析】(1)根据题意表示出A、B型绿化方案的边长或另一边长即可;(2)分别表示出A、B型的面积,利用作差法判断大小即可;(3)根据题意列出分式方程,求出方程的解即可得到结果.【解答】解:(1)A型绿化方案的四个正方形边长是(a﹣)米,B型绿化方案的长方形的另一边长是(2a﹣1)米;故答案为:(a﹣);(2a﹣1);(2)记A型面积为S A,B型面积为S B,根据题意得:S A=4(a﹣)2=4a2﹣4a+1,S B=(2a+1)(2a﹣1)=4a2﹣1,∴S A﹣S B=﹣4a+2,∵4a﹣2>0,∴﹣4a+2<0,即S A﹣S B<0,则S A<S B;(3)由(2)得S A<S B,∴﹣=,即﹣=,解得:a=2,经检验a=2是分式方程的解.10.(2018春•三原县期末)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.(1)该长方形ABCD的面积是多少平方米?(2)若E为AB边的中点,DF=BC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?【分析】(1)根据长方形的面积公式,多项式与多项式相乘的法则计算;(2)根据题意分别求出AE,AF,根据多项式与多项式相乘的法则计算.【解答】解:(1)长方形ABCD的面积=AB×BC=(2a+6b)(8a+4b)=16a2+56ab+24b2;(2)由题意得,AF=AD﹣DF=BC﹣BC=(8a+4b)﹣(8a+4b)=(6a+3b),AE=(2a+6b)=a+3b,则草坪的面积=×AE×AF=×(a+3b)(6a+3b)=3a2+ab+b2.11.(2018秋•开福区校级月考)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.【分析】(1)利用矩形的面积公式计算即可;(2)求出正方形的面积即可解决问题;(3)构建不等式即可解决问题;【解答】解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.12.(2018秋•海安县期中)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,求p、q的值;【分析】利用多项式乘多项式法则及合并同类项法则化简式子,找出x项与x3令其系数等于0求解.【解答】解:(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴p﹣3=0,qp+1=0,∴p=3,q=﹣.13.(2018秋•宜宾县期中)小明在计算一个多项式乘﹣2x2+x﹣1时,因看错运算符号,变成了加上﹣2x2+x﹣1,得到的结果为4x2﹣2x﹣1,那么正确的计算结果为多少?【分析】根据整式的加减混合运算求出原多项式,根据多项式乘多项式法则求出正确的结果.【解答】解:原多项式为:(4x2﹣2x﹣1)﹣(﹣2x2+x﹣1)=4x2﹣2x﹣1+2x2﹣x+1=6x2﹣3x(6x2﹣3x)(﹣2x2+x﹣1)=﹣12x4+6x3﹣6x2+6x3﹣3x2+3x=﹣12x4+12x3﹣9x2+3x.14.(2018秋•德惠市校级月考)已知(x+a)(x2﹣x+c)的乘积中不含x2和x项,求a,c的值.【分析】根据多项式乘多项式的法则计算,让x2项和x项的系数为0,即可求得a,c的值.【解答】解:(x+a)(x2﹣x+c)=x3﹣x2+cx+ax2﹣ax+ac=x3+(a﹣1)x2+(c﹣a)x+ac,∵(x+a)(x2﹣x+c)的乘积中不含x2和x项,∴a﹣1=0且c﹣a=0,则a=c=1.15.(2018秋•临清市校级月考)计算:(1)(3a+b2)(b2﹣3a)(2)(m﹣2n)2【分析】(1)根据平方差公式求出即可;(2)根据完全平方公式求出即可.【解答】解:(1)(3a+b2)(b2﹣3a)=(b2)2﹣(3a)2=b4﹣9a2;(2)(m﹣2n)2=m2﹣4mn+4n2.16.(2018秋•龙凤区校级月考)利用乘法公式计算:(1)5002﹣499×501.(2)50×49【分析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式变形后,利用平方差公式计算即可求出值.【解答】解:(1)原式=5002﹣(500﹣1)×(500+1)=5002﹣(5002﹣1)=5002﹣5002+1=1;(2)原式=(50+)×(50﹣)=2500﹣=2499.17.(2018秋•武邑县校级月考)化简:(2x+3y)2﹣2(2x+3y)(2x﹣3y)+(2x﹣3y)2【分析】先根据完全平方公式和平方差公式展开,再去括号、合并同类项即可得.【解答】解:原式=4x2+12xy+9y2﹣2(4x2﹣9y2)+4x2﹣12xy+9y2=4x2+12xy+9y2﹣8x2+18y2+4x2﹣12xy+9y2=36y2.18.(2018秋•襄汾县期中)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.【分析】直接利用完全平方公式将原式变形,进而得出答案.【解答】解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.19.(2018秋•德惠市校级月考)已知a+b=2,a2+b2=10,求:(1)ab的值.(2)a﹣b的值.【分析】(1)根据(a+b)2=a2+b2+2ab求出即可;(2)先求出(a﹣b)2的值,再开方即可.【解答】解:(1)∵a+b=2,a2+b2=10,∴(a+b)2=4,∴a2+b2+2ab=4,∴10+2ab=4,∴ab=﹣3;(2)∵ab=﹣3,a2+b2=10,∴(a﹣b)2=a2+b2﹣2ab=10﹣2×(﹣3)=16,∴a﹣b==±4.20.(2018春•福田区校级期末)乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b)(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n﹣p)(2m﹣n+p)【分析】(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.【解答】解:(1)由图可得,阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可得,矩形的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2;故答案为:(a+b)(a﹣b)=a2﹣b2;(4)(2m+n﹣p)(2m﹣n+p)=(2m)2﹣(n﹣p)2=4m2﹣(n2﹣2np+p2)=4m2﹣n2+2np﹣p2.21.(2018春•常熟市期末)(1)如图1,阴影部分的面积是a2﹣b2.(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是(a﹣b)(a+b).(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:a2﹣b2=(a﹣b)(a+b).(4)应用公式计算:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解答】解:(1)如图(1)所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知a2﹣b2=(a﹣b)(a+b),故答案为:a2﹣b2=(a﹣b)(a+b);(4)(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=×=.22.(2018秋•思明区校级期中)如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.【分析】根据完全平方公式即可求出答案.【解答】解:∵a2+b2=(a+b)2﹣2ab=100﹣40=60,∴阴影部分的面积=a2+b2﹣(a+b)•b﹣a2=60﹣×ab﹣b2﹣a2=60﹣×20﹣×60=60﹣10﹣30=20.23.(2018秋•路南区期中)已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab 之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.【分析】(1)根据图形即可得出图乙中阴影部分小正方形的边长为a﹣b;(2)直接利用正方形的面积公式得到图中阴影部分的面积为(a﹣b)2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(a+b)2﹣4ab;(3)根据图中阴影部分的面积是定值得到(a+b)2,(a﹣b)2,ab之间的等量关系式;(4)利用(3)中的公式得到(a﹣b)2=(a+b)2﹣4ab,进而得出(a﹣b)2的值.【解答】解:(1)图乙中小正方形的边长为a﹣b.(2)方法①:S=(a﹣b)2;方法②:S=(a+b)2﹣4ab;(3)因为图中阴影部分的面积不变,所以(a﹣b)2=(a+b)2﹣4ab;(4)由(3)得:(a﹣b)2=(a+b)2﹣4ab,∵a+b=8,ab=12,∴(a﹣b)2=82﹣4×12=64﹣48=16.24.(2018春•大田县期中)乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:(a+b)2;方法2:a2+b2+2ab(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(a+b)2=a2+2ab+b2(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设2018﹣a=x,a﹣2017=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy==﹣2,进而得到(2018﹣a)(a﹣2017)=﹣2.【解答】解:(1)图2大正方形的面积=(a+b)2图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设2018﹣a=x,a﹣2017=y,则x+y=1,∵(2018﹣a)2+(a﹣2017)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2,∴xy==﹣2,即(2018﹣a)(a﹣2017)=﹣2.25.(2018春•杏花岭区校级期中)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均剪成四个小长方形,然后拼成如图乙所示的一个大正方形.(1)你认为图乙中的阴影部分的正方形的边长=m﹣n;(2)请用两种不同的方法求图乙中阴影部分的面积:方法一:(m﹣n)2方法二:(m+n)2﹣4mn(3)观察图乙,请你写出下列代数式之间的等量关系:(m+n)2、(m﹣n)2、mn(m﹣n)2=(m+n)2﹣4mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=7,求a﹣b的值.【分析】(1)根据图乙中的阴影部分的正方形的边长等于小长方形的长减去宽进行判断;(2)图乙中阴影部分的面积既可以用边长的平方进行计算,也可以用大正方形的面积减去四个小长方形的面积进行计算;(3)根据(m﹣n)2和(m+n)2﹣4mn表示同一个图形的面积进行判断;(4)根据(a﹣b)2=(a+b)2﹣4ab,进行计算即可得到a﹣b的值.【解答】解:(1)由题可得,图乙中的阴影部分的正方形的边长等于m﹣n;故答案为:m﹣n;(2)方法一:图乙中阴影部分的面积=(m﹣n)2方法二:图乙中阴影部分的面积=(m+n)2﹣4mn;故答案为:(m﹣n)2,(m+n)2﹣4mn;(3)∵(m﹣n)2和(m+n)2﹣4mn表示同一个图形的面积;∴(m﹣n)2=(m+n)2﹣4mn;故答案为:(m﹣n)2=(m+n)2﹣4mn;(4)∵(a﹣b)2=(a+b)2﹣4ab,而a+b=8,ab=7,∴(a﹣b)2=82﹣4×7=64﹣28=36,∴a﹣b=±6.26.(2018春•埇桥区期末)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式,再利用完全平方公式分解因式,进而把已知代入求出答案.【解答】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n);(2)x2+xy+y2=(x2+2xy+y2)=(x+y)2,当x+y=1时,原式=×12=.27.(2018春•沧县期末)请给4x2+1添上一个单项式,使新得到的多项式能运用完全平方公式分解因式.请写出两种情况,并对其分别进行因式分解.【分析】添加4x或﹣4x,利用完全平方公式分解即可.【解答】解:添加4x,得4x2+4x+1=(2x+1)2,添加﹣4x,得4x2﹣4x+1=(2x﹣1)2.28.(2018春•宿豫区期中)把下列各式因式分解:(1)a4﹣1(2)(x+2)(x+4)+x2﹣4【分析】(1)直接利用平方差公式计算得出答案;(2)直接将原式分解因式进而提取公因式得出答案.【解答】解:(1)a4﹣1=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)(x+2)(x+4)+x2﹣4=(x+2)(x+4)+(x+2)(x﹣2)=(x+2)(2x+2)=2(x+2)(x+1).29.(2017秋•前郭县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的C(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否.(填“是”或“否”)如果否,直接写出最后的结果(x ﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)这个结果没有分解到最后,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:否,(x﹣2)4;(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.30.(2018春•郓城县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)。
人教版初中数学《整式的乘法与因式分解压轴题型汇总》专题突破含答案解析
专题11 整式的乘法与因式分解压轴题型汇总一、单选题1.(2021·浙江·七年级专题练习)已知,,a b c 满足2224-7,-23,2-2a b b c c a +==+=,则a b c +-的值为( )A .-4B .-5C .-6D .-7【答案】A【分析】三个式子相加,化成完全平方式,得出,,a b c 的值,代入计算即可.【详解】解:∵2224-7,-23,2-2a b b c c a +==+=,∵2224+-2+2-6a b b c c a ++=,∵22221+44+-210a a b b c c +++++=∵222(1)+(2)+(1)0a b c ++-=,∵10a +=,20b +=,10c -=,∵1a =-,2b =-,1c =, 1214a b c +-=---=-,故选:A .【点睛】本题考查了代数式求值和完全平方公式,解题关键是通过等式变形化成完全平方式,根据非负数的性质求出,,a b c 的值,准确进行计算.2.(2021·安徽包河·一模)已知,a b 为实数,且满足0,20ab a b >+-=,当-a b 为整数时,ab 的值为( ) A .34或12 B .14或1 C .34或1 D .14或34【答案】C【分析】根据20a b +-=得到2a b +=,进而得到()24a b +=,设()2222a b a ab b t -=-+=,可得到44t ab -=,根据-a b 为整数,0ab >,即可确定t 为0或1,问题得解.【详解】解:()22224a b a ab b +=++=;设()2222a b a ab b t -=-+=,则44ab t =-,∵44t ab -=, ∵-a b 为整数,0ab >,∵t 为0或1,当0t =时,1ab =;当1t =时,34ab =; ∵ab 的值为1或34. 故选:C【点睛】本题考查了完全平方公式的变形,熟练掌握完全平方公式并根据题意确定相应字母的取值范围是解题关键.3.(2021·福建海沧·一模)若x ﹣2y ﹣2=0,x 2﹣4y 2+4m =0(0<m <1),则多项式2mx ﹣x 2﹣4my ﹣4y 2﹣4xy 的值可能为( )A .﹣1B .0C .716D .167【答案】C【分析】根据因式分解将多项式分解,利用0<m <1即可得0<﹣(2m ﹣1)2+1<1,进而可得结果.【详解】解:∵x ﹣2y ﹣2=0,x 2﹣4y 2+4m =0(0<m <1),∵x ﹣2y =2,∵4m =4y 2﹣x 2=(2y +x )(2y ﹣x ),∵x +2y =﹣2m ,∵2mx ﹣x 2﹣4my ﹣4y 2﹣4xy=(2mx ﹣4my )﹣(x 2+4y 2+4xy )=2m (x ﹣2y )﹣(x 2+4y 2+4xy )=2m (x ﹣2y )﹣(x +2y )2=4m ﹣4m 2=﹣(2m ﹣1)2+1,∵0<m <1,∵0<2m <2,∵﹣1<2m ﹣1<1,∵0<(2m ﹣1)2<1,∵0<﹣(2m ﹣1)2+1<1.故选:C .【点睛】本题考查了因式分解,不等式的性质等知识,能将已知条件变形和将多项式因式分解是解题关键. 4.(2021·河北·九年级专题练习)由多项式乘法可得:()()2232222333a b a ab b a a b ab a b ab b a b +-+=-++-+=+,即得等式:①()()2233a b a ab b a b +-+=+,我们把等式①叫做多项式乘法的立方和公式,下列应用这个立方和公式进行的变形正确的是( )A .()()2233248x y x y x y ++=+B .()()3227339x x x x +=+-+C .()()22332242x y x xy y x y +-+=+D .()()32111a a a a +=+++【答案】B【分析】根据多项式乘法的立方和公式判断即可.【详解】解:A 、(x +2y )(x 2﹣2xy +4y 2)=x 3+8y 3,原变形错误,故此选项不符合题意;B 、x 3+27=(x +3)(x 2﹣3x +9),原变形正确,故此选项符合题意;C 、(x +2y )(x 2﹣2xy +4y 2)=x 3+8y 3,原变形错误,故此选项不符合题意;D 、a 3+1=(a +1)(a 2﹣a +1),原变形错误,故此选项不符合题意,故选:B .【点睛】本题主要考查学生的阅读理解能力及多项式乘法的立方和公式.透彻理解公式是解题的关键.5.(2021·四川·阆中中学八年级期中)已知553a =,444b =,335c =,则a 、b 、c 的大小关系为( ) A .c a b << B .c b a << C .a b c << D .a c b <<【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系.【详解】解:∵a =(35)11=24311,b =(44)11=25611,c =(53)11=12511,又∵125243256<<,∵c a b <<.故选:A .【点睛】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.6.(2021·全国·七年级期中)我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)n a b n +=的展开式的系数规律(按n 的次数由大到小的顺序) 1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b1 4 6 4 1 4322344()464a b a a b a b ab b +=++++… … 请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042 【答案】D【分析】 先观察规律,再按照规律写出第一项、第二项,其中第二项2019x ,写出系数即可【详解】 解:根据规律可以发现:20212x x ⎛⎫- ⎪⎝⎭第一项的系数为1,第二项的系数为2021,∵第一项为:x 2021, 第二项为:20202020201922202120214042xx x x x ⎛⎫-=-=- ⎪⎝⎭故选:D本题考查杨辉三角多项式乘法找规律的问题,观察发现式子中的规律是关键7.(2021·浙江浙江·七年级期中)如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当15x =时,阴影A 和阴影B 的面积和为定值.A .①③B .②④C .①③④D .①④【答案】A【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y -15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x +5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x +5),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy -25y +375)cm 2,代入x =15可得出说法④错误.【详解】解:①∵大长方形的长为y cm ,小长方形的宽为5cm ,∵小长方形的长为y -3×5=(y -15)cm ,说法①正确;②∵大长方形的宽为x cm ,小长方形的长为(y -15)cm ,小长方形的宽为5cm ,∵阴影A 的较短边为x -2×5=(x -10)cm ,阴影B 的较短边为x -(y -15)=(x -y +15)cm ,∵阴影A 的较短边和阴影B 的较短边之和为x -10+x -y +15=(2x +5-y )cm ,说法②错误;③∵阴影A 的较长边为(y -15)cm ,较短边为(x -10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x -y +15)cm ,∵阴影A 的周长为2(y -15+x -10)=2(x +y -25),阴影B 的周长为2(15+x -y +15)=2(x -y +30),∵阴影A 和阴影B 的周长之和为2(x +y -25)+2(x -y +30)=2(2x +5),∵若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确;④∵阴影A 的较长边为(y -15)cm ,较短边为(x -10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x -y +15)cm ,∵阴影A 的面积为(y -15)(x -10)=(xy -15x -10y +150)cm 2,阴影B 的面积为15(x -y +15)=(15x -15y +225)cm 2,∵阴影A 和阴影B 的面积之和为xy -15x -10y +150+15x -15y +225=(xy -25y +375)cm 2,当x =15时,xy -25y +375=(375-10y )cm 2,说法④错误.综上所述,正确的说法有①③.故选:A .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.8.(2020·广西贺州·中考真题)我国宋代数学家杨辉发现了()na b +(0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()8a b +展开式的系数和是( )A .64B .128C .256D .612 【答案】C【分析】由“杨辉三角”的规律可知,(a +b )8所有项的系数和为28,即可得出答案.【详解】解:由“杨辉三角”的规律可知,()0a b +展开式中所有项的系数和为1,()1a b +展开式中所有项的系数和为2,()2a b +展开式中所有项的系数和为4, ()3a b +展开式中所有项的系数和为8, …… ()n a b +展开式中所有项的系数和为2n ,()8a b +展开式中所有项的系数和为82256=. 故选:C .【点睛】本题考查了“杨辉三角”展开式中所有项的系数和的求法,解题关键是通过观察得出系数和的规律.二、填空题9.(2021·湖北·武汉一初慧泉中学八年级月考)若a m =20,b n =20,ab =20,则m nn m +=______. 【答案】1【分析】先根据20ab =可得20n n n a b =,再结合20n b =可得120n n a -=,由此结合20m a =可得20m n mn n a a +==,由此可得m n mn +=,进而可求得答案.【详解】解:∵20ab =,∵()20n n ab =,即20n n n a b =,∵20n b =,∵2020n n a ⨯=,∵120n n a -=,又∵20m a =,∵1202020m n m n n n a a a +-=⋅=⨯=,()20mn m n n a a ==,∵m n mn a a +=,∵m n mn +=, ∵1m n mn mn mn+==, 故答案为:1.【点睛】本题考查了幂的运算,熟练掌握同底数幂的乘除法法则及幂的乘方法则是解决本题的关键.10.(2021·浙江宁波·七年级期末)对x ,y 定义一种新运算F ,规定:(F x ,)()(3)y mx ny x y =+-(其中m ,n 均为非零常数).例如:(1,1)22F m n =+,(1,0)3F m -=.当(1,1)8F -=-,(1,2)13F =,则(,)F x y =__;当22x y ≠时,(F x ,)(y F y =,)x 对任意有理数x ,y 都成立,则m ,n 满足的关系式是 __.【答案】229125x xy y +- 30m n +=【分析】(1)根据新运算F 的定义,得2m n -=-,213m n +=,故3m =,5n =.那么,(F x ,22)()(3)(35)(3)9125y mx ny x y x y x y x xy y =+-=+-=+-.(2)由(F x ,)(y F y =,)x ,得22223(3)3(3)mx n m xy ny my n m xy nx +--=+--,故22(3)(3)m n x m n y +=+.由当22x y ≠时,(F x ,)(y F y =,)x 对任意有理数x ,y 都成立,故当22x y ≠时,22(3)(3)m n x m n y +=+对任意有理数x ,y 都成立.那么,30m n +=.【详解】解:(1)(1,1)8F -=-,(1,2)13F =,()[3(1)]8m n ∴-⨯--=-,(2)(312)13m n +⨯-=.2m n ∴-=-,213m n +=.3m ∴=,5n =.(F x ∴,2222)()(3)(35)(3)931559125y mx ny x y x y x y x xy xy y x xy y =+-=+-=-+-=+-.(2)(F x ,)()(3)y mx ny x y =+-,(F y ,)()(3)x my nx y x =+-,(F x ∴,2222)333(3)y mx mxy nxy ny mx n m xy ny =-+-=+--.(F y ,2222)333(3)x my mxy nxy nx my n m xy nx =-+-=+--.若当22x y ≠时,(F x ,)(y F y =,)x 对任意有理数x ,y 都成立,∴当22x y ≠时,22223(3)3(3)mx n m xy ny my n m xy nx +--=+--对任意有理数x ,y 都成立.∴当22x y ≠时,22(3)(3)m n x m n y +=+对任意有理数x ,y 都成立.30m n ∴+=.故答案为:229125x xy y +-,30m n +=.【点睛】本题主要考查整式的运算以及解二元一次方程组,解题的关键是熟练掌握二元一次方程组的解法以及整式的运算.11.(2021·江苏阜宁·七年级期中)如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c ,则空白部分的面积是___.【答案】2ab ac bc c --+【分析】先把阴影的为平行四边形的面积化为长方形的面积,然后经过平移得到空白部分的为长方形,长为a -c ,宽为b -c ,根据长方形面积公式列式计算即可求解即可求解.【详解】解:原图形可化为图1,将阴影部分平移得到图2,所以空白部分的面积为:()()2=a c b c ab ac bc c ----+. 故答案为:2ab ac bc c --+【点睛】本题考查了列代数式,平移,多项式乘以多项式等知识,根据题意,将平行四边形的面积转化为长方形的面积,进而进行平移,将空白部分面积转化为长方形的面积是解题关键.12.(2021·安徽包河·七年级期末)已知23,32a b ==,则1111a b +=++_______. 【答案】1.【分析】利用幂的乘方与同底数幂相乘,得到2a +1=2a ×2=6,3b +1=3b ×3=6,进而得到111111116666a b a b +++++⋅==,求出答案即可.【详解】解:∵2a +1=2a ×2=3×2=6,3b +1=3b ×3=2×3=6, ∵11111(2)62a a a +++==,11111(3)63b b b +++==, ∵11111111666236a b a b +++++⋅==⨯=, ∵11111a b +=++. 故答案为:1.【点睛】本题考查幂的乘方与同底数幂相乘,掌握幂的乘方与同底数幂相乘的运算法则是解题关键.13.(2021·湖南娄星·模拟预测)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,摆第n 个图案需要_______________枚棋子.【答案】()2331n n ++【分析】本题可依次解出n =1,2,3,…,图案需要的棋子枚数.再根据规律以此类推,可得出第n 个图案需要的棋子枚数.【详解】解:1n =时,总数是617+=;2n =时,总数为()612119⨯++=;3n =时,总数为()6123137⨯+++=枚;…;n n ∴=时,有()2(1)6(123)1613312n n n n n +⨯++++=⨯+=++枚. 故答案为:()2331n n ++. 【点睛】本题考查图形的变化,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.14.(2021·浙江浙江·七年级期中)如图,边长为4的正方形ABCD 中放置两个长宽分别为a ,b 的长方形AEFG 与长方形CHIJ ,如图阴影部分的面积之和记为1S ,长方形AEFG 的面积记为2S ,若123544S S +=,:3:2a b =,则长方形AEFG 的周长为________.【答案】253【分析】根据:3:2a b =可设a =3x ,b =2x ,由此可表示出相关线段长,进而可表示出S 1=38x 2-80x +48,S 2= 6x 2,再根据123544S S +=即可列出等式化简整理可得(6x -5)2=0,由此可求得x =56,最后根据长方形的周长公式即可求得答案.【详解】解:∵:3:2a b =,∵设a =3x ,b =2x ,则AG =EF =CJ =HI =3x ,AE =FG =CH =IJ =2x ,∵正方形ABCD 的边长为4,∵AB =BC =CD =AD =4,∵BH =BE =4-2x ,DG =DJ =4-3x ,IP =IQ =3x -(4-2x )=5x -4,∵S 1=S 正方形BEPH +S 正方形IPFQ +S 正方形DGQJ=(4-2x )2+(5x -4)2+(4-3x )2=16-16x +4x 2+25x 2-40x +16+16-24x +9x 2=38x 2-80x +48,S 2=ab =3x ·2x =6x 2,又∵123544S S +=,∵3(38x 2-80x +48)+5×6x 2=44,∵114x 2-240x +144+30x 2=44,∵144x 2-240x +100=0,∵36x 2-60x +25=0,∵(6x -5)2=0,解得:x =56, ∵C 长方形AEFG =2(a +b )=2(3x +2x )=10x=10×56=253, 故答案为:253. 【点睛】本题考查了整式的混合运算以及用完全平方公式进行因式分解的应用,熟练掌握完全平方公式是解决本题的关键.15.(2021·甘肃兰州·七年级期末)代数与几何的联手!(1) (a +b )2与(a -b )2有怎样的联系,能否用一个等式来表示两者之间的关系?并尝试用图形来验证你的结论(2) 若 x 满足(40﹣x )(x ﹣30)=﹣20,则(40﹣x )2 +(x ﹣30)2 的值为_____.(3) 若 x 满足(x ﹣3)(x ﹣1)=94,则(x ﹣3)2 +(x ﹣1)2 的值为 _____. (4) 如图,正方形 ABCD 的边长为 x ,AE =14,CG =30,长方形 EFGD 的面积是 200,四边形 NGDH 和 MEDQ 都是正方形,四边形 PQDH 是长方形,求图中阴影部分的面积 .(结果必须是一个具体的数值)【答案】(1)22()()4a b a b ab +--=,见解析;(2)140;(3)8.5;(4)1056【分析】(1)用完全平方公式展开,找到两式子的联系即可;根据问题构建以a 和b 为边长的正方形面积即可; (2)利用两数和的完全平方公式变形即可求出值;(3)利用两数差的完全平方公式变形即可求出值;(4)依据已知图形,用含x 的代数式表示出各线段的长,阴影部分面积为正方形的面积,然后利用(1)的结论,利用两数和与差的完全平方公式消去x ,即可求出阴影部分的面积.【详解】(1)222222()()224a b a b a ab b a ab b ab +--=++-+-=∵22()()4a b a b ab +--=用图验证如下:(2)∵(40﹣x )(x ﹣30)=﹣20∵(40﹣x )2 +(x ﹣30)2=2[(40)(30)]2(40)(30)1002(20)140x x x x -+----=-⨯-=故答案为:140(3)∵(x -3)(x ﹣1)=94∵(x ﹣3)2 +(x ﹣1)2=29[(3)(1)]2(3)(1)428.54x x x x ---+--=+⨯=故答案为:8.5(4)∵四边形ABCD 的边长为x∵ED =x -14,DG =x -30∵长方形EFGD 的面积为200∵ED ×DG =200∵(x -14)(x -30)=200∵四边形 NGDH 和 MEDQ 都是正方形∵FN =FG +GN =FG +GD =(x -14)+(x -30),MF =ME +EF =ED +EF =(x -14)+(x -30)∵2[(14)(30)]MFNP S MF FN x x ==-+-四边形2=[(14)(30)]4(14)(30)x x x x ---+--2=16+4200⨯=1056故答案为:1056【点睛】本题主要考查了整式中乘法公式的灵活运用,数形结合,熟练掌握完全平方公式特点是解决问题的关键. 16.(2021·浙江杭州·七年级期中)己知(2018)(2021)5a a --=-,求22(2018)(2021)a a -+-=________.【答案】19【分析】设2021a m -=,则20183a m -=+;根据题意,得235m m +=;再将235m m +=代入到代数式中计算,即可得到答案.【详解】∵(2018)(2021)5a a --=-∵(2018)(2021)5a a --=设2021a m -=,则20183a m -=+∵()35m m +=,即235m m +=∵22(2018)(2021)a a -+-()223m m =++ 2269m m =++()2239m m =++259=⨯+19=故答案为:19.【点睛】本题考查了整式运算和代数式的知识;解题的关键是熟练掌握整式乘法、完全平方公式的性质,从而完成求解.17.(2021·河北顺平·二模)如果一个两位数a 的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记()a ω,例如:a =13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以()134ω=.根据以上定义,回答下列问题:(1)计算:()23ω=____________.(2)若一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且()8b ω=,则“跟斗数”b =____________. (3)若m ,n 都是“跟斗数”,且m +n =100,则()()m n ωω+=____________.【答案】5 26 19【分析】(1)根据题意直接将数值代入即可.(2)根据题意写出“跟斗数”是含有k 的式子,再利用()8b ω=,列方程求解即可.(3)根据m +n =100,解设未知数用还有x ,y 的式子表示m 、n 为m =10x +y , n =10(9-x )+(10-y ),根据题意列式子化简即可.【详解】解:(1)()233223511ω+== (2)∵一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且()8b ω=,∵[][]102(1)102(1)811k k k k +++⨯++= 解得k =2,∵2(k +1)=6,∵b =26.(3)∵m ,n 都是“跟斗数”,且m +n =100,设m =10x +y ,则n =10(9-x )+(10-y ), ∵[][]10(9)(10)+10(10)(9)(10)(10)()()1111x y y x x y y x m n ωω-+--+-++++=+ 10109010101001091111x y y x x y y x +++-+-+-+-=+ 111120*********x y x y +--=+ 1919x y x y =++--=【点睛】本题考查新定义的数,按照题意正确代入是关键,本题是中考的常见题型18.(2021·广东·深圳市高级中学八年级开学考试)已知2410m m -+=,则代数式值221m m += _______. 【答案】14.【分析】根据方程求出1m m+的值,再运用完全平方公式可求221m m +的值. 【详解】 解:∵2410m m -+=,且0m ≠, ∵140m m -+=,即14m m +=, 221()4m m +=, 221216m m ++=, 22114m m +=, 故答案为:14.【点睛】本题考查了完全平方公式和等式变形,解题关键是恰当的对等式变形,熟练运用完全平方公式进行计算. 19.(2021·河南省淮滨县第一中学一模)多项式2222627a ab b b -+-+的最小值为________.【答案】18.【分析】利用公式法进行因式分解,根据非负性确定最小值.【详解】解:2222627a ab b b -+-+,=222)((269)18a ab b b b -+-+++,=22()(3)18a b b -+-+,∵22()(3)00a b b --≥≥,, ∵22()(3)18a b b -+-+的最小值为18;故答案为:18.【点睛】本题考查了因式分解和非负数的性质,解题关键是熟练运用乘法公式进行因式分解,根据非负数的性质确定最值.三、解答题20.(2021·北京·人大附中八年级期中)若整式A 只含有字母x ,且A 的次数不超过3次,令A =ax 3+bx 2+cx +d ,其中a ,b ,c ,d 为整数,在平面直角坐标系中,我们定义:M (b +d ,a +b +c +d )为整式A 的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式A =2x 2﹣5x +4,则a =0,b =2,c =﹣5,d =4,故A 的关联点为(6,1).(1)若A =x 3+x 2﹣2x +4,则A 的关联点坐标为 .(2)若整式B 是只含有字母x 的整式,整式C 是B 与(x ﹣2)(x +2)的乘积,若整式C 的关联点为(6,﹣3),求整式B 的表达式.(3)若整式D =x ﹣3,整式E 是只含有字母x 的一次多项式,整式F 是整式D 与整式E 的平方的乘积,若整式F 的关联点为(﹣200,0),请直接写出整式E 的表达式.【答案】(1)(5,4);(2)B =3x -2;(3)55E x =-或55E x =-+.【分析】(1)根据整式得出a =1,b =1,c =﹣2,d =4,根据关联点的定义得出b +d =5,a +b +c +d =4,即可得出A 的关联点坐标;(2)根据题意得出B 中x 的次数为1次,设B =nx +m ,计算出3244C nx mx nx m =+--,进而表达出a ,b ,c ,d 的值,再根据C 的关联点为(6,﹣3),列出关于b +d ,a +b +c +d 的等式,解出m 、n 的值即可;(3)设E nx m =+,根据题意求出()()2322222363F n x mn n x m mn x m =+-+--,进而表达出a ,b ,c ,d 的值,再根据F 的关联点为(﹣200,0),列出关于b +d ,a +b +c +d 的等式,解出m 、n 的值即可.【详解】解:(1)∵A =x 3+x 2﹣2x +4,∵a =1,b =1,c =﹣2,d =4,∵b +d =5,a +b +c +d =4,A 的关联点坐标为:(5,4),故答案为:(5,4),(2)∵整式B 是只含有字母x 的整式,整式C 是B 与(x ﹣2)(x +2)的乘积,(x ﹣2)(x +2)=x 2-4是二次多项式,且C 的次数不能超过3次,∵B 中x 的次数为1次,∵设B =nx +m ,∵()()232444C nx m x nx mx nx m =+-=+--,∵a =n ,b =m ,c =﹣4n ,d =﹣4m ,∵整式C 的关联点为(6,﹣3),∵46m m -=,443n m n m +--=-,解得:2m =-,3n =,∵B =3x -2,(3)根据题意:设E nx m =+,∵()()()()2222323F nx m x n x mnx m x =+-=++- ()()2322222363n x mn n x m mn x m =+-+--,∵2222,23,6,3a n b mn n c m mn d m ==-=-=-,∵整式F 的关联点为(﹣200,0),∵22233200mn n m --=-,222223630n mn n m mn m +-+--=,2220n mn m ++=,()20m n +=, ∵m n =-,把m n =-代入22233200mn n m --=-,得222233200n n n ---=-,解得:225n =,∵5n =±,5m =±,∵55E x =-或55E x =-+.【点睛】本题考查了整式的乘法和规律探索,解题的关键是理解题意,灵活运用关联点的定义解决问题. 21.(2021·广东禅城·七年级期末)阅读理解,解答下列问题:利用平面图形中面积的等量关系可以得到某些数学公式.(1)例如,根据下图①,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2根据图②能得到的数学公式是__________.(2)如图③,请写出(a +b )、(a ﹣b )、ab 之间的等量关系是__________(3)利用(2)的结论,解决问题:已知x +y =8,xy =2,求(x ﹣y )2的值.(4)根据图④,写出一个等式:__________.(5)小明同学用图⑤中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片,用这些纸片恰好拼出一个面积为(3a +b )(a +3b )长方形,请画出图形,并指出x +y +z 的值. 类似地,利用立体图形中体积的等量关系也可以得到某些数学公式.(6)根据图⑥,写出一个等式:___________.【答案】(1)(a ﹣b )2=a 2﹣2ab +b 2;(2)(a +b )2=(a ﹣b )2+4ab ;(3)56;(4)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(5)画图见解析,16;(6)(a +b )3=a 2+b 2+3a 2b +3ab 2【分析】(1)由图②中各个部分面积之间的关系可得答案;(2)根据图③中,大正方形的面积为(a +b )2,小正方形的面积为(a ﹣b )2,每个长方形的面积为ab ,由各个部分的面积之间的关系可得出答案;(3)由公式变形()()224x y x y xy -=+-,再整体代入计算即可;(4)大正方形的面积可表示为(a +b +c )2,在分别表示出大正方形中9块的面积,可得答案;(5)根据拼出一个面积为(3a +b )(a +3b ),即为3a 2+3b 2+10ab ,因此x =3,y =3,z =10,进而拼图即可;(6)根据大正方体的体积为(a +b )3,以及8个“小块”的体积之间的关系得出结果即可.【详解】(1)根据图②各个部分面积之间的关系可得:(a ﹣b )2=a 2﹣2ab +b 2,故答案为:(a ﹣b )2=a 2﹣2ab +b 2;(2)图③中,大正方形的面积为(a +b )2,小正方形的面积为(a ﹣b )2,每个长方形的面积为ab ,()()224a b a b ab ∴+=-+, 故答案为:()()224a b a b ab +=-+;(3)利用(2)的结论,可知()()224x y x y xy -=+-,x +y =8,xy =2,∴(x ﹣y )2=(x +y )2﹣4xy =64﹣8=56; (4)根据图④,大正方形的面积可表示为(a +b +c )2,内部9块的面积分别为:222,,,,,,,,a b c ab ab ac ac bc bc ,∴(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc故答案为:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(5)(3a +b )(a +3b )=3a 2+3b 2+10ab ,3,3,10x y z ∴===,即需要3张边长为a 的正方形,3张边长为b 的正方形,10张宽、长分别为a 、b 的长方形纸片, 画图如下:∵x +y +z =16;(6)根据图⑥,大正方体的体积为(a+b)3,分割成8个“小块”的体积分别为:33222222,,,,,,,a b a b a b a b ab ab ab,∴(a+b)3=a2+b2+3a2b+3ab2故答案为:(a+b)3=a2+b2+3a2b+3ab2.【点睛】本题考查完全平方公式的几何背景、立方公式,表示各个部分的面积和体积,利用各个部分的面积或体积与整体的关系得出答案.22.(2021·浙江嘉兴·七年级期末)(图1),把边长为b的正方形放在长方形ABCD中,其中正方形的两条边分别在AD,CD上,已知AB=a(a<2b),BC=4a.(1)请用含a、b的代数式表示阴影部分的面积;(2)将另一长方形BEFG放入(图1)中得到(图2),已知BE=72a,BG=b;①长方形AGPH的面积是长方形ECNM面积的6.5倍,求ab的值;②若长方形PQMF的面积为2,求阴影部分的面积(用含b的代数式表示).【答案】(1)4a2-b2;(2)①43;②282518b b-+【分析】(1)用大长方形面积减去小正方形面积,即可;(2)①用代数式表示出AG=a-b,AH=4a-b,CE =12a,结合“长方形AGPH的面积是长方形ECNM面积的6.5倍”列出等式,即可求解;②由“长方形PQMF的面积为2”,可得a=2b-2,结合影部分面积=长方形AGPH面积+长方形ECNM面积,即可得到答案.【详解】解:(1)由题意得:阴影部分的面积=a·4a-b2;(2)①∵AB=a,BG=b,∵AG=a-b,∵AD=BC=4a,DH=b,∵AH=4a-b,∵BE=72a,BC=4a,∵CE=4a-72a=12a,∵长方形AGPH的面积是长方形ECNM面积的6.5倍,∵(a-b)(4a-b)=6.5×12a×(a-b),∵3a=4b,∵ab=43;②如图2,PQ=EF-EM=b-(a-b)=2b-a,QM=QN-MN=b-12a,∵长方形PQMF的面积为2,∵(2b-a)(b-12a)=2,即:()224a b-=,∵a-2b=±2,∵a<2b,∵a-2b=-2,即:a=2b-2,∵图2中阴影部分面积=长方形AGPH面积+长方形ECNM面积=(a-b)(4a-b)+12a(a-b)=282518b b-+.【点睛】本题主要考查几何图形与代数式,方程综合,掌握整式的混合运算,用整式表示阴影部分面积,是解题的关键.23.(2021·陕西金台·八年级期末)阅读下列材料:材料1:将一个形如x²+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n则可以把x²+px +q因式分解成(x+m)(x+n),如:(1)x2+4x+3=(x+1)(x+3);(2)x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1,解:将“x+y看成一个整体,令xy=A,则原式=A²+2A+1=(A+1)²,再将“A”还原得:原式=(x+y+1)²上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2+2x﹣24分解因式;(2)结合材料1和材料2,完成下面小题;①分解因式:(x﹣y)²﹣8(x﹣y)+16;②分解因式:m(m﹣2)(m²﹣2m﹣2)﹣3【答案】(1)(x-y-4)2;(2)①(x-y-4)2;②(m-3)(m+1)(m-1)2【分析】(1)将x2+2x-24写成x2+(6-4)x+6×(-4),根据材料1的方法可得(x+6)(x-4)即可;(2)①令x-y=A,原式可变为A2-8A+16,再利用完全平方公式即可;②令B=m(m-2)=m2-2m,原式可变为B(B-2)-3,即B2-2B-3,利用十字相乘法可分解为(B-3)(B+1),再代换后利用十字相乘法和完全平方公式即可.【详解】解:(1)x2+2x-24=x2+(6-4)x+6×(-4)=(x+6)(x-4);(2)①令x-y=A,则原式可变为A2-8A+16,A2-8A+16=(A-4)2=(x-y-4)2,所以(x-y)2-8(x-y)+16=(x-y-4)2;②设B=m2-2m,则原式可变为B(B-2)-3,即B2-2B-3=(B-3)(B+1)=(m2-2m-3)(m2-2m+1)=(m-3)(m+1)(m-1)2,所以m(m-2)(m2-2m-2)-3=(m-3)(m+1)(m-1)2.【点睛】本题考查十字相乘法,公式法分解因式,掌握十字相乘法和完全平方公式的结构特征是正确应用的前提.24.(2021·陕西·西安市中铁中学七年级月考)(1)填空:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=;(2)猜想:(x﹣1)(x n+x n﹣1+……+x+1)=(n为大于3的正整数),并证明你的结论;(3)运用(2)的结论计算(32019+32018+32017+……+32+3+1)﹣(31050×2)2÷(8×380);(4)32019﹣32018+32017﹣32016+……+35﹣34+33﹣32+3=.【答案】(1)x4−1;(2)x n+1−1,理由见详解;(3)12-;(4)1010934+【分析】(1)根据多项式乘多项式法则计算即可求解;(2)利用发现的规律填写,再利用多项式乘多项式法则证明即可;(3)利用得出的规律计算得到结果;(4)两个数一组分别提取公因数,再把底数化为9,利用得出的规律计算,即可求解.【详解】解:(1)解:根据多项式乘多项式法则可得:(x﹣1)(x3+x2+x+1)=x4−1,故答案是:x4−1;(2)∵(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4−1,∵(x﹣1)(x n+x n﹣1+……+x+1)= x n+1−1,理由如下:(x﹣1)(x n+x n﹣1+……+x+1)= x n+1+ x n+x n﹣1+……+x-(x n+x n﹣1+……+x+1)= x n+1−1,故答案是:x n+1−1;(3)(32019+32018+32017+……+32+3+1)﹣(31050×2)2÷(8×380)=20203131--﹣32100×4÷8÷380=2020312--202032=12 -;(4)32019﹣32018+32017﹣32016+……+35﹣34+33﹣32+3 =2×32018+2×32016+2×32014+……+2×32+3=2×(32018+32016+32014+……+32)+3=2×(91009+91008+91007+……+9+1-1)+3=2×101091191⎛⎫--⎪-⎝⎭+3=2×10109118-+=1010934+,故答案是:1010934+.【点睛】本题考查了整式的混合运算,掌握多项式乘多项式法则,归纳出公式(x﹣1)(x n+x n﹣1+……+x+1)= x n+1−1,是解题的关键.25.(2021·广东·南山实验教育麒麟中学七年级期中)有两个正方形A ,B ,边长分别为a ,b (a >b ).现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.(1)用a ,b 表示图甲阴影部分面积:___________;用a ,b 表示图乙阴影部分面积:___________. (2)若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为_________. (3)在(2)的条件下,三个正方形A 和两个正方形B 如图丙摆放,求阴影部分的面积.【答案】(1)2()a b -,2ab ;(2)13;(3)29【分析】(1)根据图形知甲图中阴影部分正方形的边长为-a b ,乙图中新的正方形的边长为a b +,然后列代数式表示阴影部分面积即可;(2)设正方形A ,B 的边长分别为a ,b .构建方程组即可解决问题;(3)由面积和差公式可求解.【详解】解:(1)图甲阴影部分面积:2()()()a b a b a b --=-,图乙阴影部分面积:222()2a b a b ab +--=,故答案是:2()a b -,2ab .(2)设正方形A ,B 的边长分别为a ,()b a b >,由图甲得2()1a b -=,由图乙得222()12a b a b +--=得6ab =,2213a b +=,故答案为:13;(3)6ab =,2213a b +=,22()()412425a b a b ab ∴+=-+=+=,0a b +>,5a b ∴+=,2()1a b -=,1a b ∴-=,∴图丙的阴影部分面积22222(2)324()()452429S a b a b a b ab a b a b ab =+--=-+=-++=+=.【点睛】本题考查了完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题. 26.(2021·重庆八中九年级开学考试)根据阅读材料,解决问题.材料1:若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”(例如:1、232、4554是对称数).材料2:对于一个三位自然数A ,将它各个数位上的数字分别2倍后取个位数字,得到三个新的数字x ,y ,z ,我们对自然数A 规定一个运算:K (A )222x y z =++,例如:191A =是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2.则222(191)28272K =++=.请解答:(1)请你直接写出最大的两位对称数: ,最小的三位对称数: ;(2)如果将所有对称数按照从小到大的顺序排列,请直接写出第1100个对称数 ;(3)一个四位的“对称数” B ,若K (B )8=,请求出B 的所有值.【答案】(1)99,101;(2)101101;(3)5115,5665,1551,1001,6556,6006【分析】(1)根据对称数的概念进行求解即可;(2)分别列举出一位数、两位数、三位数、四位数、五位数的对称数,进一步得出第1100个对称数; (3)先根据K (B )=8,求出a ,b 的值,进而求出四位的“对称数”,即可得出结论.【详解】解:(1)最大的两位对称数是99;最小的三位对称数是101.故答案为:99;101;(2)一位数的对称数有9个;两位数的对称数有9个,三位数的对称数个位与百位可取1~9,十位可取0~9,∴有90个;四位数的对称数个位与千位可取1~9,十位与百位可取0~9,∴有90个;五位数的对称数万位与个位可取1~9,千位、百位、和十位可取0~9,∴有900个,此时99999为第1098个对称数,∴第1100个对称数为101101.故答案为:101101;(3)设四位的对称数B 的各个数位上的数字分别2倍后,取个位数数字分别为a ,b ,b ,(08a a ,08b 的整数), K (B )8=,22228a b b a ∴+++=,224a b ∴+=,0a ∴=时,2b =;2a =时,0b =;①当0a =,2b =时,四位的对称数为5115,5665;②当2a =,0b =时,四位的对称数为1551,1001,6556,6006,综上所述,B 为5115,5665,1551,1001,6556,6006.【点睛】此题主要考查了整除问题,数字问题,用分类讨论的思想解决问题是解本题的关键.27.(2021·四川·乐山外国语学校七年级期中)如果一个正整数的各位数字都相同,我们称这样的数为“同花数”,比如:3,22,666,8888,对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“异花数”.将一个“异花数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为()F n .如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132.这三个新三位数的和()213321132666F n =++=,是一个“同花数”.(1)计算:()432F ,()716F ,并判断它们是否为“同花数”;(2)若a 是“异花数”,证明:()F a 等于a 的各数位上的数字之和的111倍;(2)若“数”10010n p q =++(中p 、q 都是正整数,19p ≤≤,19q ≤≤),且()F n 为最大的三位“同花数”,求n 的值.【答案】(1)(432)F 是同花数;(716)F 不是同花数;(2)见解析;(3)n 为162或153或135或126【分析】(1)由“同花数”定义,计算即可得到答案;(2)百位数的表示方法;(2)由“异花数”的定义,()F n 为最大的三位“称心数”得()999F n =且19p q ++=,计算n 的值为162或153或135或126.【详解】解:(1)(432)342234423999F =++=,(432)F ∴是同花数;(716)1676177611554F =++=,(716)F ∴不是同花数;(2)若a 是“异花数”10010a b c d ∴=++,(其中,,b c d 均为小于10的正整数),[]()100()10()()111()F a b c d b c d b c d b c d ∴=++++++++=++,()F a ∴等于a 的各数位上的数字之和的111; (3)异花数” 10010n p q =++,100110n p q ∴=⨯++,又19p ,19(q p ,q 为正整数),()F n 为最大的三位“同花数”,()999F n ∴=且19p q ++=,p ∴、q 取值如下:62p q =⎧⎨=⎩或53p q =⎧⎨=⎩或35p q =⎧⎨=⎩或26p q =⎧⎨=⎩, 由上可知符合条件三位“异花数”n 为162或153或135或126.【点睛】本题考查了新定义问题,解题的关键是读懂新定义“同花数”和“异花数”.28.(2021·陕西省西咸新区秦汉中学八年级开学考试)乘法公式的探究及应用.(1)如图①,可以求出阴影部分的面积是 (写成两数平方差形式).(2)若将图①中的阴影部分裁剪下来,重新拼成一个长方形(如图②),面积是 (写成多项式乘法的形式).(3)比较图①、图②中阴影部分的面积,可以得到乘法公式 (用式子表示).(4)运用你所得到的公式,计算下列各题;①(n +1﹣m )(n +1+m );②1003×997.【答案】(1)a 2﹣b 2;(2)(a +b )(a ﹣b );(3)a 2﹣b 2=(a +b )(a ﹣b );(4)①n 2+2n +1﹣m 2;②999991.【分析】(1)阴影部分的面积等于大小正方形的面积差,用代数式表示大小正方形的面积即可;(2)拼成的是长为()a b +,宽为()-a b 的长方形,因此面积为()()a b a b +-;(3)由(1)(2)可得答案;(4)应用平方差公式进行计算即可.【详解】解:(1)阴影部分的面积等于边长为a ,与边长为b 的正方形的面积差,即:22a b -,故答案为:22a b -;(2)拼成的是长为()a b +,宽为()-a b 的长方形,因此面积为()()a b a b +-,故答案为:()()a b a b +-;(3)由(1)(2)可得:22()()a b a b a b -=+-,故答案为:22()()a b a b a b -=+-;(4)①原式22(1)n m =+-2221n n m =++-;②原式(10003)(10003)=+⨯-2210003=-10000009=-999991=.。
第十四章 整式的乘法与因式分解(过题型)(解析版)
第十四章 整式的乘法与因式分解考查题型一 幂的乘方运算典例1.(2021·广东·惠州市惠港中学八年级阶段练习)若3•9m•27m =321,则m 的值为( )A .2B .3C .4D .5【答案】C【分析】先利用幂的乘方、同底数幂乘法的运算法则把等式的左边进行整理,从而可得到关于m 的方程求解即可.【详解】解:3•9m•27m=3×32m×33m=31+2m +3m=31+5m ,∵3•9m•27m =321,即31+5m=321∵1+5m =21,解得:m =4.故选:C .【点睛】本题主要考查幂的乘方、同底数幂乘法法则,解答本题的关键是灵活运用相关运算法则.变式1-1.(2020·海南·儋州川绵中学八年级期中)计算()323a a ⋅的结果是( )A .9aB .8aC .7aD .6a 【答案】A 【分析】根据幂的乘方和同底数幂乘法法则计算即可.【详解】()632933a a a a a ⋅==⋅,故选A . 【点睛】本题考查幂的混合计算,涉及幂的乘方和同底数幂乘法.掌握运算法则是解题关键.变式1-2.(2021·江西育华学校八年级期末)已知2m+3n =5,则4m•8n =( )A .10B .16C .32D .64【答案】C【分析】根据幂的乘方m n mn a a =()以及同底数幂的乘法(·m n m n a a a +=)则解答即可. 【详解】∵m 、n 均为正整数,且235m n +=,∵2323548222232m n m n m n +⋅=⋅===, 故选:C .【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.变式1-3.(2021·福建·上杭县第三中学八年级阶段练习)下列运算正确的是( )A .326·y y y =B .33(·)·a b a b =C .235x x x +=D .248()m m -=【答案】D【分析】根据同底数幂的乘法,幂的乘方与积的乘方的运算法则计算,利用排除法即可得到答案.【详解】解:A. 应为:23352·y y y y +==, 故本选项错误; B. 应为:333()··a b a b =, 故本选项错误; C. 235x x x +≠, 故本选项错误;D. 应为:248()m m -=, 故本选项正确;故选D .【点睛】考查同底数幂的乘法,幂的乘方与积的乘方,掌握它们的运算法则是解题的关键.考查题型二 积的乘方运算典例2.(2022·山东淄博·期末)2312mn ⎛⎫- ⎪⎝⎭的计算结果是( ) A .64mn B .264m n - C .2314m n - D .2614m n【答案】D【分析】直接根据幂的乘方与积的乘方的法则进行计算,即可得出答案.【详解】解:2312mn ⎛⎫- ⎪⎝⎭=2614m n故选D .【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.变式2-1.计算3(2)a 的结果是( )A .36aB .8aC .32aD .38a【答案】D【分析】根据积的乘方可进行求解.【详解】解:33(2)8a a =; 故选D .【点睛】本题主要考查积的乘方,熟练掌握积的乘方是解题的关键.变式2-2.(2022·山东淄博·中考真题)计算3262(2)3a b a b --的结果是( )A .﹣7a6b2B .﹣5a6b2C .a6b2D .7a6b2【答案】C【分析】先根据积的乘方法则计算,再合并同类项.【详解】解:原式62626243a b a b a b =-=,故选:C .【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则. 变式2-3.(2020·北京市朝阳外国语学校八年级期中)下列运算结果正确的是( )A .3412a a a ⋅=B .325()a a =C .22(3)9a a -=D .752a a a -=【答案】C【分析】根据同底数幂的乘法,幂的乘方,积的乘方,合并同类项逐项分析判断即可求解.【详解】解:A. 347a a a ⋅=,故该选项不正确,不符合题意;B. 326()a a =,故该选项不正确,不符合题意;C. 22(3)9a a -=,故该选项正确,符合题意;D. 7a 与5a 不能合并,故该选项不正确,不符合题意.故选C .【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,合并同类项,正确的计算是解题的关键.考查题型三 化简求值典例3.(2022·北京·101中学八年级阶段练习)先化简,再求值:3(21)(23)(5)x x x x +-+-,其中2x =-.【答案】241015x x ++,11【分析】先利用单项式乘以多项式、多项式乘以多项式的运算法则计算,再合并同类项完成化简,然后将x 的值代入求解即可.【详解】解:原式2263(210315)x x x x x =+--+-2263210315x x x x x =+-+-+241015x x =++,当2x =-时,原式24(2)10(2)15=⨯-+⨯-+11=.【点睛】本题主要考查了整式的化简求值,熟练掌握相关运算法则是解题关键. 变式3-1.化简求值:()()()()23432x x x x +---+,其中1x =-【答案】246x x --,-1【分析】先计算整式的乘法,然后合并同类项,代入求解即可.【详解】解:原式()2228312236x x x x x x =-+--+--2225126x x x x =---++24 6.x x =--当1x =-时,原式146=+-1=-.【点睛】题目主要考查整式的化简求值,熟练掌握运算法则是解题关键.变式3-2.先化简,再求值:()()()()2234342323321m m m m m m ---++-+-,其中52m =- 【答案】323240932m m m --+-,791【分析】先根据平方差公式和完全平方公式进行计算,再根据单项式乘多项式进行计算,再合并同类项,最后代入求出答案即可.【详解】解:()()()()2234342323321m m m m m m ---++-+- ()()2232316949424323232m m m m m m =+--+---22324827361672323232m m m m m m =+-++---323242930m m m =-+--当52m =-时, 原式235553223240229⎛⎫⎛⎫⎛⎫=-⨯--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝-⨯⎭+⨯- 125253284321009⎛⎫=-⨯- ⎪⎝⎭+⨯+- 5002001009+=+-8009=-791=.【点睛】本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.变式3-3.如图,在某一禁毒基地的建设中,准备在一个长为()65a b +米,宽为()5b a -米的长方形草坪上修建两条宽为a 米的通道.(1)求剩余草坪的面积是多少平方米?(用含a ,b 的字母代数式表示)(2)若1a =,3b =,求剩余草坪的面积是多少平方米?【答案】(1)()22101525a ab b -++平方米(2)260平方米【分析】(1)根据题意可得剩余草坪的面积是()()655a b a b a a +---,再根据整式的乘法计算,即可求解;(2)把1,3a b ==代入(1)中结果,即可求解.(1)解:剩余草坪的面积是:()()655a b a b a a +---()()5552a b b a =+-()22101525a ab b =-++平方米;(2)解:当1,3a b ==时,22101525a ab b -++221011513253=-⨯+⨯⨯+⨯=260,即1,3a b ==时,剩余草坪的面积是260平方米.【点睛】本题主要考查了整式的乘法的应用,平移的性质,熟练掌握整式的乘法运算法则是解题的关键.考查题型四 多项式乘积不含某项求字母的值典例4.(2021·山东烟台·期中)已知(x2+mx-3)(2x+n )的展开式中不含x2项,常数项是-6.(1)求m ,n 的值.(2)求(m+n )(m2-mn+n2)的值.【答案】(1)m=-1,n=2;(2)7【分析】(1)直接利用多项式乘多项式将原式变形,进而得出m ,n 的值;(2)利用多项式乘多项式运算法则计算得出答案.(1)解:(x2+mx-3)(2x+n )=2x3+2mx2-6x+nx2+mnx-3n=2x3+2mx2+nx2+mnx-6x-3n=2x3+(2m+n )x2+(mn-6)x-3n ,由于展开式中不含x2项,常数项是-6,则2m+n=0且-3n=-6,解得:m=-1,n=2;(2)解:由(1)可知:m=-1,n=2,∵(m+n )(m2-mn+n2)=m3-m2n+mn2+m2n-mn2+n3=m3+n3=(-1) 3+23=-1+8=7.【点睛】此题主要考查了多项式乘多项式,正确掌握相关运算法则是解题关键.变式4-1.(2022·山东济南·期末)若代数式()()212-+-x mx x 的计算结果中不含有x 的一次项,求m 的值.【答案】12m =-【分析】根据多项式乘多项式将代数式进行变形得()()322122x m x m x -+++-,再根据题意进行求值即可;【详解】解:()()212-+-x mx x 322222x mx x x mx =-+-+-()()322122x m x m x =-+++-,因为计算结果中不含一次项,所以120m +=,则12m =-. 【点睛】本题主要考查整式的乘除中多项式乘多项式,正确将代数式变形是解题的关键. 变式4-2.(2022·江苏·江阴市第一初级中学一模)已知计算()()()2323536231x mx x x x x nx -+-⋅---+-的结果中不含4x 和2x 的项,求m 、n 的值. 【答案】m =1.5,n =−10.【分析】原式利用多项式乘以多项式法则计算,由结果中不含x4和x2项,求出m 与n 的值即可.【详解】解:(5−3x +mx2−6x3)•(−2x2)−x (−3x3+nx−1)=−10x2+6x3−2mx4+12x5+3x4−nx2+x=12x5+(3−2m )x4+6x3+(−10−n )x2+x ,由结果中不含x4和x2项,得到3−2m =0,−10−n =0,解得:m =1.5,n =−10.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.变式4-3.(2020·四川乐山·八年级期末)已知()()223x x ax b -++的展开项中不含2x 和x项,求a b +的值.【答案】3.75【分析】把两个多项式相乘,合并同类项后使结果的x 与x2项的系数为0,求解即可.【详解】解:()()223x x ax b -++=2x3+2ax2+2bx-3x2-3ax-3b=2x3+(2a-3)x2+(-3a+2b )x-3b .由题意得2a-3=0,-3a+2b=0,解得a=1.5,b=2.25.∵a+b=1.5+2.25=3.75.故a+b 的值为3.75.【点睛】本题考查了多项式相乘法则以及多项式的项的定义.注意当要求多项式中不含有哪一项时,应让这一项的系数为0.考查题型五 乘法公式的运算典例5.计算(1)()()22232xy x y ⋅- (2)()()()212141a a a a +---【答案】(1)4518x y - (2)41a -【分析】(1)根据幂的乘方和积的乘方以及同底数幂的乘法可以解答;(2)根据平方差公式及单项式乘以多项式可以解答.(1)解:原式=()24292x y x y ⋅-=4518x y -;(2)()()()212141a a a a +---=()224144a a a ---=224144a a a --+=41a -【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.变式5-1.计算:(1)()31233a b a a -÷; (2)()()()22a b a b a b -+-+.【答案】(1)241a b - (2)23ab b --【分析】(1)直接利用多项式除以单项式的法则计算即可;(2)利用多项式与多项式的乘法法则及完全平方公式计算即可.(1) 解:()31233a b a a -÷ 312333a b a a a =÷-÷241a b =-;(2)()()()22a b a b a b -+-+()2222222a ab ab b a ab b =+---++ 2222222a ab ab b a ab b =+-----23ab b =--.【点睛】本题考查了整式的运算,熟练掌握整式运算的法则是解题的关键.变式5-2.已知x+y =3,xy =2.(1)求(x+3)(y+3)的值;(2)求22x x y y +-的值.【答案】(1)20(2)3【分析】(1)先根据多项式与多项式的乘法法则化简,然后再将x+y =3,xy =2代入求值即可;(2)先利用完全平方公式变形,再将x+y =3,xy =2代入求值即可.(1)解:(x+3)(y+3)=xy+3(x+y)+9将x+y =3,xy =2代入得:原式=2+3×3+9=20(2)解:22x x y y +- =()23x y xy +-将x+y =3,xy =2代入得:原式=2323-⨯=3【点睛】本题考查了多项式与多项式的乘法法则和完全平方公式的变形求值,熟练掌握运算法则和完全平方公式是解题的关键.变式5-3.运用乘法公式简便计算:(1)2998(2)2123124122-⨯ 【答案】(1)996004(2)1【分析】(1)将998写成(1000-2),再用完全平方公式进行计算即可;(2)将124×122写成(123+1)×(123-1),再用平方差公式进行计算即可;(1)解:原式=2(1000-2) =222100022-⨯⨯+1000 =40004-+1000000=996004;(2)解:原式=212312311231-+⨯-()()=2221231231-+=1.【点睛】本题主要考查了用完全平方公式和平方差公式进行简便计算,熟练掌握完全平方公式和平方差公式是解题的关键.考查题型六 因式分解典例6.(2022·甘肃·临泽县第三中学八年级期中)分解因式.(1)32232a b a b ab -+(2)()()()24104254x x x x x -+-+-【答案】(1)()2ab a b - (2)()()245x x -+【分析】(1)先提取公因式ab ,再根据完全平方公式分解;(2)先提取公因式()4x -,再根据完全平方公式分解.(1)解:32232a b a b ab -+ =()222ab a ab b -+ =()2ab a b -(2)解:()()()24104254x x x x x -+-+-=()()241025x x x -++=()()245x x -+【点睛】本题考查了用提公因式法和完全平方公式进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.变式6-1.(2022·山东·济南锦苑学校八年级期中)分解因式:(1)228x - ;(2)244x y xy y ++ 【答案】(1)2(x+2)(x -2)(2)221y x +()【分析】(1)提取公因式再利用平方差分解因式;(2)提取公因式再利用用完全平方公式分解因式;(1)228x -=224x (-)=222x x +()(-) (2)244x y xy y ++=2441y x x ++()=221y x +()【点睛】本题主要考查了因式分解,掌握用公式法分解因式是解题关键.变式6-2.(2021·重庆市璧山中学校八年级期中)分解因式:(1)244x x -+(2)()()24a x y x y ---【答案】(1)()41x x -- ; (2)()(2)(2)x y a a -+-.【分析】(1)提取公因式-4x 即可分解;(2)先取公因式(x-y),再运用平方差公式继续分解即可.(1)解:2444(1)x x x x -+=--; (2)解:()()24a x y x y --- ()2(4)x y a =-- ()(2)(2)x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 变式6-3.(2022·甘肃·张掖育才中学八年级期中)已知a ,b ,c 是∵ABC 的三边,且满足222222a b c ab ac ,试判断∵ABC 的形状,并说明理由.【答案】∵ABC 为等边三角形,理由见解析【分析】将已知等式利用配方法进行变形,再利用非负数的性质求出a-b=0,b-c=0,c-a=0,即可判断出∵ABC 的形状.【详解】解:∵ABC 为等边三角形,理由如下:∵222222ab c ab ac , ∵2222220a ab b a ac c , ∵()()220a b a c -+-=, ∵220,0a b a c ,∵a ﹣b =0,a ﹣c =0,∵a=b,a=c,∵a=b=c,∵∵ABC为等边三角形.【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断.解题的关键是将已知等式利用完全平方公式变形,利用非负数的性质得出a,b,c之间的关系.。
(完整版)整式的乘法与因式分解压轴题解析
整式的乘法与因式分解【知识脉络】【基础知识】1.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.3 a2 b2×2abc=(3×2)×(a2 b2×abc)=6 a3 b3c2.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.3.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.4.乘法公式:①完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.②平方差公式:(a+b)(a-b)=a2-b2语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.5.因式分解(难点)因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.一、掌握因式分解的定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(3)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;①平方差公式: a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2【典例解析】例题1:数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣1)(b﹣2).现将数对(m,1)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是﹣m2+2m .(结果要化简)【考点】整式的混合运算.【分析】根据题意的新定义列出关系式,计算即可得到结果.【解答】解:根据题意得:(m﹣1)(1﹣2)=n,即n=1﹣m,则将数对(n,m)代入得:(n﹣1)(m﹣2)=(1﹣m﹣1)(m﹣2)=﹣m2+2m.故答案为:﹣m2+2m【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.例题2:乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2﹣b2(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b ,宽是a﹣b ,面积是(a+b)(a﹣b)(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:(a+b)(a﹣b)=a2﹣b2公式2:a2﹣b2=(a+b)(a﹣b)(4)运用你所得到的公式计算:10.3×9.7.【考点】平方差公式的几何背景.【分析】(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;反过来也成立;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.【解答】解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.例题3:如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2 B. b2+a2 C.(b+a)2 D. a2+2ab考点:勾股定理.分析:先求出AE即DE的长,再根据三角形的面积公式求解即可.解答:解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)?b=b2+(b﹣a)2.故选:A.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.例题4:如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24 .(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为975 (直接写出结果).【考点】规律型:数字的变化类.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2017求出a的值即可.【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(2)定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1);(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2017,解得:a=975.故答案为:975.【跟踪训练】1.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=(a+b)2.2.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张?3.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形4.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六1 23 4 5 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 28 29 3031(1)计算:(12+92)﹣(22+82)= 14 ,﹣= 14 ,自己任选一个有4个数的方框进行计算14(2)通过计算你发现什么规律,并说明理由.5.已知(x+y)2=25,xy=,求x﹣y的值.6. 已知,则(a+b)2﹣(a﹣b)2的值为 1 .7. ①一个多项式除以2m得1﹣m+m2,这个多项式为2m﹣2m2+2m3.②6x2+5x﹣6 ÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是a﹣b ;若小丽报的是9a2b,则小玉报的整式是27a3b2.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m.8. 阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.参考答案:1.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=(a+b)2.【考点】因式分解-运用公式法.【分析】根据提示可知1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形,利用面积和列出等式即可求解.【解答】解:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.【点评】本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.2.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张?【考点】多项式乘多项式.【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【解答】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片5张.3.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】因式分解的应用.【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【解答】解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.4.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六1 23 4 5 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 28 29 3031(1)计算:(12+92)﹣(22+82)= 14 ,﹣= 14 ,自己任选一个有4个数的方框进行计算14(2)通过计算你发现什么规律,并说明理由.【考点】整式的混合运算.【分析】(1)先算乘法,再合并即可;(2)设最小的数字为n,则其余三个分别为n+8,n+1,n+7,根据题意得出算式[n2+(n+8)2]﹣[(n+1)2+(n+7)2],求出即可.【解答】解:(1)(12+92)﹣(22+82)=1+81﹣4﹣64=14,﹣=100+324﹣121﹣289=14,(32+112)﹣(42+102)=9+121﹣16﹣100=14,故答案为:14;(2)计算结果等于14,理由是:设最小的数字为n,则其余三个分别为n+8,n+1,n+7,所以[n2+(n+8)2]﹣[(n+1)2+(n+7)2]=n2+n2+16n+64﹣n2﹣2n﹣1﹣n2﹣14n﹣49=14.5.已知(x+y)2=25,xy=,求x﹣y的值.【考点】完全平方公式.【分析】根据完全平方公式即可求出答案.【解答】解:∵(x+y)2=x2+2xy+y2,∴25=x2+y2+,∴x2+y2=∵(x﹣y)2=x2﹣2xy+y2,∴(x﹣y)2=﹣=16∴x﹣y=±46. 已知,则(a+b)2﹣(a﹣b)2的值为 1 .考点:因式分解-运用公式法.分析:首先利用完全平方公式展开进而合并同类项,再将已知代入求出即可.解答:解:∵(a+b)2﹣(a﹣b)2=(a2+2ab+b2)﹣(a2﹣2ab+b2)=4ab,∴将,代入上式可得:原式=4ab=4××=1.故答案为:1.点评:此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.7. ①一个多项式除以2m得1﹣m+m2,这个多项式为2m﹣2m2+2m3.②6x2+5x﹣6 ÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是a﹣b ;若小丽报的是9a2b,则小玉报的整式是27a3b2.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m.考点:整式的混合运算.分析:①利用2m乘1﹣m+m2计算即可;②把除式和商相乘即可;③根据被除式÷商=除式,被除式=除式×商列式计算即可;④利用4块土地换成一块地后的面积与原来4块地的总面积相等,而原来4块地的总面积=a2+bc+ac+ab,得到4块土地换成一块地后面积为(a2+bc+ac+ab)米,又此块地的宽为(a+b)米,根据矩形的面积公式得到此块地的长=(a2+bc+ac+ab)÷(a+b),把被除式分解后再进行除法运算即可得到结论.解答:解:①2m(1﹣m+m2)=2m﹣2m2+2m3;②(2x+3)(3x﹣2)=6x2+5x﹣6;③(3a2b﹣ab2)÷3ab=a﹣b,3ab?9a2b=27a3b2;④∵原来4块地的总面积=a2+bc+ac+ab,∴将这4块土地换成一块地后面积为(a2+bc+ac+ab)米,而此块地的宽为(a+b)米,∴此块地的长=(a2+bc+ac+ab)÷(a+b)=(a2+ac+bc+ab)÷(a+b)=[a(a+c)+b(a+c)÷(a+b)]=(a+b)(a+c)÷(a+b)=a+c.故答案为:2m﹣2m2+2m3;6x2+5x﹣6;a﹣b,27a3b2;a+c.点评:此题考查整式的混合运算,掌握计算方法是解决问题的关键.8. 阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.考点:因式分解的应用.专题:阅读型.分析:(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.解答:解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥.则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5.点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.。
初中数学整式的乘法与因式分解例题解析
初中数学整式的乘法与因式分解例题解析一、整式的乘法例题例1:计算:a2·(-a)3·(-a);x n·x n+1·x n-1·x;(x-2y)2·(2y-x)3解:原式=a2·(-a)3·a1=-a2·a3·a4=-a9;原式=x n+n+1+n-1+1=x3n+1;方法一:原式=(x-2y)2·[-(x-2y)]3=-(x-2y)5方法二:原式=(2y-x)2·(2y-x)3=(2y-x)5例2:下列运算中正确的是()A.a2+a3=a5B.a2·a3=a6C.a2+a3=aD.(a2)3=a6解析:a2与a3不是同类项,不能合并,A错误;a2·a3=a2+3=a5≠a6,B错误;a3与a2不是同类项,不能合并,C错误;D正确;(a2)3=a2×3=a6。
答案:D例3:已知a m=4,a n=10,求a2m+n的值。
解析:将代数式a2m+n变形为含a m、a n的代数式,依据是幂的运算法则。
解:a2m+n=a2m·a n=(a m)2·a n=42×10=160.例4:计算:(-x2y)3·3xy2·(2xy2)2;-6m2n·(x-y)3·mn2(y-x)2.解:原式=-x6y3×3xy2×4x2y4=-x9y9.原式=-6×m3n3(x-y)5=-2m3n3(x-y)5.例5:计算:(-2ab)(3a2-2ab-4b2);5ax(a2+2a+1)-(2a +3)(a-5)解:原式=-6a3b+4a2b2+8ab3原式=5a3x+10a2x+5ax-(2a2-10a+3a-15)=5a3x+10a2x+5ax-2a2+7a+15例6:计算:(5mn2-4m2n)(-2mn);(x+7)(x-6)-(x-2)(x+1)解:原式=-10m2n3+8m3n2.原式=x2-6x+7x-42-x2-x+2x+2=2x-40二、因式分解例题例7:下列式子中,从左到右变形属于因式分解的是()A.a2+4a-21=a(a+4)-21B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21D.a2+4a-21=(a+2)2-25解析:根据因式分解的概念,只有B选项满足:等号左边是多项式,等号右边是几个整式的积的形式,并且经检验运算过程正确,故选B.答案 B例8:若代数式x2+ax可以分解因式,则常数a不可以取( )解析:因为代数式x2+ax可以分解因式,所以常数a不可以取0.例9:下面分解因式正确的是()A.x2+2x+1=x(x+2)+1B.(x2-4)x=x3-4xC.ax+bx=(a+b)xD.m2-2mn+n2=(m+n)2解析:根据因式分解的概念,A项、B项不是分解因式;C项是提公因式法分解因式;D项虽是分解因式,但错误,应是m2-2m +n2=(m-n)2答案:C例10:把下列各式分解因式:-16x4y6+24x3y5-9x2y4;4(x+y)2-4(x+y) ·z+z2;(a-b)3-2(b-a)2+(a-b);9(x+a)2+30(x+a)(x+b)+25(x+b)2解:原式=-x2y4(16x2y2-24xy+9)=-x2y4(4xy-3)2;原式=[2(x+y)]2-2×2(x+y)·z+z2=[2(x+y)-z]2=(2x+2y-z)2;原式=(a-b)[(a-b)2-2(a-b)+1]=(a-b)[(a-b)-1]2=(a-b)(a-b-1)2;原式=[3(x+a)]2+2·3(x+a)·5(x+b)+[5(x+b)]2=[3(x+a)+5(x+b)]2=(3x+3a+5x+5b)2=(8x+3a+5b)2.关键提醒:因式分解的步骤:(1)先看各项有没有公因式,若有公因式,则先提取公因式.(2)再看能否使用公式法.(3)用分组分解法,即通过分组后再提出公因式或运用公式法来达到分解的目的.(4)因式分解的最后结果,必须是几个整式的积.(5)因式分解的结果必须进行到每个因式不能再分解为止。
专题03 《整式乘法与因式分解》压轴题专练(1)(解析版)
专题03 《整式乘法与因式分解》压轴题专练(1)(满分120分 时间:60分钟) 班级 姓名 得分一、单项选择题:1.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A .6858B .6860C .9260D .9262 【答案】B【分析】由()()33221212422019n n n +--=+≤可得2n ≤201724,再根据和谐数为正整数,得到1≤n≤9,可得不超过2019的正整数中,“和谐数”共有10个,依次列式计算即可求解.【详解】解:由332(21)(21)242n n n +--=+≤2019,可得2n ≤201724, ∵和谐数为正整数,∵1≤n≤9,且为正整数,则在不超过2019的正整数中,所有的“和谐数”之和为3333331(1)3153--+-+-+…+3319-17=3319-(-1)6860=.故选:B .【点睛】本题考查了有理数的乘方、整式的乘法与乘法公式,弄清题中“和谐数”的定义是解本题的关键.2.已知在216()()x mx x a x b +-=++中,a 、b 为整数,能使这个因式分解过程成立的m 的值共有( )个A .4B .5C .8D .10【答案】B【分析】先根据整式的乘法可得,16m a b ab =+=-,再根据“,a b 为整数”进行分析即可得.【详解】 2()()()x a x b x a b x ab ++=+++,2216()x mx x a b x ab ∴+-=+++,,16m a b ab ∴=+=-,根据,a b 为整数,有以下10种情况:(1)当1,16a b ==-时,()11615m =+-=-;(2)当2,8a b ==-时,()286m =+-=-;(3)当4,4a b ==-时,()440m =+-=;(4)当8,2a b ==-时,()826m =+-=;(5)当16,1a b ==-时,()16115m =+-=;(6)当1,16a b =-=时,11615m =-+=;(7)当2,8a b =-=时,286m =-+=;(8)当4,4a b =-=时,440m =-+=;(9)当8,2a b =-=时,826m =-+=-;(10)当16,1a b =-=时,16115m =-+=-;综上,符合条件的m 的值为15,6,0,6,15--,共有5个,故选:B .【点睛】本题考查了整式的乘法,依据题意,正确分情况讨论是解题关键.3.观察下列等式:()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-,……,利用你发现的规律回答:若()()65432112x x x x x x x -++++++=-,则2016x 的值是( )A .-1B .0C .1D .22016 【答案】C【分析】先根据已知等式归纳类推出一般规律,再根据()()65432112x x x x x x x -++++++=-求出x 的值,然后代入求值即可得.【详解】观察等式:()()2111x x x -+=-, ()()23111x x x x -++=-,()()324111x x x x x -+++=-,归纳类推得:()()12111n n n x x x x x --+-+++=-,其中n 为大于1的整数, 则()()6547321121x x x x x x x x -++++=-++=-, 即71x =-,解得1x =-,则()2016201611x =-=, 故选:C .【点睛】本题考查了多项式乘法中的规律性问题、有理数的乘方,依据已知等式,正确归纳类推出一般规律是解题关键.4.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片(12a b a <<)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大26ab -,则小正方形卡片的面积是( )A .2B .3C .4D .5【答案】A【分析】 根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,再利用整式的混合运算法则计算即可.【详解】图3中的阴影部分的面积为:(a−b )2,图2中的阴影部分的面积为:(2b−a )2,由题意得,(a−b )2−(2b−a )2=2ab−6,整理得,b 2=2,则小正方形卡片的面积是2,故选:A .【点睛】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键.5.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”这个三角形给出了()n a b +(1,2,3,4,)n =的展开式的系规律(按a 的次数由大到小的顺序):请根据上述规律,写出2020(1)x +的展开式中含2019x 项的系数是( ) A .2018B .2019C .2020D .2021 【答案】C【分析】 首先确定2019x 是展开式中第几项,再根据杨辉三角中的规律即可解决问题.【详解】解:由图中规律可知:含2019x 的项是2020(1)x +的展开式中的第二项,∵1()a b +展开式中的第二项系数为1,2()a b +展开式中的第二项系数为2,3()a b +展开式中的第二项系数为3,4()a b +展开式中的第二项系数为4,∵()n a b +展开式中的第二项系数为n ,∵2020(1)x +的展开式中的第二项系数为2020,故选:C .【点睛】本题考查了数字的变化类、数学常识、多项式、完全平方式,解决本题的关键是理解“杨辉三角”. 6.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0【答案】D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+ 22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∵3231-的个位数字为0,∵248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.7.观察下列各式及其展开式()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++()554322345 510105a b a a b a b a b ab b +=+++++ ······ 请你猜想()10+a b 的展开式第三项的系数是( )A .35B .45C .55D .66【答案】B【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b )10的展开式第三项的系数.【详解】解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第7个式子系数分别为:1,8,28,56,70,56,28,8,1;第8个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第9个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选:B .【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.二、填空题8.若2()()6x a x b x mx ++=++,其中,,a b m 均为整数,则m 的值为_______.【答案】5±或7±【分析】先根据整式的乘法运算可得,6a b m ab +==,再根据“,,a b m 均为整数”分情况求解即可得.【详解】2()()()x a x b x a b x ab ++=+++,2()()6x a x b x mx ++=++,22()6x a b x ab x mx ∴+++=++,,6a b m ab ∴+==,,,a b m 均为整数,∴分以下8种情况:∵当6,1a b =-=-时,6(1)7m =-+-=-,∵当3,2a b =-=-时,3(2)5m =-+-=-,∵当2,3a b =-=-时,2(3)5m =-+-=-,∵当1,6a b =-=-时,1(6)7m =-+-=-,∵当1,6a b ==时,167m =+=,∵当2,3a b ==时,235m =+=,∵当3,2a b ==时,325=+=m ,∵当6,1a b ==时,617m =+=,综上,m 的值为5±或7±,故答案为:5±或7±.【点睛】本题考查了整式的乘法运算,熟练掌握运算法则,并正确分情况讨论是解题关键.9.()()()24321(31)3131312+++⋯++的值为_______.【答案】6432【分析】设()()()()24321313131312A +++⋯++=,利用平方差公式求出()31A -的值,由此即可得. 【详解】 设()()()()24321313131312A +++⋯++=, 则()()()()()()243213131313131312A ⎡⎤-=-+++⋯++⎢⎥⎣⎦, ()()()()()()243213131313131312=-+++⋯++-⨯, ()()()()22432313131311=-++⋯++,()()323231311=-++,64311=-+,643=, 所以646433312A ==-, 故答案为:6432. 【点睛】本题考查了利用平方差公式进行运算求值,熟练掌握平方差公式是解题关键.10.我国南宋时期杰出的数学家杨辉是钱塘人,他在《详解九章算术》中记载的“杨辉三角”揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律,如:()4432234464a b a a b a b ab b +=++++;此规律还可以解决实际问题:假如今天是星期二,再过7天还是星期二,则再过148天是星期______.【答案】三【分析】根据814=(7+1)14=714+14×713+91×712+…+14×7+1可知814除以7的余数为1,从而可得答案.【详解】∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∵814除以7的余数为1,∵假如今天是星期二,那么再过814天是星期三,故答案为:三.【点睛】本题考查了完全平方公式,能发现(a+b)n展开后,各项是按a的降幂排列的,系数依次是从左到右(a +b)n−1系数之和.它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.11.现有如图①的小长方形纸片若干块,已知小长方形的长为a(cm),宽为b(cm),用3个如图①的完全相同的图形和8个如图①的小长方形,拼成如图①的大长方形,则图①中阴影部分面积与整个图形的面积之比为________.【答案】1:6【分析】先求出图∵中阴影部分的面积,由此可求出图∵中阴影部分的面积,再根据图∵可得到a=3b,由此可求出图∵中整个图形的面积,然后求出图∵中阴影部分面积与整个图形的面积之比.【详解】解:如图∵种阴影部分的面积为(a+b)2-4ab=(a-b)2.如图∵可知3a+3b=4a∵a=3b∵S阴影部分=(3b-b)2=4b2;∵图∵中S 阴影部分=3×4b 2=12b 2;图∵中整个图形的面积为:4a×(a+3b )=12b (3b+3b )=72b 2;∵图∵中阴影部分面积与整个图形的面积之比为12b 2:72b 2=1:6.故答案为:1:6.【点晴】此题考查了完全平方公式的几何背景,解题的关键是:结合图形找出长与宽的数量关系.12.若多项式241x Q ++是完全平方式,请你写出所有满足条件的单项式Q 是_______.【答案】±4x , 4x 4【分析】根据题意可知本题是考查完全平方式,设这个单项式为Q ,∵如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q = ±4x ; ∵如果如果这里首末两项是Q 和1,则乘积项是4x 2=2×2x 2,所以Q = 4x 4.【详解】解:∵4x 2 +1±4x = (2x ±1)24x 2+1+4x 4 = (2x 2+1)2;∵加上的单项式可以是±4x , 4x 4,中任意一个,故答案为:±4x , 4x 4.【点睛】本题主要考查完全公式的有关知识,根据已知两个项分类讨论求出第三项是解题的关键.13.已知20052004,20052005,20052006,a x b x c x =+=+=+则多项式222a b c ab bc ac ++---的值为_________________.【答案】3【分析】观察知可先把多项式转化为完全平方形式,再代入值求解.【详解】∵a =2005x +2004,b =2005x +2005,c =2005x +2006,∵a−b =−1,b−c =−1,a−c =−2,∵222a b c ab bc ac ++---=12(2a 2+2b 2+2c 2−2ab−2bc−2ca )=12 [(a 2−2ab +b 2)+(b 2−2bc +c 2)+(a 2−2ac +c 2)]=12 [(a−b )2+(b−c )2+(a−c )2] =12[(−1)2+(−1)2+(−2)2]=3. 故答案为:3. 【点睛】本题考查了完全平方公式,关键在于灵活思维,对多项式扩大2倍是利用完全平方公式的关键. 14.观察下列各式:111113132a ⎛⎫==- ⎪⨯⎝⎭; 2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭; ①①①,则123200a a a a +++⋅⋅⋅+=______【答案】200401【分析】根据题意,总结式子的变化规律,然后得到1111()(21)(21)22121n a n n n n ==--⨯+-+,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案. 【详解】 解:∵111113132a ⎛⎫==- ⎪⨯⎝⎭;2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭; ……∵1111()(21)(21)22121n a n n n n ==--⨯+-+;∵123200a a a a +++⋅⋅⋅+11111111111(1)()()()232352572399401=-+-+-+⋅⋅⋅+⨯- 11111111(1)233557399401=⨯-+-+-+⋅⋅⋅+- 11(1)2401=⨯- 14002401=⨯200401=; 故答案为:200401. 【点睛】本题考查了整式的混合运算,以及数字的变化规律,解题的关键是熟练掌握正确掌握题意,找到题目的规律,从而运用拆项法进行解题.三、解答题15.已知a+b=1,ab=-1,设S 1=a+b ,S 2=a 2+b 2,S 3=a 3+b 3,…,S n =a n +b n (1)计算S 2和S 4(2)已知a 3+b 3=(a+b)(a 2-ab+b 2),求S 3并猜想S n -2,S n -1,S n 三者之间的数量关系(不需要证明);(3)若M=(S 1+S 2+S 3+----S 99)(S 2+S 3+----S 100),N=(S 1+S 2+S 3+----S 100)(S 2+S 3+----S 99)判断M ,N 的大小,并说明理由.【答案】(1)S 2=3,S 4=7,(2)S 3=4, S n -2+S n -1=S n ,理由见详解;(3)M >N ,理由见详解 【分析】(1)根据完全平方公式以及变形公式,即可求解;(2)根据a 3+b 3=(a+b)(a 2-ab+b 2),即可求出S 3=4,由a n -2+b n -2 +a n -1+ b n -1结合a+b=1,ab=-1,可得S n -2+S n -1=S n ; (3)设A= S 1+S 2+S 3+----+S 99,B= S 2+S 3+----+S 100,利用作差法,即可判断M ,N 的大小. 【详解】解:(1)S 2=a 2+b 2=(a +b )2−2ab =12−2×(−1)=3,S 4=a 4+b 4=(a 2+b 2)2−2a 2b 2=(a 2+b 2)2−2(ab )2=32−2×(−1)2=7, (2)S 3=a 3+b 3=(a+b)(a 2-ab+b 2)=1×(3+1)=4, 猜想:S n -2+S n -1=S n , 理由如下:∵a+b=1,ab=-1,∵a n -2+b n -2 +a n -1+ b n -1= a n -2(1+a)+ b n -2(1+b)= a n -2(-ab+a)+ b n -2(-ab+b)= a n -1(1-b)+ b n -1(1-a)= a n +b n , ∵S n -2+S n -1=S n ;(3)∵S 1=a+b ,S 100= a 100+b 100>0, 设A= S 1+S 2+S 3+----+S 99,B= S 2+S 3+----+S 100 ∵M -N=AB -(A+ S 100)(B - S 100) =AB -AB+(A -B) S 100+ S 100×S 100 =(S 1-S 100) S 100+ S 100×S 100 = S 1 S 100 = S 100>0, ∵M >N . 【点睛】本题考查了整式的混合运算和求值,能根据求出的结果得出规律是解此题的关键,规律是S n−2+S n−1=S n . 16.阅读理解并填空:(1)为了求代数式223x x ++的值,我们必须知道x 的值. 若1x =,则这个代数式的值为_________, 若2x =,则这个代数式的值为_________,....可见,这个代数式的值因x 的取值不同而变化,尽管如此,我们还是有办法来考虑这个代数式的值的范围. (2)把一个多项式进行部分因式分解可以解决求代数式的最大(或最小)值问题.例如:22223212(1)2x x x x x ++=+++=++,因为2(1)x +是非负数,所以这个代数式的最小值是_________,此时相应的x 的值是_________.(3)求代数式21235x x -+的最小值,并写出相应的x 的值. (4)求代数式2612x x --+的最大值,并写出相应的x 的值.【答案】(1)6;11;(2)2;-1;(3)最小值是-1,相应的x 的值是6;(4)最大值是21,相应的x 的值是-3. 【分析】(1)把x=1和x=2分别代入代数式x 2+2x+3中,再进行计算即可得出答案; (2)根据非负数的性质即可得出答案;(3)先把给出的式子化成完全平方的形式,再根据非负数的性质即可得出答案; (4)根据完全平方公式把给出的式子进行整理,即可得出答案. 【详解】解:(1)把x=1代入x 2+2x+3中,得:12+2+3=6; 若x=2,则这个代数式的值为22+2×2+3=11; 故答案为6;11; (2)根据题意可得:x 2+2x+3=(x 2+2x+1)+2=(x+1)2+2, ∵(x+1)2是非负数,∵这个代数式x 2+2x+3的最小值是2,相应的x 的值是-1. 故答案为2;-1;(3)∵x 2-12x+35=(x -6)2-1,∵代数式x 2-12x+35的最小值是-1,相应的x 的值是6; (4)∵-x 2-6x+12=-(x+3)2+21,∵-x 2-6x+12的最大值是21,相应的x 的值是-3. 【点睛】此题考查了因式分解的应用,用到的知识点是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式进行解答.17.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到()2222a b a ab b +=++,请解答下列问题(1)写出图2中所表示的数学等式(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)利用(1)中得到的结论,解决下面的问题:若10,35a b c ab ac bc ++=++=,则222a b c ++= (4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为,a b 的长方形纸片拼出一个面积为()()5794a b a b ++长方形,则x y z ++=【答案】(1)()2222222a b c a b c ab ac bc ++=+++++; (2)见解析 ; (3)30 ; (4)156. 【分析】(1)利用整体法求解正方形的面积为()2a b c ++,利用分割法求解正方形的面积为:222222a b c ab ac bc +++++,从而可得答案;(2)利用多项式乘以多项式的法则把左边通过计算展开,合并同类项后可得结论;(3)利用变形公式:()2222222a b c a b c ab ac bc ++=++---,再整体代入即可得到答案; (4)由题意可得,所拼图形的面积为:22xa yb zab ++,再利用整式的乘法运算法则计算:()()5794a b a b ++,由面积相等可得,,x y z 的值,从而可得答案.【详解】 解:(1)正方形的面积()2a b c =++;正方形的面积222222a b c ab ac bc =+++++()2222222.a b c a b c ab ac bc ++=∴+++++故答案为:()2222222.a b c a b c ab ac bc ++=∴+++++ (2)证明:()()a b c a b c ++++222,a ab ac ab b bc ac bc c =++++++++222222.a b c ab ac bc =+++++(3)10,35a b c ab ac bc ++=++=()2222222a b c a b c ab ac bc ∴++=++---()2102ab ac bc =-++ 100235,=-⨯30.=故答案为:30(4)由题可知,所拼图形的面积为:22xa yb zab ++()()5794a b a b ++2245206328a ab ab b =+++ 22452883a b ab =++ 45,28,83x y z ∴=== 452883156x y z ∴++=++=故答案为:156【点睛】本题考查的是乘法公式的几何意义,整式的乘法运算,公式的应用能力,掌握以上知识是解题的关键.18.设a,b,c为整数,且对一切实数都有(x-a)(x-8)+1=(x-b)(x-c)恒成立.求a+b+c的值.【答案】20或28.【分析】等式两边化简之后,利用一次项系数相等和常数项相等得到两个等式a+8=b+c和8a+1=bc;消去a,再因式分解得到(b﹣8)(c﹣8)=1,进而b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,分别计算出a,b,c 的值即可得出答案.【详解】解:∵(x﹣a)(x﹣8)+1=x2﹣(a+8)x+8a+1,(x﹣b)(x﹣c)=x2﹣(b+c)x+bc又∵(x﹣a)(x﹣8)+1=(x﹣b)(x﹣c)恒成立,∵﹣(a+8)=﹣(b+c),∵8a+1=bc,消去a得:bc﹣8(b+c)=﹣63,(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.【点睛】本题主要考查多项式乘多项式和因式分解变形,有一定难度.此题若直接求a,b,c的值不易,需另辟蹊径,这种解题思想很常用,需要特别注意19.阅读材料:1261 年,我国南宋数学家杨辉著《详解九章算法》,在注释中提到“杨辉三角”解释了二项和的乘方规律.在他之前,北宋数学家贾宪也用过此方法,“杨辉三角”又叫“贾宪三角”.这个三角形给出了()na b +(n 为正整数)的展开式(按a 的次数由大到小的顺序、b 的次数由小到大的顺序排列)的系数规律.例如:在三角形中第三行的三个数 1、2、1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第四行的四个数 1、3、3、1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数等.从二维扩展到三维:根据杨辉三角的规则,向下进行叠加延伸,可以得到一个杨辉三角的立体图形.经研究,它的每一个切面上的数字所对应的恰巧是展开式的系数.(1)根据材料规律,请直接写出()4a b +的展开式;(2)根据材料规律,如果将-a b 看成()a b +-,直接写出211n n ⎛⎫-+ ⎪⎝⎭的展开式(结果化简);若24212527n n n =-+,求211n n ⎛⎫-+ ⎪⎝⎭的值; (3)已知实数a 、b 、c ,满足22224610a b c a b c +++-+=-,且1110123a b c +-=+-+,求a b c +-的值.【答案】(1)()4432234464a b a a b a b ab b +=++++;(2)211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-,211n n ⎛⎫-+ ⎪⎝⎭=1或9;(3)6a b c +-=或2 【分析】(1)依据规律进行计算即可;(2)24212527n n n =-+分子分母同时除以2n 可化为22112725n n =-+,得出222257n n -+=,从而求得2216n n +=,即可求得12n n -=±,代入211n n ⎛⎫-+ ⎪⎝⎭即可求解; (3)将式子22224610a b c a b c +++-+=-通过完全平方式变形为()()()2221234a b c ++-++=,设1a x +=,2b y -=,3c z +=,通过a b c +-与x y z +-的关系联立阅读材料可求得a b c +-的值.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;(2)22111=1n n n n ⎡⎤⎛⎫⎛⎫-++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222111122121n n n n n n ⎛⎫⎛⎫⎛⎫=+-++⨯-+⨯+⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2212122n n n n =++-+-221212n n n n =+-+-∵24212527n n n =-+ ∵22112725n n =-+,即222257n n -+=,可得2216n n+=,∵2221126n n n n ⎛⎫+=-+= ⎪⎝⎭,可得12n n -=±当12n n -=时,211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-=61229=-+⨯=当12n n -=-时,211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-=()61221=-+⨯-=(3)∵22224610a b c a b c +++-+=- 整理得到()()()2221234a b c ++-++= ∵1110123a b c +-=+-+ 设1a x +=,2b y -=,3c z +=,则2224111x y z x y z ⎧++=⎪⎨+-=⎪⎩,解得22240x y z xy xz yz ⎧++=⎨--=⎩ ∵()()()2221234x y z a b c a b c +-=++---=+--222222x y z xy xz yz =+++--()2222x y z xy xz yz =+++--4=∵42a b c +--=±∵当42a b c +--=时,6a b c +-=; 当42a b c +--=-时,2+-=a b c ; ∵6a b c +-=或2 【点睛】本题考查了乘法公式的运用;解题的关键是根据题目式子的形式进行恰当变形,从而求解,注意平方根的个数.20.我们可以用以下方法求代数式265x x ++的最小值.222226523335(3)4x x x x x ++=+⋅⋅+-+=+-①2(3)0x +≥ ①()2443x -≥-+,①当3x =-时,265x x ++有最小值-4. 请根据上述方法,解答下列问题(1)求代数式241x x -+的最小值;(2)求证:无论x 、y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数;(3)已知x 为实数,求代数式()2424162021x x x x ++++的最小值.【答案】(1)241x x -+有最小值3-;(2)证明见解析;(3)()2424162021x x x x ++++有最小值2020.【分析】(1)通过配方可得:241x x -+()223x =--,再利用非负数的性质,结合不等式的性质可得答案; (2)把原式通过配方化为:()()()2221331y x x y -+-+-+,再利用非负数的性质可得:()()()22213311,y x x y -+-+-+≥从而可得结论;(3)利用配方法把原式化为:()2424162021x x x x ++++()22212020x x =+++()412020,x =++ 再利用非负数的性质可得代数式的最小值.【详解】解:(1)241x x -+()2443x x =-+-()223x =-- ()220,x -≥()2233,x ∴--≥-∴ 当2x =时,241x x -+有最小值3-.(2) 2221066211x y xy x y +---+ 22222169691y y x x x xy y =-++-++-++()()()2221331y x x y =-+-+-+ ()()()22210,30,30,y x x y -≥-≥-≥()()()22213311,y x x y ∴-+-+-+≥∴ 22210662111x y xy x y +---+≥,∴ 无论x 、y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数;(3) ()2424162021x x x x ++++()()222214142020x x x x =+++++()22212020x x =+++ ()412020x =++ ()410,x +≥()4120202020,x ∴++≥∴ 当1x =-时,()2424162021x x x x ++++有最小值2020.【点睛】本题考查的是配方法的应用,非负数的性质,利用配方法求代数式的最值,因式分解的应用,掌握利用完全平方式的特点进行配方是解题的关键.。
第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版
可编辑修改精选全文完整版第十四章 《整式的乘法与因式分解》知识点及考点典例重点知识回顾:一、整式的乘法:),(都是正整数n m a a a n m n m +=• ),(都是正整数)(n m a a mn n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个_______,其项数与因式中多项式的项数______。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
二、整式的除法: nm n m a a a -=÷ ()0≠a 10=a()0≠a单项式÷单项式 多项式÷单项式三、因式分解 1、把一个多项式化成几个_________的形式,叫做把这个多项式因式分解。
2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用________公式分解因式;三项式可以尝试运用______________、__________分解因式;四项式及四项式以上的可以尝试______________分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。
八年级整式的乘法与因式分解专题练习(解析版)
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.(1)填空: ①()242221144x x x x ⎡⎤+=++-=⎢⎥⎣⎦( )22x -=( )( ) ②()()242116=644⎡⎤+++-⎢⎥⎣⎦=( )( )=( )⨯ ( ) (2)解决问题,计算:4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 【答案】(1)①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,;(2)14541 【解析】【分析】(1)根据完全平方公式和平方差公式计算可得;(2)利用前面所得规律变形即可.【详解】(1)()242221144x x x x ⎡⎤+=++-⎢⎥⎣⎦ 22212x x ⎛⎫=+- ⎪⎝⎭ 221122x x x x ⎛⎫⎛⎫=++-+ ⎪⎪⎝⎭⎝⎭ ()2422211666624⎡⎤+=++-⎢⎥⎣⎦ 2211666622⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭42.530.5=⨯ 故答案为:①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,; (2)4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 2222222211116666888822221111555577772222⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42.530.372.556.530.520.556.542.5⨯⨯⨯=⨯⨯⨯ 14541= 【点睛】本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.2.数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片边长为a 的正方形,B 中纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请问两种不同的方法求图2大正方形的面积.方法1:s =____________________;方法2:s =________________________; (2)观察图2,请你写出下列三个代数式:()222,,a b a b ab ++之间的等量关系. _______________________________________________________;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,11a b a b +=+=,求ab 的值;②已知()()22202020195a a -+-=,则()()20202019a a --的值是____. 【答案】(1)()2a b +,222a ab b ++;(2)()2222a b a ab b +=++;(3)①7ab =,②2-【解析】【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b )2,a 2+b 2,ab 之间的等量关系;(3)①依据a+b=5,可得(a+b )2=25,进而得出a 2+b 2+2ab=25,再根据a 2+b 2=11,即可得到ab=7;②设2020-a=x ,a-2019=y ,即可得到x+y=1,x 2+y 2=5,依据(x+y )2=x 2+2xy+y 2,即可得出xy=()222()2x y x y +-+=2-,进而得到()()20202019a a --=2-. 【详解】 解:(1)图2大正方形的面积=()2a b +,图2大正方形的面积=222a ab b ++故答案为:()2a b +,222a ab b ++;(2)由题可得()2a b +,22a b +,ab 之间的等量关系为:()2222a b a ab b +=++故答案为:()2222a b a ab b +=++;(3)①()()2222a b a b ab +-+=2251114ab ∴=-=7ab ∴=②设2020-a=x ,a-2019=y ,则x+y=1,∵()()22202020195a a -+-=,∴x 2+y 2=5,∵(x+y )2=x 2+2xy+y 2, ∴xy=()222()2x y x y +-+=-2, 即()()202020192a a --=-.【点睛】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.3.材料:数学兴趣一小组的同学对完全平方公式进行研究:因()20a b -≥,将左边展开得到2220a ab b -+≥,移项可得:222a b ab +≥.数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m 、n ,都存在m n +≥m 、n 的和一定存在着一个最小值. 根据材料,解答下列问题:(1)()()2225x y +≥__________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭___________(0x >);(2)求()5602x x x+>的最小值;(3)已知3x >,当x 为何值时,代数式92200726x x ++-有最小值,并求出这个最小值.【答案】(1)20xy ,2;(2)3)当92x =时,代数式92200726x x ++-的最小值为2019.【解析】【分析】(1)根据阅读材料即可得出结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变为926201326x x -++-,再利用阅读材料介绍的方法,即可得到结论.【详解】(1)∵0x >,0y >,∴()()222522520x y x y xy +≥⨯⋅=,∵0x >, ∴221122x x x x ⎛⎫+≥⋅= ⎪⎝⎭; (2)当x 0>时,2x ,52x 均为正数,∴562x x +≥=所以,562x x+的最小值为 (3)当x 3>时,2x ,926x -,2x-6均为正数, ∴92200726x x ++- 92x 6201326x =-++-20132013≥= 2019= 由()20a b -≥可知,当且仅当a b =时,22a b +取最小值, ∴当92626x x -=-,即92x =时,有最小值.∵x 3> 故当92x =时,代数式92200726x x ++-的最小值为2019. 【点睛】 本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.4.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.【答案】(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.5.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.【解析】【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD 的面积求解.【详解】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2﹣12(a+b)•b﹣12a2=12a2+12b2﹣12ab=12(a+b )2﹣32ab =12×102﹣32×20 =50﹣30=20.【点睛】 本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.6.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.7.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1.∵(a ﹣b )2≥0,(b ﹣1)2≥0,∴当a =b =1时,代数式M 有最小值1.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)若代数式M =214a +2a +1,求M 的最小值; (3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值. 【答案】(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【解析】【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)∵a 2+4a+4=(a+2)2故答案为:4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ∴M 的最小值为﹣3(3)∵a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,∴(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,∴a ﹣b =0,b ﹣1=0,2c ﹣1=0∴a =b =1,1c=2 , ∴a+b+c=122.. 【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.8.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++.22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.试用上述方法分解因式222a ab ac bc b ++++=(2)利用分解因式说明:22(5)(1)n n +--能被12整除.【答案】(1)()()a b a b c +++;(2)证明见解析.【解析】【分析】(1)a 2+2ab+ac+bc+b 2可以进行分组变成(a 2+2ab+b 2)+(ac+bc ),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.(2)先利用平方差公式将22(5)(1)n n +--进行因式分解,之后即可得出答案.【详解】(1)原式=()()222a ab bac bc ++++=()()2a b c a b +++=()()a b a b c +++(2)22(5)(1)n n +--=[][](5)+(1)(5)(1)n n n n +-+--=()624n +=()122n +∴ 22(5)(1)n n +--能被12整除.【点睛】本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.9.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.10.(观察)1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.(发现)根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是 .(类比)观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n ,…,56×4,57×3,58×2,59×1.猜想mn 的最大值为 ,并用你学过的知识加以证明.【答案】(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a 与b 的数量关系是a +b =50;类比:由于m +n =60,将n =60−m 代入mn ,得mn =−m 2+60m =−(m−30)2+900,利用二次函数的性质即可得出m =30时,mn 的最大值为900.【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是a+b=50.故答案为a+b=50;类比:由题意,可得m+n=60,将n=60﹣m 代入mn ,得mn=﹣m 2+60m=﹣(m ﹣30)2+900,∴m=30时,mn 的最大值为900.故答案为900.【点睛】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.。
八年级数学整式的乘法与因式分解专题练习(解析版)
八年级数学整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011,b=2012x+2012,c=2012x+2013时,a-b=-1,b-c=-1,c-a=2,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选D.【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
八年级上册数学 整式的乘法与因式分解(培优篇)(Word版 含解析)
八年级上册数学 整式的乘法与因式分解(培优篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8 【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n 次幂的计算总结规律,从而可得到结果.2.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .3.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】 根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+,20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3) 【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b 中分解因式.5.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形是( ) A.等腰三角形 B.等边三角形C.直角三角形 D.不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a=b=c,即可解决问题.【详解】∵a2+2b2+c2﹣2b(a+c)=0,∴(a﹣b)2+(b﹣c)2=0;∵(a﹣b)2≥0,(b﹣c)2≥0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC为等边三角形.故选B.【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.6.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.8.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.9.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】 根据幂的乘方可得:a =69=312,c =527=315,易得答案. 【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100. 故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.12.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.13.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1;1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯, 则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.14.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.15.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析:6621222285102m n m n m n-=÷=÷=÷=故答案为:12.点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m na a a+÷= (m,n是正整数).16.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.17.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,12122{2x x ax x b+=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.18.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.19.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.20.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+。
八年级整式的乘法与因式分解专题练习(解析版)
八年级整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3【答案】D【解析】【分析】首先把a 2+b 2+c 2﹣ab ﹣bc ﹣ac 两两结合为a 2﹣ab +b 2﹣bc +c 2﹣ac ,利用提取公因式法因式分解,再把a 、b 、c 代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )当a =2012x +2011,b =2012x +2012,c =2012x +2013时,a -b =-1,b -c =-1,c -a =2,原式=(2012x +2011)×(﹣1)+(2012x +2012)×(﹣1)+(2012x +2013)×2=﹣2012x ﹣2011﹣2012x ﹣2012+2012x ×2+2013×2=3.故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.4.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.5.已知x -y =3,12x z -=,则()()22554y z y z -+-+的值等于( ) A .0B .52C .52-D .25 【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z 的值,代入所求代数式求值即可.【详解】由x-y=3,12x z -=得:()()x z x y y z ---=-15322 =-=-;把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+=⎪ ⎪⎝⎭⎝⎭.故选:A.【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B7.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.8.将下列多项式因式分解,结果中不含有因式(a+1)的是()A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.9.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】 宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.12.若()219x y +=,()25x y -=,则22xy +=______.【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.13.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.14.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y所以a=±12 【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.15.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.16.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).17.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).19.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+20.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x2+2x=3代入即可得答案.【详解】原式=x2+2x+1-(x2-4)+x2=x2+2x+1-x2+4+x2=x2+2x+5.∵x2+2x=3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
上海同济大学附属七一中学数学整式的乘法与因式分解(提升篇)(Word版 含解析)
上海同济大学附属七一中学数学整式的乘法与因式分解(提升篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( ) A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y ),将其当成整体提出,进而得到答案.2.若3x y -=,则226x y y --=( )A .3B .6C .9D .12 【答案】C【解析】【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答.【详解】解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--=故答案为C.【点睛】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键.3.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.4.边长为a,b的长方形周长为12,面积为10,则a2b+ab2的值为()A.120 B.60 C.80 D.40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a,b的长方形周长为12,面积为10,∴a+b=6,ab=10,则a2b+ab2=ab(a+b)=10×6=60.故选:B.【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.5.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1)C.x-1=x(1-1x)D.(x-1)2=x2-2x+1【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;C、x-1=x(1-1x),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.6.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.7.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.8.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.9.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >> 【答案】A【解析】【分析】先把a ,b ,c 化成以3为底数的幂的形式,再比较大小.【详解】解:3112412361122a 813b 3c 93a b c.,,,=====>>故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.10.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.将4个数a ,b ,c ,d 排列成2行、2列,两边各加一条竖直线记成a b c d ,定义a bad bc c d =-,上述记号就叫做2阶行列式.若11611x x x x --=-+,则x=_________.【答案】4【解析】【分析】根据题目中所给的新定义运算方法可得方程 (x-1)(x+1)- (x-1)2=6,解方程求得x 即可.【详解】由题意可得,(x-1)(x+1)- (x-1)2=6,解得x=4.故答案为:4.【点睛】本题考查了新定义运算,根据新定义运算的运算方法列出方程是解本题的关键.12.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.13.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.14.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.15.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为_____.【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x 的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x ﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.16.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【解析】【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.19.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.。
七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(附答案)50
七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(附答案)50一、整式乘法与因式分解易错压轴解答题1.(1)计算并观察下列各式:________;________;________;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填写下面的空格.________;(3)利用该规律计算: .2.[数学实验探索活动]实验材料现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.问题探索:(1)小明想用拼图的方法解释多项式乘法(2a+b)(a+b)=2a2+3ab+b2,那么需要两种正方形纸片________张,长方形纸片________张;(2)选取正方形、长方形硬纸片共8块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在虚线方框3内.3.阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.(1)填空:i3=________,i4="________";(2)计算:① ;② ;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+y)+3i=(1-x)-yi,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式4.阅读下列材料:对于多项式x2+x-2,如果我们把x=1代入此多项式,发现x2+x-2的值为0,这时可以确定多项式中有因式(x-1):同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x-2=(x-1)(x+2)又如:对于多项式2x2-3x-2,发现当x=2时,2x2-3x-2的值为0,则多项式2x2-3x-2有一个因式(x-2),我们可以设2x2-3x-2=(x-2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2-3x-2=(x-2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=________时,多项式6x2-x-5的值为0,所以多项式6x2-x-5有因式________ ,从而因式分解6x2-x-5=________.(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2x2+5x+3;②x3-7x+6(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x-2)3-(y-2)3-(x-y)3有因式________ ,________ ,________ ,所以分解因式(x-2)3-(y-2)3-(x-y)3= ________。
专题1.4 整式的乘法与因式分解章末重难点题型(举一反三)(人教版)(解析版)
专题1.4 整式的乘法与因式分解章末重难点题型【人教版】【考点1 幂的基本运算】【方法点拨】掌握幂的基本运算是解题关键.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)同底数幂的除法法则:底数不变,指数相减.a m÷a n=a m-n(a≠0,m,n是正整数,m>n)【例1】(2020春•雨花区校级期末)下列运算正确的是()A.a2⋅a3=a6B.(﹣a3)2=a6C.a9÷a3=a3D.(﹣bc)4=﹣b4c4【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案.【解答】解:A、a2⋅a3=a5,原式计算错误,故此选项不合题意;B、(﹣a3)2=a6,正确;C、a9÷a3=a6,原式计算错误,故此选项不合题意;D、(﹣bc)4=b4c4,原式计算错误,故此选项不合题意;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算,正确掌握相关运算法则是解题关键.【变式1-1】(2020秋•鹿城区校级月考)下列运算正确的是()A.2a2+a=3a3B.(2a2)3=6a6C.(﹣a)3•a2=﹣a6D.(﹣a)2÷a=a【分析】根据合并同类项法则,幂的乘方和积的乘方,同底数幂的乘法和除法求出每个式子的值,再判断即可.【解答】解:A.2a2和a不能合并,故本选项不符合题意;B.结果是8a6,故本选项不符合题意;C.结果是﹣a5,故本选项不符合题意;D.结果是a,故本选项符合题意;故选:D.【点评】本题考查了合并同类项法则,幂的乘方和积的乘方,同底数幂的乘法和除法等知识点,能求出每个式子的值是解此题的关键.【变式1-2】(2020春•顺德区期末)下列计算正确的是()A.(3×103)2=6×105B.36×32=38C.(−13)4×34=﹣1D.36÷32=33【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、(3×103)2=9×106,故此选项错误;B、36×32=38,正确;C、(−13)4×34=1,故此选项错误;D、36÷32=34,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.【变式1-3】(2020春•叶集区期末)下列计算正确的是()A.(x3)2=x5B.x3•x5=x15C.(﹣xy)5÷(﹣xy)2=﹣x3y3D.x6÷x3=x2【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.(x3)2=x6,故本选项不合题意;B.x3•x5=x8,故本选项不合题意;C.(﹣xy)5÷(﹣xy)2=﹣x3y3,故本选项符合题意;D.x6÷x3=x3,故本选项不合题意.故选:C.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【考点2 幂的混合运算】【例2】(2019春•漳浦县期中)计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].【分析】(1)根据同底数幂的乘法计算即可;(2)根据幂的乘方和同底数幂的除法计算即可;(3)根据幂的乘方、同底数幂的乘法和合并同类项解答即可;(4)根据积的乘方和同底数幂的除法计算即可.【解答】解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+2【点评】此题考查了整式的混合运算,涉及的知识有:同底数幂的乘法(除法)运算法则,积的乘方及幂的乘方运算法则以及合并同类项法则,熟练掌握法则是解本题的关键.【变式2-1】(2019春•海陵区校级月考)计算(1)x3•x5﹣(2x4)2+x10÷x2.(2)(﹣2x2)3+(﹣3x3)2+(x2)2•x2【分析】(1)根据同底数幂的乘法和除法、积的乘方的法则计算即可;(2)根据同底数幂的乘法、积的乘方的法则计算即可.【解答】解:(1)原式=x8﹣4x8+x8=﹣2x8(2)原式=﹣8x6+9x6+x6=2x6【点评】本题考查了同底数幂的乘法和除法、积的乘方,熟记法则是解题的关键.【变式2-2】(2019秋•崇川区校级月考)计算(1)y4+(y2)4÷y4﹣(﹣y2)2(2)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]【分析】(1)根据幂的乘方,底数不变指数相乘和同底数幂相除,底数不变指数相减进行解答,即可得出答案.(2)根据同底数幂相乘,底数不变指数相加,即可得出答案【解答】解:(1)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4;(2)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]=(y﹣x)2•(y﹣x)7•(y﹣x)3=(y﹣x)12.【点评】本题考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.【变式2-3】(2020春•安庆期中)计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)【分析】先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可.【解答】解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.【考点3 巧用幂的运算进行简便运算】【例3】(2020春•宁远县期中)计算(−512)2019×(225)2020的结果是()A.−512B.−125C.512D.﹣2020【分析】先根据积的乘方进行变形,再求出即可.【解答】解:原式=﹣(512)2019×(125)2020=﹣(512×125)2019×125=﹣1×12 5=−125,故选:B.【点评】本题考查了积的乘方,能正确根据积的乘方进行计算是解此题的关键.【变式3-1】(2020春•市中区校级期中)计算:0.1252020×(﹣8)2021=.【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.【解答】解:0.1252020×(﹣8)2021=0.1252020×82020×(﹣8)=(0.125×8)2020×(﹣8)=12020×(﹣8)=1×(﹣8)=﹣8.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式3-2】(2020春•沙坪坝区校级月考)计算82×42021×(﹣0.25)2019的值等于 .【分析】根据幂的乘方与积的乘方进行计算即可.【解答】解:原式=82×42×42019×(﹣0.25)2019=82×42×(4×﹣0.25)2019=82×42×(﹣1)=﹣1024.故答案为:﹣1024.【点评】本题考查了幂的乘方与积的乘方,解决本题的关键是利用幂的乘方与积的乘方准确计算.【变式3-3】(2019春•城关区校级期中)计算:(23)2014×1.52012×(﹣1)2014 【分析】根据幂的乘方和积的乘方计算即可.【解答】解:(23)2014×1.52012×(﹣1)2014=(23×32)2012×49×1=49. 【点评】此题考查幂的乘方和积的乘方,关键是根据幂的乘方和积的乘方解答.【考点4 幂的逆运算】【例4】(2019秋•岳麓区校级月考)解答下列问题(1)已知2x =a ,2y =b ,求2x +y 的值;(2)已知3m =5,3n =2,求33m +2n +1的值;(3)若3x +4y ﹣3=0,求27x •81y 的值.【分析】(1)根据同底数幂的乘法法则计算即可;(2)根据幂的乘方以及同底数幂的乘法法则计算即可;(3)由3x +4y ﹣3=0可得3x +4y =3,再据幂的乘方以及同底数幂的乘法法则计算即可.【解答】解:(1)∵2x =a ,2y =b ,∴2x +y =2x •2y =ab ;(2)∵3m =5,3n =2,∴33m +2n +1=(3m )3•(3n )2×3=53×22×3=125×4×3=1500;(3)由3x +4y ﹣3=0可得3x +4y =3,∴27x •81y=33x•34y=33x+4y=33=27.【点评】本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式4-1】(2020春•江阴市期中)(1)已知m+4n﹣3=0,求2m•16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.【分析】(1)先根据幂的乘方变形,再根据同底数幂的乘法进行计算,最后代入求出即可;(2)先根据幂的乘方法则将原式化为x2n的幂的形式然后代入进行计算即可.【解答】解:(1)∵m+4n﹣3=0∴m+4n=3原式=2m•24n=2m+4n=23=8.(2)原式=(x2n)3﹣2(x2n)2,=43﹣2×42,=32,【点评】本题考查了幂的乘方,同底数幂的乘法.运用整体代入法是解题的关键.【变式4-2】(2019春•邗江区校级月考)(1)若4a+3b=3,求92a•27b.(2)已知3×9m×27m=321,求m的值【分析】(1)根据幂的乘方以及同底数幂的乘法法则解答即可;(2)根据幂的乘方以及同底数幂的乘法法则解答即可.【解答】解:(1)∵4a+3b=3,∴92a•27b=34a•33b=33=27;(2)∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,解得m=4.【点评】本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式4-3】(2020•河北模拟)若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)如果2÷8x•16x=25,求x的值;(2)如果2x+2+2x+1=24,求x的值;(3)若x=5m﹣3,y=4﹣25m,用含x的代数式表示y.【分析】(1)根据幂的乘方运算法则把8x与16x化为底数为2的幂,再根据同底数幂的乘除法法则解答即可;(2)根据同底数幂的乘法法则把2x+2+2x+1=24变形为2x(22+2)=24即可解答;(3)由x=5m﹣3可得5m=x+3,再根据幂的乘方运算法则解答即可.【解答】解:(1)2÷8x•16x=2÷(23)x•(24)x=2÷23x•24x=21﹣3x+4x=25,∴1﹣3x+4x=5,解得x=4;(2)∵2x+2+2x+1=24,∴2x(22+2)=24,∴2x=4,∴x=2;(3)∵x=5m﹣3,∴5m=x+3,∵y=4﹣25m=4﹣(52)m=4﹣(5m)2=4﹣(x+3)2,∴y=﹣x2﹣6x﹣5.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,解题的关键是熟练利用幂的乘方与积的乘方对式子进行变形.【考点5 巧用幂的运算进行大小比较】【例5】(2020春•邗江区校级期中)若m=272,n=348,则m、n的大小关系正确的是()A.m>n B.m<nC.m=n D.大小关系无法确定【分析】先根据幂的乘方进行变形,再比较即可.【解答】解:m=272=(23)24=824,n=348=(32)24=924,∵8<9,∴m<n,故选:B.【点评】本题考查了幂的乘方,能正确根据幂的乘方进行变形是解此题的关键.【变式5-1】(2020春•淮阴区期中)比较255、344、433的大小()A.255<344<433B.433<344<255C.255<433<344D.344<433<255【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可.【解答】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点评】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.【变式5-2】(2020春•玄武区期中)233、418、810的大小关系是(用>号连接).【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【解答】解:∵233、418=236、810=(23)10=230,∴236>233>230,∴418>233>810.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.【变式5-3】(2020春•李沧区期中)阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a2=2,b3=3,比较a、b的大小(4)比较312×510与310×512的大小【分析】(1)根据题目中的例子可以解答本题;(2)根据题目中的例子可以解答本题;(3)根据题目中的例子可以解答本题;(4)根据题目中的例子可以解答本题.【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511,∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a2=2,b3=3,∴a6=8,b6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.【点评】本题考查幂的乘方与积的乘方、有理数大小比较,解答本题的关键是明确有理数大小的比较方法.【考点6 幂的运算中新定义问题】【例6】(2020春•漳州期末)如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= ,(2,14)= ; (2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【解答】解:(1)23=8,(2,8)=3,2−2=14,(2,14)=﹣2, 故答案为:3;﹣2;(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴m p=16,m q=5,m r=t,∵(m,16)+(m,5)=(m,t),∴p+q=r,∴m p+q=m r,∴m p•m r=m t,即16×5=t,∴t=80.【点评】本题考查的是幂的乘方和积的乘方以及有理数的混合运算,掌握幂的乘方和积的乘方法则是解题的关键.【变式6-1】(2020春•仪征市期中)某学习小组学习了幂的有关知识发现:根据a m=b,知道a、m可以求b的值.如果知道a、b可以求m的值吗?他们为此进行了研究,规定:若a m=b,那么T(a,b)=m.例如34=81,那么T(3,81)=4.(1)填空:T(2,64)=;(2)计算:T(13,27)+T(−2,16);(3)探索T(2,3)+T(2,7)与T(2,21)的大小关系,并说明理由.【分析】(1)根据定义解答即可;(2)根据定义解答即可;(3)设T(2,3)=m,可得2m=3,设T(2,7)=n,可得2n=7,设T(2,21)=k,可得2k=21,再根据同底数幂的乘法法则解答即可.【解答】解:(1)∵26=64,∴T(2,64)=6;故答案为:6.(2)∵(13)−3=27,(﹣2)4=16,∴T(13,27)+T(−2,16)=−3+4=1.(3)相等.理由如下:设T(2,3)=m,可得2m=3,设T(2,7)=n,根据3×7=21得:2m•2n=2k,可得m+n=k,即T(2,3)+T(2,7)=T(2,21).【点评】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.【变式6-2】(2020春•潍坊期中)一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log n b(即log n b).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=;log216=;log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.【分析】(1)根据题中给出已知概念,可得出答案.(2)观察可得:三数4,16,64之间满足的关系式为:log24+log216=log264.(3)通过分析,可知对数之和等于底不变,各项b值之积;(4)首先可设设M=a m,N=a n,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.【解答】解:(1)log24=2;log216=4;log264=6,故答案为:2;4;6;(2)∵4×16=64,∴log24+log216=log264;(3)log a M+log a N=log a MN;(4)设M=a m,N=a n,∵loga a m =m,loga a n=n,loga a m+n=m+n,∴loga a m +loga a n=loga a m+n,∴log a M+log a N=log a MN.【点评】本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.【变式6-3】(2019秋•崇川区校级月考)规定两数a,b之间的一种运算,记作【a,b】:如果a c=b.那么【a,b】=c例如因为23=8.所以【2,8】=3(1)根据上述规定,填空:【4,16】=,【7,1】=【,81】=4(2)小明在研究这种运算时发现一个现象【3n,4n】=【3,4】小明给出了如下的证明:设【3n,4n】=x,则(3n)x=4n,即(3x)n=4n,所以3x=4即【3,4】=x所以【3n,4n】=【3,4】请你尝试运用这种方法解决下列问题:①证明:【6,45】﹣【6,9】=【6,5】②猜想:【(x+1)n,(y﹣1)n】+【(x+1)n,(y﹣2)n】=【,】(结果化成最简形式)【分析】(1)根据规定的两数之间的运算法则解答;(2)①根据同底数幂的乘法法则,结合定义证明;②根据例题和①中证明的式子作为公式进行变形即可.【解答】解:(1)因为42=16,所以【4,16】=2.因为70=1,所以【7,1】=0.因为(±3)4=81,∴【±3,18】=4,故答案为:2;0;±3;(2)①证明:设【6,9】=x,【6,5】=y,则6x=9,6y=5,∴5×9=45=6x•6y=6x+y,∴【6,45】=x+y,则:【6,45】=【6,9】+【6,5】,∴【6,45】﹣【6,9】=【6,5】;②∵【3n,4n】=【3,4】,∴【(x+1)m,(y﹣1)m】=【(x+1),(y﹣1)】,【(x+1)n,(y﹣2)n】=【(x+1),(y﹣2)】,∴【(x+1)m,(y﹣1)m】+【(x+1)n,(y﹣2)n】,=【(x+1),(y﹣1)】+【(x+1),(y﹣2)】,=【(x+1),(y﹣1)(y﹣2)】,=【(x+1),(y2﹣3y+2)】.故答案为:x+1,y2﹣3y+2.【点评】本题考查的是新定义的理解和掌握,还考查了同底数幂的乘法以及有理数的混合运算,弄清题中的新运算是解本题的关键.【考点7 整式的乘法】【例7】(2020春•新邵县期末)在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写()A.1B.﹣1C.3x D.﹣3x【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【解答】解:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x.故选:C.【点评】考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.【变式7-1】(2019春•灌阳县期中)已知(﹣x)(2x2﹣ax﹣1)﹣2x3+3x2中不含x的二次项,则a的值是()A.3B.2C.﹣3D.﹣2【分析】先进行单项式乘多项式,再合并得到原式=﹣4x3+(a+3)x2+x,然后令二次项的系数为0即可得到a的值.【解答】解:(﹣x)(2x2﹣ax﹣1)﹣2x3+3x2=﹣2x3+ax2+x﹣2x3+3x2=﹣4x3+(a+3)x2+x,因为﹣4x3+(a+3)x2+x不含x的二次项,所以a+3=0,所以a=﹣3.故选:C.【点评】本题考查了单项式乘多项式:单项式与多项式相乘实质上是转化为单项式乘以单项式;用单项式去乘多项式中的每一项时,不能漏乘;注意确定积的符号.【变式7-2】(2019春•蜀山区期中)若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a,b为整数,则ab的值为()A.2B.﹣2C.4D.﹣4【分析】将(2x2+ax﹣1)(x﹣b)+3进行多项式乘以多项式展开得到2x3+(a﹣2b)x2﹣(ab+1)x+(b+3)=2x3﹣ax2﹣5x+5,对比系数即可求解;【解答】解:(2x2+ax﹣1)(x﹣b)+3=2x3+(a﹣2b)x2﹣(ab+1)x+(b+3)=2x3﹣ax2﹣5x+5,∴a﹣2b=﹣a,ab+1=5,b+3=5,∴b=2,a=2,∴ab=4;故选:C.【点评】本题考查多项式乘以多项式;熟练掌握多项式乘以多项式的乘法法则,利用系数相等解题.【变式7-3】(2019春•浑南区校级期中)若不管a取何值,多项式a3+2a2﹣a﹣2与(a2﹣ma+2n)(a+1)都相等,则m、n的值分别为()A.﹣1,﹣1B.﹣1,1C.1,﹣1D.1,1【分析】根据多项式乘以多项式进行恒等计算即可.【解答】解:多项式a3+2a2﹣a﹣2与(a2﹣ma+2n)(a+1)都相等,(a2﹣ma+2n)(a+1)=a3﹣ma2+2an+a2﹣ma+2n=a3+(1﹣m)a2+(2n﹣m)a+2n所以1﹣m=2,得m=﹣1,2n﹣m=﹣1,得n=﹣1.或者2n=﹣2,得n=﹣1.故选:A.【点评】本题考查了多项式乘以多项式,解决本题的关键是理解恒等变换.【考点8 整式乘法的应用】【例8】(2020春•建邺区期末)根据需要将一块边长为x的正方形铁皮按如图的方法截去一部分后.制成的长方形铁皮(阴影部分)的面积是多少?几名同学经过讨论给出了不同的答案,其中正确的是()①(x﹣5)(x﹣6);②x2﹣5x﹣6(x﹣5);③x2﹣6x﹣5x;④x2﹣6x﹣5(x﹣6)A.①②④B.①②③④C.①D.②④【分析】因为正方形的边长为x,一边截去宽5的一条,另一边截去宽6的一条,所以阴影部分长方形的长和宽分别为x﹣5与x﹣6.然后根据长方形面积计算公式进行计算.【解答】解:①由题意得:阴影部分长方形的长和宽分别为x﹣5、x﹣6,则阴影的面积=(x﹣5)(x﹣6)=x2﹣11x+30.故该项正确;②如图所示:阴影部分的面积=x2﹣5x﹣6(x﹣5),故该项正确;④如图所示:阴影部分的面积=x2﹣6x﹣5(x﹣6),故该项正确;③由④知本项错误.故选:A.【点评】本题主要考查了整式的乘除运算﹣多项式乘多项式.实际上也是去括号、合并同类项,这是各地中考的常考点.【变式8-1】(2019秋•平山县期末)根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b2【分析】根据图形确定出多项式乘法算式即可.【解答】解:根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.【变式8-2】(2020春•盐都区期中)如图,现有正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+3b),宽为(a+2b)的大长方形,则需要C类卡片()A.3张B.4张C.5张D.6张【分析】根据多项式与多项式相乘的法则求出长方形的面积,根据题意得到答案.【解答】解:∵(a+3b)(a+2b)=a2+2ab+3ab+6b2=a2+5ab+6b2,∴需要A类卡片1张、B类卡片6张、C类卡片5张,故选:C.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【变式8-3】(2020春•漳州期末)如图,甲、乙、丙、丁四位同学给出了四种表示最大长方形面积的方法:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的个数有()A.1个B.2个C.3个D.4个【分析】利用矩形的面积公式得到最大长方形面积为(2a+b)(m+n),然后利用多项式乘多项式对四种表示方法表示方法进行判断.【解答】解:最大长方形面积为(2a+b)(m+n)=2a(m+n)+b(m+n)=m(2a+b)+n(2a+b)=2am+2an+bm+bn.故选:D.【点评】本题考查了多项式乘多项式:多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【考点9 利用乘法公式求值】【例9】(2020春•邗江区校级期中)若x,y满足x2+y2=8,xy=2,求下列各式的值.(1)(x+y)2;(2)x4+y4;(3)x﹣y.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先根据完全平方公式进行变形,再代入求出即可;(3)先求出(x﹣y)2的值,再根据完全平方公式求出即可.【解答】解:(1)∵x2+y2=8,xy=2,∴(x+y)2=x2+y2+2xy=8+2×2=12;(2)∵x2+y2=8,xy=2,∴x4+y4=(x2+y2)2﹣2x2y2=82﹣2×22=64﹣8=56;(3)∵x2+y2=8,xy=2,∴(x﹣y)2=x2+y2﹣2xy=8﹣2×2=4,∴x﹣y=±2.【点评】本题考查了完全平方公式,能熟记完全平方公式的内容是解此题的关键,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.【变式9-1】(2020春•广陵区期中)已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)因为a+b=2,ab=﹣24,所以a2+b2=(a+b)2﹣2ab=4+2×24=52;(2)因为a+b=2,ab=﹣24,所以(a+1)(b+1)=ab+a+b+1=﹣24+2+1=﹣21;(3)因为a+b=2,ab=﹣24,所以(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=4+4×24=100.【点评】本题考查完全平方公式和多项式乘多项式,解题的关键是熟练运用完全平方公式和多项式乘多项式的运算法则,本题属于基础题型.【变式9-2】(2020春•灌云县期中)已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.【分析】(1)由(a﹣b)2=a2+b2﹣2ab及已知条件可求得答案;(2)(a+b)2=a2+b2+2ab及已知条件可求得a+b的值,进而得出a2﹣b2﹣8的值即可.【解答】解:(1)∵a﹣b=1,∴(a﹣b)2=a2+b2﹣2ab=1,∵a2+b2=13,∴13﹣2ab=1,∴ab=6;(2)∵a2+b2=13,ab=6,∴(a+b)2=a2+b2+2ab=13+12=25,∴a+b=5或﹣5,∵a2﹣b2﹣8=(a+b)(a﹣b)﹣8,∴当a+b=5时,(a+b)﹣8=﹣3;当a+b=﹣5时,(a+b)﹣8=﹣5﹣8=﹣13.【点评】本题考查了完全平方公式在代数式求值中的应用,熟练掌握完全平方公式并正确变形是解题的关键.【变式9-3】(2020春•新泰市期中)(1)已知(x+y)2=25,(x﹣y)2=9,求xy和x2+y2的值.(2)若a2+b2=15,(a﹣b)2=3,求ab和(a+b)2的值.【分析】(1)首先去括号,进而得出x2+y2的值,即可求出xy的值;(2)直接利用完全平方公式配方进而得出a,b的值,即可得出答案.【解答】解:(1)∵(x+y)2=25,(x﹣y)2=9,∴x2+2xy+y2=25①,x2﹣2xy+y2=9②,∴①+②得:2(x2+y2)=34,∴x2+y2=17,∴17+2xy=25,∴xy=4;(2)∵(a﹣b)2=3,∴a2﹣2ab+b2=3,∵a2+b2=15,∴15﹣2ab=3,∴﹣2ab=﹣12,∴ab=6,∵a2+b2=15,∴a2+2ab+b2=15+12,∴(a+b)2=27.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.【考点10 乘法公式几何背景】【例10】(2020春•新昌县期末)某同学利用若干张正方形纸片进行以下操作:(1)从边长为a的正方形纸片中减去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开,最后把剪成的两张纸片拼成如图2的等腰梯形,这一过程所揭示的公式是.(2)先剪出一个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出两张边长分别为a和b的长方形纸片,如图3,最后把剪成的四张纸片拼成如图4的正方形.这一过程你能发现什么代数公式?(3)先剪出两个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出三张边长分,别为a和b 的长方形纸片,如图5,你能否把图5中所有纸片拼成一个长方形?如果可以,请画出草图,并写出相应的等式,如果不能,请说明理由.【分析】(1)图1的面积为a 2﹣b 2,图2的面积为12(2a +2b )(a ﹣b )=(a +b )(a ﹣b ),可得等式; (2)拼图前的面积为a 2+2ab +b 2,拼图后的面积为(a +b )2,可得等式;(3)拼图前的面积为2a 2+3ab +b 2,因此可以拼成长(2a +b ),宽为(a +b )的长方形.【解答】解:(1)图1的面积为a 2﹣b 2,图2的面积为12(2a +2b )(a ﹣b )=(a +b )(a ﹣b ),因此有a 2﹣b 2=(a +b )(a ﹣b ),故答案为:a 2﹣b 2=(a +b )(a ﹣b );(2)拼图前的面积为a 2+2ab +b 2,拼图后的面积为(a +b )2,因此可得a 2+2ab +b 2=(a +b )2,即完全平方公式;(3)拼图前的面积为2a 2+3ab +b 2,因此可以拼成长(2a +b ),宽为(a +b )的长方形,拼图如图所示:【点评】考查平方差公式、完全平方公式的几何背景,用代数式表示图形的面积是得出公式的关键.【变式10-1】(2020春•肃州区期末)如图1,边长为a 的大正方形有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)如图1,可以求出阴影部分的面积是 (写成平方差的形式).(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 .(写成多项式乘法形式)(3)比较左、右两图的阴影部分面积,可以得到公式 .(4)请应用这个公式完成下列各题:①已知4m 2﹣n 2=12,2m +n =4,则2m ﹣n = .②计算:20202﹣2018×2022.③计算:(1−122)(1−132)(1−142)⋯(1−120192)(1−120202).【分析】(1)由面积公式可得到答案;(2)根据图形可知长方形的长是a+b,宽是a﹣b,由长方形面积公式可得到答案;(3)根据图1和图2阴影部分面积相等可得到答案;(4)①根据平方差公式,4m2﹣n2=(2m+n)(2m﹣n),已知2m+n=4代入即可求出答案;②可先把2018×2022化为(2020﹣2)(2020+2),再利用平方差公式计算即可得出答案;③先利用平方差公式变形,再约分即可得到答案.【解答】解:(1)大正方形面积=a2,小正方形面积=b2,阴影部分面积=大正方形面积﹣小正方形面积=a2﹣b2,故答案为:a2﹣b2;(2)由图可知,长方形的宽=a﹣b,长方形的长=a+b,∴长方形的面积=(a+b)(a﹣b),故答案为,a﹣b;a+b;(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2或a2﹣b2=(a+b)(a﹣b);(4)①∵4m2﹣n2=(2m+n)(2m﹣n)=12,2m+n=4,∴2m﹣n=3,故答案为:3;②=20202﹣(20202﹣4)=20202﹣20202+4=4;③.【点评】本题主要考查了平方差公式的几何背景及其应用与拓展,计算具有一定的难度,属于中档题.【变式10-2】(2020春•三明期末)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1,图2,图3.(2)用4个全等的长和宽分别为a,b的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,写出这三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系.(3)根据(2)中你探索发现的结论,计算:当x+y=3,xy=﹣10时,求x﹣y的值.【分析】根据正方形得面积计算公式,解决问题.;【解答】解:(1)图1、S阴=(a+b)(a+b)=a2+2ab+b2=(a−b)(a−b)=a2−2ab+b2;图2、S阴=(a+b)(a−b)=a2−b2.图3、S阴(2)由题意可知,阴影部分的面积=大正方形面积﹣4×小长方形面积,大正方边长为(a+b),面积为(a+b)2,小长方形长为a,宽为b,面积为ab,=(a+b)2−4ab则S阴=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.(3)由(x﹣y)2=(x+y)2﹣4xy,∴(x﹣y)2=32﹣4×(﹣10)=49,∴x﹣y=±7.【点评】本题主要考查乘法公式的应用,(1)根据题目中正方形和长方形的边长,由面积计算公公式可得出乘法.(2)根据拼图法阴影部分的面积等于大正方形面积减去4个长方形的面积,可得出结论.(3)根据(2)中结论可直接计算得出答案.【变式10-3】(2020春•东城区校级期末)如图,有足够多的边长为a的小正方形(A类)、长为a宽为b 的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a+b)(a+2b),在虛框中画出图形,并根据图形回答(2a+b)(a+2b)=;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你画的长方形,可得到恒等式;(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个相同形状的长方形的两条邻边长(x>y),观察图案,指出以下正确的关系式(填写选项).A.xy=m2−n24B.x+y=m C.x2﹣y2=mn D.x2+y2=m2+n22【分析】(1)计算(2a+b)(a+2b)的结果,可知需要A、B、C型的纸片的张数,进而画出拼图;(2)a2+5ab+6b2即用A型的1张,B型的5张,C型的6张,可以拼图,得出等式;(3)根据m、n与x、y之间的关系,利用恒等变形,可得结论.【解答】解:(1)(2a+b)(a+2b)=2a2+5ab+2b2,故答案为:2a2+5ab+2b2;拼图如图所示:(2)a2+5ab+6b2即用A型的1张,B型的5张,C型的6张,可以拼成如图所示的图形,因此可得等式:a2+5ab+6b2=(a+3b)(a+2b),故答案为:a2+5ab+6b2=(a+3b)(a+2b);(3)由图③可知,m=x+y,n=x﹣y,因此有m+n=2x,m﹣n=2y,mn=(x+y)(x﹣y)=x2﹣y2;m2−n24=(m+n)(m−n)4=2x⋅2y4=xy;m2+n22=(m+n)2−2mn2=4x2−2(x2−y2)2=x2+y2;故答案为:A、B、C、D.【点评】考查完全平方公式、平方差公式的几何背景,理解拼图原理是得出关系式的前提.【考点11 整式乘除的计算与化简】【例11】(2019春•淄川区期中)(1)计算:①a5•(﹣a)3+(﹣2a2)4.②−4xy3⋅(12xy)÷(xy2)2.③(﹣4x﹣3y)2.④(2a+b)(2a﹣b)+(a+2b)2(2)先化简,再求值:①(x+y)2−(x+y)(y−x)−12x(2x−y),其中x=﹣1,y=15.②[b (a ﹣3b )﹣a (3a +2b )+(3a ﹣b )(2a ﹣3b )]÷(﹣3a ),其中a ,b 满足2a ﹣8b ﹣6=0.【分析】(1)①原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;②原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可求出值; ③原式利用完全平方公式计算即可求出值;④原式利用平方差公式及完全平方公式计算即可求出值;(2)①原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值;②原式中括号中利用单项式乘多项式,多项式乘多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:(1)①原式=﹣a 8+16a 8=15a 8;②原式=﹣4xy 3•(12xy )÷x 2y 4 =﹣2x 2y 4÷x 2y 4=﹣2;③原式=16x 2+24xy +9y 2;④原式=4a 2﹣b 2+a 2+4ab +4b 2=5a 2+4ab +3b 2;(2)①原式=x 2+2xy +y 2﹣y 2+x 2﹣x 2+12xy=x 2+52xy ,当x =﹣1,y =15时,原式=1−12=12;②原式=(ab ﹣3b 2﹣3a 2﹣2ab +6a 2﹣9ab ﹣2ab +3b 2)÷(﹣3a )=(3a 2﹣12ab )÷(﹣3a )=﹣a +4b=﹣(a ﹣4b ),由2a ﹣8b ﹣6=0,得到a ﹣4b =3,则原式=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则及公式是解本题的关键.【变式11-1】(2020春•郓城县期末)计算:(1)(﹣2ab)2•3b÷(−13ab2)(2)用整式乘法公式计算:912﹣88×92(3)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=−1 2.【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用单项式乘以多项式,平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=4a2b2•3b÷(−13ab2)=﹣36ab;(2)原式=912﹣(90﹣2)×(90+2)=912﹣902+4=181+4=185;(3)原式=x2﹣4xy+4x2﹣y2﹣4x2+4xy﹣y2=x2﹣2y2,当x=﹣2,y=−12时,原式=4−12=312.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.【变式11-2】(2020春•竞秀区期末)计算题:(1)82019×(﹣0.125)2020(2)20202﹣2019×2021(用乘法公式进行计算);(3)(3x﹣y)(9x2+y2)(3x+y);(4)(a+b)(b﹣a)﹣(a﹣2b)2;(5)先化简,再求值:[(x+3y)2﹣(x+2y)(3x﹣y)﹣11y2]÷(2x),其中x=﹣2,y=1.【分析】(1)将原式变形为(﹣0.125)2019×82019×(﹣0.125),再逆用积的乘方变形、计算可得;(2)原式变形后,利用平方差公式计算即可求出值;(3)原式结合后,利用平方差公式计算即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(5)原式中括号中利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)82019×(﹣0.125)2020=(﹣0.125)2019×82019×(﹣0.125)=(﹣0.125×8)2019×(﹣0.125)=0.125;。
整式的乘法与因式分解单元测试卷附答案
(2)∵a2+b2﹣10a﹣12b+61=0,
∴(a2﹣10a+25)+(b2﹣12b+36)=0,
∴(a﹣5)2+(b﹣6)2=0,
∴a﹣5=0,b﹣6=0,
∴a=5,b=ቤተ መጻሕፍቲ ባይዱ,
∵6﹣5<c<6+5,c≥6,
∴6≤c<11,
∴△ABC的最大边c的值可能是6、7、8、9、10.
(3)∵a﹣b=8,ab+c2﹣16c+80=0,
(1)请问两种不同的方法求图2大正方形的面积.
方法1: ____________________;方法2: ________________________;
(2)观察图2,请你写出下列三个代数式: 之间的等量关系.
_______________________________________________________;
(3)根据(2)题中的等量关系,解决如下问题:
①已知: ,求 的值;
②已知 ,则 的值是____.
【答案】(1) , ;(2) ;(3)① ,②
【解析】
【分析】
(1)依据正方形的面积计算公式即可得到结论;
(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;
(3)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设2020-a=x,a-2019=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy= = ,进而得到 = .
七年级数学试卷整式乘法与因式分解易错压轴解答题复习题(含答案)
七年级数学试卷整式乘法与因式分解易错压轴解答题复习题(含答案)一、整式乘法与因式分解易错压轴解答题1.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;……根据这一规律计算:(1)(x﹣1)(x4+x3+x2+x+1)=________.(x﹣1)(x n+x n﹣1+…+x+1)=________. (2)22020+22019+22018+…+22+2+1.(3)32020﹣32019+32018﹣32017+…+32﹣3+1.2.如图1是一个长为,宽为的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为;(2)观察图2请你写出,,之间的等量关系是________;(3)根据(2)中的结论,若,,则 ________;(4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式.在图形上把每一部分的面积标写清楚.3.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如, ···,因此都是奇巧数.(1)是奇巧数吗?为什么?(2)奇巧数是的倍数吗?为什么?5.阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即 .例如:是的一种形式的配方,是的另一种形式的配方请根据阅读材料解决下列问题:(1)比照上面的例子,写出的两种不同形式的配方;(2)已知,求的值;(3)已知,求的值.6.【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题。
专题07 《整式乘法与因式分解》解答题压轴题专练(解析版) -七年级数学下册考点培优训练(苏科版)
专题07 《整式乘法与因式分解》解答题压轴题专练(1)(满分120分时间:60分钟)班级姓名得分一、解答题1.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=.(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.【答案】(1)7(2)-7(3)-3(4)-15【解析】试题分析:(1)用2x+1中的一次项系数2乘以3x+2中的常数项2得4,用2x+1中的常数项1乘以3x+2中的一次项系数3得3,4+3=7即为积中一次项的系数;(2)用x+1中的一次项系数1,3x+2中的常数项2,4x-3中的常数项-3相乘得-6,用x+1中的常数项1,3x+2中的一次项系数3,4x-3中的常数项-3相乘得-9,用x+1中的常数项1,3x+2中的常数项2,4x-3中的一次项系数4相乘得8,-6-9+8=-7即为积中一次项系数;(3)用每一个因式中的一次项系数与另两个因式中的常数项相乘,再把所得的积相加,列方程、解方程即可得;(4)设422x ax bx +++可以分成(231x x -+ )(x 2+kx+2),根据小明的算法则有k -3=0,a=-3k+2+1,b=-3×2+k ,解方程即可得.试题解析:(1)2×2+1×3=7,故答案为7;(2)1×2×(-3)+3×1×(-3)+4×1×2=-7,故答案为-7;(3)由题意得:1×a×(-1)+(-3)×1×(-1)+2×1×a=0,解得:a=-3,故答案为-3;(4)设422x ax bx +++可以分成(231x x -+ )(x 2+kx+2),则有k -3=0,a=-3k+2+1,b=-3×2+k ,解得:k=3,a=-6,b=-3,所以2a+b=-15,故答案为-15.b=3-6=-32.阅读材料:若x 2-2xy +2y 2-8y +16=0,求x 、y 的值.解:∵x 2-2xy +2y 2-8y +16=0,∵(x 2-2xy +y 2)+(y 2-8y +16)=0,∵(x -y )2+(y -4)2=0,∵(x -y )2=0,(y -4)2=0,∵y =4,x =4.根据你的观察,探究下面的问题:已知∵ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2-4a -6b +13=0.求∵ABC 的边c 的值.【答案】2或3或4【分析】先通过配方法,利用完全平方公式进行配方求出a ,b 的值,再根据三角形的三边关系即可确定c 的值.【详解】∵2246130a b a b +--+=∵22(44)(69)0a a b b -++-+=即22(2)(3)0a b -+-=∵20a -=,30b -=∵23a b ==,根据三角形的三边关系得a b c a b -<<+,即15c <<∵c 是正整数∵c 的值为2或3或4.【点睛】本题主要考查了配方法及三角形边长的确定,熟练掌握完全平方公式及三角形的三边关系是解决本题的关键.3.阅读下列材料:某同学在计算3(4+1)(42+1)时,发现把3写成4-1后,可以连续运用平方差公式计算,3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=44-1=256-1=255.请借鉴该同学的经验,计算下列各式的值:(1)(2+1)(22+1)(24+1)(28+1)…(22048+1)(2)2481511111(1)(1)(1)(1)22222+++++. 【答案】(1)24096-1;(2)2.【分析】(1)在前面乘一个(2-1),然后再连续利用平方差公式计算;(2)在前面乘一个2×(1-12),然后再连续利用平方差公式计算. 【详解】解:(1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(24+1)(28+1)…(22048+1)=24096-1;(2)2481521111111112222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 24815111111211111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1615112122⎛⎫=⨯-+ ⎪⎝⎭ 151511222=-+ =2. 【点睛】本题考查了平方差公式的运用,熟练掌握平方差公式是解题的关键.4.阅读下列分解因式的过程:x 2+2ax -3a 2=x 2+2ax+a 2-a 2-3a 2=(x+a)2-4a 2=(x+a+2a)(x+a -2a)(x+3a)(x -a).像上面这样通过加减项配出完全平方式后再把二次三项式分解因式的方法,叫做配方法,请你用配方法将下面的多项式因式分解:(1)m 2-4mn+3n 2;(2)x 2-4x -12.【答案】(1)(m -n )(m -3n );(2)(x+2)(x -6).【分析】(1)、(2)分别利用阅读材料中的配方法分解即可.【详解】解:(1)m 2-4mn+3n 2=m 2-4mn+4n 2-4n 2+3n 2=m 2-4mn+4n 2-n 2=(m -2n )2-n 2=(m -2n+n )(m -2n -n )=(m -n )(m -3n );(2)x 2-4x -12=x 2-4x+4-4-12=(x -2)2-42=(x -2+4)(x -2-4)=(x+2)(x -6).【点睛】本题考查了因式分解的应用.要运用配方法,只要二次项系数为1,只需加上一次项系数一半的平方即可配成完全平方公式.5.如图,长为m ,宽为x()m x >的大长方形被分割成7小块,除阴影,A B 外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y ,记阴影A 与B 的面积差为S .(1)分别用含,,m x y 的代数式表示阴影,A B 的面积,并计算S ;(2)当6,1m y ==时,求S 的值;(3)当x 取任何实数时,面积差S 的值都保持不变,问m 与y 应满足什么条件?【答案】(1)阴影A 的面积为(3)(2)m y x y --,阴影B 的面积为3(3)y x y m +-,236S y my xy mx =-+-+;(2)S 的值为3;(3)6m y =.【分析】(1)先分别求出阴影A 与B 的长、宽,再根据长方形的面积公式,即可得;(2)将6,1m y ==代入,计算含乘方的有理数混合运算即可得;(3)将S 的值进行变形,再根据其值与x 无关,列出等式求解即可得.【详解】(1)由图可知,阴影A 的长为3m y -,宽为2x y -;阴影B 的长为3y ,宽为(3)3x m y x y m --=+- 则阴影A 的面积为(3)(2)m y x y --,阴影B 的面积为3(3)y x y m +-S A B =-(3)(2)3(3)m y x y y x y m =---+-22236393mx my xy y xy y my =--+--+236y my xy mx =-+-+;(2)由(1)可知,236S y my xy mx =-+-+将6,1m y ==代入得:2316166363S x x =-⨯+⨯-+=-+=即S 的值为3;(3)由(1)可知,22363(6)S y my xy mx y my m y x =-+-+=-++-要使当x 取任何实数时,面积差S 的值都保持不变则60m y -=整理得6m y =.【点睛】本题考查了整式的加减乘除运算、含乘方的有理数混合运算等知识点,理解题意,根据图形正确求出阴影A 与B 的长、宽是解题关键.6.如图∵所示是一个长为2m ,宽为2n 的长方形,沿虚线用剪刀均分成四个小长方形,然后按图∵的方式拼成一个正方形.(1)你认为图∵中的阴影部分的正方形的边长等于__________;(2)请用两种不同的方法列代数式表示图∵中阴影部分的面积:方法∵____________;方法∵________________;(3)观察图∵,直按写出22(),(),m n m n mn +-这三个代数式之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若8,5a b ab +==,求2()a b -的值【答案】(1)m -n ;(2)2()m n -;2()4m n mn +-;(3)2()m n -=2()4m n mn +-;(4)44.【分析】(1)根据图∵可知,剪开后的小长方形长为m ,宽为n ,可以看出图∵中的阴影部分的正方形的边长等于m -n ;(2)图∵中阴影部分的面积:方法∵利用阴影小正方形的边长直接计算面积;方法∵利用大正方形的面积减去四个小长方形的面积计算;(3)根据图∵里图形的面积关系,可以得出这三个代数式之间的等量关系;(4)根据(3)中的等量关系式,代入数值求解即可.【详解】(1)剪开后的小长方形长为m ,宽为n ,所以图∵中的阴影部分的正方形的边长等于m -n ,故答案为:m -n ;(2)方法∵阴影的面积为边长的平方,即2()m n -;方法∵阴影的面积为大正方形的面积减去四个小长方形的面积,则2()4m n mn +-,故答案为:2()m n -;2()4m n mn +-;(3)根据图∵里图形的面积关系,可得2()m n -=2()4m n mn +-,故答案为:2()m n -=2()4m n mn +-;(4)由(3)中的等量关系可知,2()a b -=2()4a b ab +-=64-20=44, 故答案为:44.【点睛】本题考查了图形的面积的代数式表示以及代数式之间的等量关系,掌握图形面积的代数式表示是解题的关键.7.因为()()2632x x x x +-=+-,令26x x +-=0,则(x+3)(x -2)=0,x=-3或x=2,反过来,x =2能使多项式26x x +-的值为0.利用上述阅读材料求解:(1)若x ﹣4是多项式x 2+mx+8的一个因式,求m 的值;(2)若(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,试求a,b 的值;(3)在(2)的条件下,把多项式325x ax x b +-+因式分解的结果为 .【答案】(1)m=-6;(2)26a b =-⎧⎨=⎩;(3)(x -1)(x+2)(x -3) 【分析】(1)由已知条件可知,当x=4时,x 2+mx+8=0,将x 的值代入即可求得;(2)由题意可知,x=1和x=-2时,x 3+ax 2-5x+b=0,由此得二元一次方程组,从而可求得a 和b 的值; (3)将(2)中a 和b 的值代入x 3+ax 2-5x+b ,则由题意知(x -1)和(x+2)也是所给多项式的因式,从而问题得解.【详解】解:(1)∵x ﹣4是多项式x 2+mx+8的一个因式,则x=4使x 2+mx+8=0,∵16+4m+8=0,解得m=-6;(2)∵(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,则x=1和x=-2都使325x ax x b +-+=0,得方程组为:15084100a b a b +-+=⎧⎨-+++=⎩,解得26a b =-⎧⎨=⎩; (3)由(2)得,x 3-2x 2-5x+6有两个因式(x ﹣1)和(x+2),又36(1)2(3)x x x x =⋅⋅=-⨯⨯-,, 则第三个因式为(x -3),∵x 3-2x 2-5x+6=(x -1)(x+2)(x -3).故答案为:(x -1)(x+2)(x -3).【点睛】本题考查了分解因式的特殊方法,根据阅读材料仿做,是解答本题的关键.8.观察下列各式:∵60×60=602-02=3600;∵59×61=(60-1)×(60+1)=602-12=3599;∵58×62=(60-2)×(60+2)=602-22=3596;∵57×63=(60-3)×(60+3)=602-32=3591……(探究)(1)上面的式子表示的规律是:(60+m)(60-m)=;观察各等式的左边发现两个因数之和都是120,而两数乘积却随着两个因数的接近程度在变化,当两个因数时,乘积最大.(应用)(2)根据上面的规律,思考若a+b=400,则ab的最大值是;(拓展)(3)将一根长40厘米的铁丝折成一个长方形,设它的一边长为x厘米,面积为S,写出S与x 之间的等量关系?当x为何值时,S取得最大值?【答案】(1)602-m2;相等;(2)40000;(3)S=-x2+20x;当x=10时,S取得最大值.【分析】(1)按照已知等式的规律或平方差公式写出结果即可;对比题干中给出的等式可知,当两个因数相等即m=0时,乘积最大;(2)根据(1)中得出的规律可知,当a=b时,ab取得最大值,从而得出结果;(3)设长方形的一边长为x厘米,则根据题意得长方形的另一边长为(20-x)厘米,根据长方形的面积公式可得出S与x之间的等量关系;再根据(1)中的结论可得出当长方形的长与宽相等时,S取得最大值,从而得出结果.【详解】解:(1)根据题中的等式可得,(60+m)(60-m)=602-m2;对比题干中给出的等式可知,当两个因数相等时,即m=0时乘积最大,故答案为:602-m2;相等;(2)根据(1)中得出的规律可知,当a=b时,ab取得最大值,∵a+b=400,∵当a=b=200时,ab取得最大值,最大值为40000,故答案为:40000;(3)设长方形的一边长为x厘米,则根据题意得长方形的另一边长为(20-x)厘米,∵S=x(20-x)=-x2+20x,故S与x之间的等量关系式为:S=-x2+20x;∵长方形的两边长分别为x厘米,(20-x)厘米,有x+(20-x)=20,现要求S=x(20-x)的最大值,由(1)知,当x=20-x时,S取得最大值,故当x=10时,S取得最大值.【点睛】本题考查了通过观察、归纳、抽象出数列的规律的能力,一般先根据题意,找到规律,并进行推导得出答案.9.图1是一个长为2m,宽为2n的长方形,将该长方形沿图中虚线用剪刀均分成四块小长方形,然后按照图2所示拼成一个正方形.(1)使用不同方法计算图2中小正方形的面积,可推出(m+n)2,(m-n)2,mn之间的等量关系为:;(2)利用(1)中的结论,解决下列问题:∵已知a-b=4,ab=5,求a+b的值;∵已知a>0,a-3a=2,求a+3a的值.【答案】(1)(m-n)2=(m+n)2-4mn;(2)∵6或-6;∵4.【分析】(1)由题意知,阴影部分小正方形的边长为m-n.根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积求图中阴影部分的面积,利用两种求法确定出所求关系式即可;(2)∵利用(1)的结论,可知(a-b)2=(a+b)2-4ab,把已知数值整体代入即可;∵先利用完全平方公式进行变形,即将a-3a=2两边同时平方,然后求出(a+3a)2的值,从而得出结果.【详解】解:(1)阴影部分的面积可以看作是边长m-n的正方形的面积,也可以看作边长m+n的正方形的面积减去4个小长方形的面积,∵(m-n)2=(m+n)2-4mn,故答案为:(m-n)2=(m+n)2-4mn;(2)∵∵a-b=4,ab=5,且由(1)知(a-b)2=(a+b)2-4ab,∵(a+b)2=16+20=36,∵a+b=6或-6;∵∵a-3a=2,∵(a -3a )2= a 2-6+29a=4, ∵a 2+6+29a =16, ∵(a +3a)2=16, 又a >0,∵a +3a =4. 【点睛】本题考查了完全平方公式的几何背景,整式的混合运算以及分式的求值等知识,熟练掌握运算法则是解本题的关键.10.数学课堂上,老师提出问题:如图,如何在该图形中数出黑色正方形的个数,以下是两位同学的做法:(1)甲同学的做法为:当1n =时,黑色正方形的个数共有14610⨯+=当2n =时,黑色正方形的个数共有24614⨯+=当3n =时,黑色正方形的个数共有34618⨯+=……则在第n 个图形中,黑色正方形的个数共有 (无需化简)(2)乙同学的做法为:当1n =时,黑色正方形的个数共有341210⨯-⨯=当2n =时,黑色正方形的个数共有452314⨯-⨯=当3n =时,黑色正方形的个数共有563418⨯-⨯=……则在第n 个图形中,黑色正方形的个数共有 (无需化简)(3)数学老师及时肯定了两位同学的做法,从而可以得到等式(4)请利用学习过的知识验证(3)问中的等式.【答案】(1)46n +;(2)(2)(3)(1)n n n n ++-+;(3)46(2)(3)(1)n n n n n +=++-+;(4)见解析.【分析】(1)根据所给算式总结规律即可;(2)根据所给算式总结规律即可;(3)根据两种算法都正确可得等式;(4)利用整式混合运算法则对(2)(3)(1)++-+进行化简,即可验证.n n n n【详解】n+,解:(1)由题中算式可知,在第n个图形中,黑色正方形的个数为:46n+;故答案为:46(2)由题中算式可知,在第n个图形中,黑色正方形的个数为:(2)(3)(1)n n n n++-+,故答案为:(2)(3)(1)++-+;n n n n(3)数学老师及时肯定了两位同学的做法,从而可以得到等式:46(2)(3)(1)+=++-+,n n n n n故答案为:46(2)(3)(1)+=++-+;n n n n n(4)∵22(2)(3)(1)32646++-+=+++--=+,n n n n n n n n n n∵该等式成立.【点睛】本题考查了图形类规律探索以及整式混合运算的实际应用,熟练掌握运算法则是验证等式成立的关键.。
八年级数学上册整式的乘法与因式分解(篇)(Word版 含解析)
八年级数学上册整式的乘法与因式分解(篇)(Word版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011,b=2012x+2012,c=2012x+2013时,a-b=-1,b-c=-1,c-a=2,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选D.【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.已知n16++是一个有理数的平方,则n不能取以下各数中的哪一个() 221-D.9A.30 B.32 C.18【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.【详解】2n是乘积二倍项时,2n+216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n+216+1=2n+2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n+216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n可以取到的数是9、30、-18,不能取到的数是32.故选B.【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.3.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.5.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.6.边长为a,b的长方形周长为12,面积为10,则a2b+ab2的值为()A.120 B.60 C.80 D.40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a,b的长方形周长为12,面积为10,∴a+b=6,ab=10,则a2b+ab2=ab(a+b)=10×6=60.故选:B.【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.7.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【答案】D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-4.故选D.8.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.9.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.10.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( ) A.3xy B.-3xy C.-1 D.1【答案】A【解析】【分析】【详解】解:∵左边=-3xy(4y-2x-1)=-12xy2+6x2y+3xy右边=-12xy2+6x2y+□,∴□内上应填写3xy故选:A.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如图,有一张边长为x的正方形ABCD纸板,在它的一个角上切去一个边长为y的正方形AEFG,剩下图形的面积是32,过点F作FH⊥DC,垂足为H.将长方形GFHD切下,与长方形EBCH重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+= ∵22()()x y x y x y -=+-,∴x -y=4, 解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.【答案】(a-b+x-y )【解析】运用公因式的概念,把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×(a-b+x-y ). 故答案为:(a-b+x-y ).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.13.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.14.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.15.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为_____.【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x 的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x ﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.16.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.19.若3a b +=,则226a b b -+的值为__________.【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.20.已知:7a b +=,13ab =,那么 22a ab b -+= ________________.【答案】10【解析】∵(a+b ) 2 =7 2 =49,∴a 2 -ab+b 2 =(a+b ) 2 -3ab=49-39=10,故答案为10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法与因式分解【知识脉络】【基础知识】1.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.3 a2 b2×2abc=(3×2)×(a2 b2×abc)=6 a3 b3c2.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.3.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.4.乘法公式:①完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.②平方差公式:(a+b)(a-b)=a2-b2语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.5.因式分解(难点)因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.一、掌握因式分解的定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(3)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;①平方差公式: a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2【典例解析】例题1:数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣1)(b﹣2).现将数对(m,1)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是﹣m2+2m .(结果要化简)【考点】整式的混合运算.【分析】根据题意的新定义列出关系式,计算即可得到结果.【解答】解:根据题意得:(m﹣1)(1﹣2)=n,即n=1﹣m,则将数对(n,m)代入得:(n﹣1)(m﹣2)=(1﹣m﹣1)(m﹣2)=﹣m2+2m.故答案为:﹣m2+2m【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.例题2:乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2﹣b2(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b ,宽是a﹣b ,面积是(a+b)(a﹣b)(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:(a+b)(a﹣b)=a2﹣b2公式2:a2﹣b2=(a+b)(a﹣b)(4)运用你所得到的公式计算:×.【考点】平方差公式的几何背景.【分析】(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;反过来也成立;(4)把×写成(10+)(10﹣),利用公式求解即可.【解答】解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)×=(10+)(10﹣)=102﹣=100﹣=.例题3:如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2 B. b2+a2 C.(b+a)2 D. a2+2ab考点:勾股定理.分析:先求出AE即DE的长,再根据三角形的面积公式求解即可.解答:解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)•b=b2+(b﹣a)2.故选:A.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.例题4:如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24 .(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为975 (直接写出结果).【考点】规律型:数字的变化类.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2017求出a的值即可.【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(2)定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1);(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2017,解得:a=975.故答案为:975.【跟踪训练】1.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=(a+b)2.2.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张3.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形4.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六12 345678910111213141516 17181920212223 24252627282930 31(1)计算:(12+92)﹣(22+82)= 14 ,﹣= 14 ,自己任选一个有4个数的方框进行计算14(2)通过计算你发现什么规律,并说明理由.5.已知(x+y)2=25,xy=,求x﹣y的值.6. 已知,则(a+b)2﹣(a﹣b)2的值为 1 .7. ①一个多项式除以2m得1﹣m+m2,这个多项式为2m﹣2m2+2m3.②6x2+5x﹣6 ÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是a﹣b ;若小丽报的是9a2b,则小玉报的整式是27a3b2.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m.8. 阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.参考答案:1.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=(a+b)2.【考点】因式分解-运用公式法.【分析】根据提示可知1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形,利用面积和列出等式即可求解.【解答】解:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.【点评】本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.2.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张【考点】多项式乘多项式.【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【解答】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片5张.3.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】因式分解的应用.【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【解答】解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.4.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六12 345678910111213141516171819202122232425262728293031(1)计算:(12+92)﹣(22+82)= 14 ,﹣= 14 ,自己任选一个有4个数的方框进行计算14(2)通过计算你发现什么规律,并说明理由.【考点】整式的混合运算.【分析】(1)先算乘法,再合并即可;(2)设最小的数字为n,则其余三个分别为n+8,n+1,n+7,根据题意得出算式[n2+(n+8)2]﹣[(n+1)2+(n+7)2],求出即可.【解答】解:(1)(12+92)﹣(22+82)=1+81﹣4﹣64=14,﹣=100+324﹣121﹣289=14,(32+112)﹣(42+102)=9+121﹣16﹣100=14,故答案为:14;(2)计算结果等于14,理由是:设最小的数字为n,则其余三个分别为n+8,n+1,n+7,所以[n2+(n+8)2]﹣[(n+1)2+(n+7)2]=n2+n2+16n+64﹣n2﹣2n﹣1﹣n2﹣14n﹣49=14.5.已知(x+y)2=25,xy=,求x﹣y的值.【考点】完全平方公式.【分析】根据完全平方公式即可求出答案.【解答】解:∵(x+y)2=x2+2xy+y2,∴25=x2+y2+,∴x2+y2=∵(x﹣y)2=x2﹣2xy+y2,∴(x﹣y)2=﹣=16∴x﹣y=±46. 已知,则(a+b)2﹣(a﹣b)2的值为 1 .考点:因式分解-运用公式法.分析:首先利用完全平方公式展开进而合并同类项,再将已知代入求出即可.解答:解:∵(a+b)2﹣(a﹣b)2=(a2+2ab+b2)﹣(a2﹣2ab+b2)=4ab,∴将,代入上式可得:原式=4ab=4××=1.故答案为:1.点评:此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.7. ①一个多项式除以2m得1﹣m+m2,这个多项式为2m﹣2m2+2m3.②6x2+5x﹣6 ÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是a﹣b ;若小丽报的是9a2b,则小玉报的整式是27a3b2.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m.考点:整式的混合运算.分析:①利用2m乘1﹣m+m2计算即可;②把除式和商相乘即可;③根据被除式÷商=除式,被除式=除式×商列式计算即可;④利用4块土地换成一块地后的面积与原来4块地的总面积相等,而原来4块地的总面积=a2+bc+ac+ab,得到4块土地换成一块地后面积为(a2+bc+ac+ab)米,又此块地的宽为(a+b)米,根据矩形的面积公式得到此块地的长=(a2+bc+ac+ab)÷(a+b),把被除式分解后再进行除法运算即可得到结论.解答:解:①2m(1﹣m+m2)=2m﹣2m2+2m3;②(2x+3)(3x﹣2)=6x2+5x﹣6;③(3a2b﹣ab2)÷3ab=a﹣b,3ab•9a2b=27a3b2;④∵原来4块地的总面积=a2+bc+ac+ab,∴将这4块土地换成一块地后面积为(a2+bc+ac+ab)米,而此块地的宽为(a+b)米,∴此块地的长=(a2+bc+ac+ab)÷(a+b)=(a2+ac+bc+ab)÷(a+b)=[a(a+c)+b(a+c)÷(a+b)]=(a+b)(a+c)÷(a+b)=a+c.故答案为:2m﹣2m2+2m3;6x2+5x﹣6;a﹣b,27a3b2;a+c.点评:此题考查整式的混合运算,掌握计算方法是解决问题的关键.8. 阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.考点:因式分解的应用.专题:阅读型.分析:(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.解答:解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥.则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5.点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.。